Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
process_64.c
Go to the documentation of this file.
1 /*
2  * arch/sh/kernel/process_64.c
3  *
4  * This file handles the architecture-dependent parts of process handling..
5  *
6  * Copyright (C) 2000, 2001 Paolo Alberelli
7  * Copyright (C) 2003 - 2007 Paul Mundt
8  * Copyright (C) 2003, 2004 Richard Curnow
9  *
10  * Started from SH3/4 version:
11  * Copyright (C) 1999, 2000 Niibe Yutaka & Kaz Kojima
12  *
13  * In turn started from i386 version:
14  * Copyright (C) 1995 Linus Torvalds
15  *
16  * This file is subject to the terms and conditions of the GNU General Public
17  * License. See the file "COPYING" in the main directory of this archive
18  * for more details.
19  */
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/ptrace.h>
23 #include <linux/reboot.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/io.h>
28 #include <asm/syscalls.h>
29 #include <asm/uaccess.h>
30 #include <asm/pgtable.h>
31 #include <asm/mmu_context.h>
32 #include <asm/fpu.h>
33 #include <asm/switch_to.h>
34 
36 struct pt_regs fake_swapper_regs = { 0, };
37 
38 void show_regs(struct pt_regs *regs)
39 {
40  unsigned long long ah, al, bh, bl, ch, cl;
41 
42  printk("\n");
43 
44  ah = (regs->pc) >> 32;
45  al = (regs->pc) & 0xffffffff;
46  bh = (regs->regs[18]) >> 32;
47  bl = (regs->regs[18]) & 0xffffffff;
48  ch = (regs->regs[15]) >> 32;
49  cl = (regs->regs[15]) & 0xffffffff;
50  printk("PC : %08Lx%08Lx LINK: %08Lx%08Lx SP : %08Lx%08Lx\n",
51  ah, al, bh, bl, ch, cl);
52 
53  ah = (regs->sr) >> 32;
54  al = (regs->sr) & 0xffffffff;
55  asm volatile ("getcon " __TEA ", %0" : "=r" (bh));
56  asm volatile ("getcon " __TEA ", %0" : "=r" (bl));
57  bh = (bh) >> 32;
58  bl = (bl) & 0xffffffff;
59  asm volatile ("getcon " __KCR0 ", %0" : "=r" (ch));
60  asm volatile ("getcon " __KCR0 ", %0" : "=r" (cl));
61  ch = (ch) >> 32;
62  cl = (cl) & 0xffffffff;
63  printk("SR : %08Lx%08Lx TEA : %08Lx%08Lx KCR0: %08Lx%08Lx\n",
64  ah, al, bh, bl, ch, cl);
65 
66  ah = (regs->regs[0]) >> 32;
67  al = (regs->regs[0]) & 0xffffffff;
68  bh = (regs->regs[1]) >> 32;
69  bl = (regs->regs[1]) & 0xffffffff;
70  ch = (regs->regs[2]) >> 32;
71  cl = (regs->regs[2]) & 0xffffffff;
72  printk("R0 : %08Lx%08Lx R1 : %08Lx%08Lx R2 : %08Lx%08Lx\n",
73  ah, al, bh, bl, ch, cl);
74 
75  ah = (regs->regs[3]) >> 32;
76  al = (regs->regs[3]) & 0xffffffff;
77  bh = (regs->regs[4]) >> 32;
78  bl = (regs->regs[4]) & 0xffffffff;
79  ch = (regs->regs[5]) >> 32;
80  cl = (regs->regs[5]) & 0xffffffff;
81  printk("R3 : %08Lx%08Lx R4 : %08Lx%08Lx R5 : %08Lx%08Lx\n",
82  ah, al, bh, bl, ch, cl);
83 
84  ah = (regs->regs[6]) >> 32;
85  al = (regs->regs[6]) & 0xffffffff;
86  bh = (regs->regs[7]) >> 32;
87  bl = (regs->regs[7]) & 0xffffffff;
88  ch = (regs->regs[8]) >> 32;
89  cl = (regs->regs[8]) & 0xffffffff;
90  printk("R6 : %08Lx%08Lx R7 : %08Lx%08Lx R8 : %08Lx%08Lx\n",
91  ah, al, bh, bl, ch, cl);
92 
93  ah = (regs->regs[9]) >> 32;
94  al = (regs->regs[9]) & 0xffffffff;
95  bh = (regs->regs[10]) >> 32;
96  bl = (regs->regs[10]) & 0xffffffff;
97  ch = (regs->regs[11]) >> 32;
98  cl = (regs->regs[11]) & 0xffffffff;
99  printk("R9 : %08Lx%08Lx R10 : %08Lx%08Lx R11 : %08Lx%08Lx\n",
100  ah, al, bh, bl, ch, cl);
101 
102  ah = (regs->regs[12]) >> 32;
103  al = (regs->regs[12]) & 0xffffffff;
104  bh = (regs->regs[13]) >> 32;
105  bl = (regs->regs[13]) & 0xffffffff;
106  ch = (regs->regs[14]) >> 32;
107  cl = (regs->regs[14]) & 0xffffffff;
108  printk("R12 : %08Lx%08Lx R13 : %08Lx%08Lx R14 : %08Lx%08Lx\n",
109  ah, al, bh, bl, ch, cl);
110 
111  ah = (regs->regs[16]) >> 32;
112  al = (regs->regs[16]) & 0xffffffff;
113  bh = (regs->regs[17]) >> 32;
114  bl = (regs->regs[17]) & 0xffffffff;
115  ch = (regs->regs[19]) >> 32;
116  cl = (regs->regs[19]) & 0xffffffff;
117  printk("R16 : %08Lx%08Lx R17 : %08Lx%08Lx R19 : %08Lx%08Lx\n",
118  ah, al, bh, bl, ch, cl);
119 
120  ah = (regs->regs[20]) >> 32;
121  al = (regs->regs[20]) & 0xffffffff;
122  bh = (regs->regs[21]) >> 32;
123  bl = (regs->regs[21]) & 0xffffffff;
124  ch = (regs->regs[22]) >> 32;
125  cl = (regs->regs[22]) & 0xffffffff;
126  printk("R20 : %08Lx%08Lx R21 : %08Lx%08Lx R22 : %08Lx%08Lx\n",
127  ah, al, bh, bl, ch, cl);
128 
129  ah = (regs->regs[23]) >> 32;
130  al = (regs->regs[23]) & 0xffffffff;
131  bh = (regs->regs[24]) >> 32;
132  bl = (regs->regs[24]) & 0xffffffff;
133  ch = (regs->regs[25]) >> 32;
134  cl = (regs->regs[25]) & 0xffffffff;
135  printk("R23 : %08Lx%08Lx R24 : %08Lx%08Lx R25 : %08Lx%08Lx\n",
136  ah, al, bh, bl, ch, cl);
137 
138  ah = (regs->regs[26]) >> 32;
139  al = (regs->regs[26]) & 0xffffffff;
140  bh = (regs->regs[27]) >> 32;
141  bl = (regs->regs[27]) & 0xffffffff;
142  ch = (regs->regs[28]) >> 32;
143  cl = (regs->regs[28]) & 0xffffffff;
144  printk("R26 : %08Lx%08Lx R27 : %08Lx%08Lx R28 : %08Lx%08Lx\n",
145  ah, al, bh, bl, ch, cl);
146 
147  ah = (regs->regs[29]) >> 32;
148  al = (regs->regs[29]) & 0xffffffff;
149  bh = (regs->regs[30]) >> 32;
150  bl = (regs->regs[30]) & 0xffffffff;
151  ch = (regs->regs[31]) >> 32;
152  cl = (regs->regs[31]) & 0xffffffff;
153  printk("R29 : %08Lx%08Lx R30 : %08Lx%08Lx R31 : %08Lx%08Lx\n",
154  ah, al, bh, bl, ch, cl);
155 
156  ah = (regs->regs[32]) >> 32;
157  al = (regs->regs[32]) & 0xffffffff;
158  bh = (regs->regs[33]) >> 32;
159  bl = (regs->regs[33]) & 0xffffffff;
160  ch = (regs->regs[34]) >> 32;
161  cl = (regs->regs[34]) & 0xffffffff;
162  printk("R32 : %08Lx%08Lx R33 : %08Lx%08Lx R34 : %08Lx%08Lx\n",
163  ah, al, bh, bl, ch, cl);
164 
165  ah = (regs->regs[35]) >> 32;
166  al = (regs->regs[35]) & 0xffffffff;
167  bh = (regs->regs[36]) >> 32;
168  bl = (regs->regs[36]) & 0xffffffff;
169  ch = (regs->regs[37]) >> 32;
170  cl = (regs->regs[37]) & 0xffffffff;
171  printk("R35 : %08Lx%08Lx R36 : %08Lx%08Lx R37 : %08Lx%08Lx\n",
172  ah, al, bh, bl, ch, cl);
173 
174  ah = (regs->regs[38]) >> 32;
175  al = (regs->regs[38]) & 0xffffffff;
176  bh = (regs->regs[39]) >> 32;
177  bl = (regs->regs[39]) & 0xffffffff;
178  ch = (regs->regs[40]) >> 32;
179  cl = (regs->regs[40]) & 0xffffffff;
180  printk("R38 : %08Lx%08Lx R39 : %08Lx%08Lx R40 : %08Lx%08Lx\n",
181  ah, al, bh, bl, ch, cl);
182 
183  ah = (regs->regs[41]) >> 32;
184  al = (regs->regs[41]) & 0xffffffff;
185  bh = (regs->regs[42]) >> 32;
186  bl = (regs->regs[42]) & 0xffffffff;
187  ch = (regs->regs[43]) >> 32;
188  cl = (regs->regs[43]) & 0xffffffff;
189  printk("R41 : %08Lx%08Lx R42 : %08Lx%08Lx R43 : %08Lx%08Lx\n",
190  ah, al, bh, bl, ch, cl);
191 
192  ah = (regs->regs[44]) >> 32;
193  al = (regs->regs[44]) & 0xffffffff;
194  bh = (regs->regs[45]) >> 32;
195  bl = (regs->regs[45]) & 0xffffffff;
196  ch = (regs->regs[46]) >> 32;
197  cl = (regs->regs[46]) & 0xffffffff;
198  printk("R44 : %08Lx%08Lx R45 : %08Lx%08Lx R46 : %08Lx%08Lx\n",
199  ah, al, bh, bl, ch, cl);
200 
201  ah = (regs->regs[47]) >> 32;
202  al = (regs->regs[47]) & 0xffffffff;
203  bh = (regs->regs[48]) >> 32;
204  bl = (regs->regs[48]) & 0xffffffff;
205  ch = (regs->regs[49]) >> 32;
206  cl = (regs->regs[49]) & 0xffffffff;
207  printk("R47 : %08Lx%08Lx R48 : %08Lx%08Lx R49 : %08Lx%08Lx\n",
208  ah, al, bh, bl, ch, cl);
209 
210  ah = (regs->regs[50]) >> 32;
211  al = (regs->regs[50]) & 0xffffffff;
212  bh = (regs->regs[51]) >> 32;
213  bl = (regs->regs[51]) & 0xffffffff;
214  ch = (regs->regs[52]) >> 32;
215  cl = (regs->regs[52]) & 0xffffffff;
216  printk("R50 : %08Lx%08Lx R51 : %08Lx%08Lx R52 : %08Lx%08Lx\n",
217  ah, al, bh, bl, ch, cl);
218 
219  ah = (regs->regs[53]) >> 32;
220  al = (regs->regs[53]) & 0xffffffff;
221  bh = (regs->regs[54]) >> 32;
222  bl = (regs->regs[54]) & 0xffffffff;
223  ch = (regs->regs[55]) >> 32;
224  cl = (regs->regs[55]) & 0xffffffff;
225  printk("R53 : %08Lx%08Lx R54 : %08Lx%08Lx R55 : %08Lx%08Lx\n",
226  ah, al, bh, bl, ch, cl);
227 
228  ah = (regs->regs[56]) >> 32;
229  al = (regs->regs[56]) & 0xffffffff;
230  bh = (regs->regs[57]) >> 32;
231  bl = (regs->regs[57]) & 0xffffffff;
232  ch = (regs->regs[58]) >> 32;
233  cl = (regs->regs[58]) & 0xffffffff;
234  printk("R56 : %08Lx%08Lx R57 : %08Lx%08Lx R58 : %08Lx%08Lx\n",
235  ah, al, bh, bl, ch, cl);
236 
237  ah = (regs->regs[59]) >> 32;
238  al = (regs->regs[59]) & 0xffffffff;
239  bh = (regs->regs[60]) >> 32;
240  bl = (regs->regs[60]) & 0xffffffff;
241  ch = (regs->regs[61]) >> 32;
242  cl = (regs->regs[61]) & 0xffffffff;
243  printk("R59 : %08Lx%08Lx R60 : %08Lx%08Lx R61 : %08Lx%08Lx\n",
244  ah, al, bh, bl, ch, cl);
245 
246  ah = (regs->regs[62]) >> 32;
247  al = (regs->regs[62]) & 0xffffffff;
248  bh = (regs->tregs[0]) >> 32;
249  bl = (regs->tregs[0]) & 0xffffffff;
250  ch = (regs->tregs[1]) >> 32;
251  cl = (regs->tregs[1]) & 0xffffffff;
252  printk("R62 : %08Lx%08Lx T0 : %08Lx%08Lx T1 : %08Lx%08Lx\n",
253  ah, al, bh, bl, ch, cl);
254 
255  ah = (regs->tregs[2]) >> 32;
256  al = (regs->tregs[2]) & 0xffffffff;
257  bh = (regs->tregs[3]) >> 32;
258  bl = (regs->tregs[3]) & 0xffffffff;
259  ch = (regs->tregs[4]) >> 32;
260  cl = (regs->tregs[4]) & 0xffffffff;
261  printk("T2 : %08Lx%08Lx T3 : %08Lx%08Lx T4 : %08Lx%08Lx\n",
262  ah, al, bh, bl, ch, cl);
263 
264  ah = (regs->tregs[5]) >> 32;
265  al = (regs->tregs[5]) & 0xffffffff;
266  bh = (regs->tregs[6]) >> 32;
267  bl = (regs->tregs[6]) & 0xffffffff;
268  ch = (regs->tregs[7]) >> 32;
269  cl = (regs->tregs[7]) & 0xffffffff;
270  printk("T5 : %08Lx%08Lx T6 : %08Lx%08Lx T7 : %08Lx%08Lx\n",
271  ah, al, bh, bl, ch, cl);
272 
273  /*
274  * If we're in kernel mode, dump the stack too..
275  */
276  if (!user_mode(regs)) {
277  void show_stack(struct task_struct *tsk, unsigned long *sp);
278  unsigned long sp = regs->regs[15] & 0xffffffff;
279  struct task_struct *tsk = get_current();
280 
281  tsk->thread.kregs = regs;
282 
283  show_stack(tsk, (unsigned long *)sp);
284  }
285 }
286 
287 /*
288  * Create a kernel thread
289  */
290 __noreturn void kernel_thread_helper(void *arg, int (*fn)(void *))
291 {
292  do_exit(fn(arg));
293 }
294 
295 /*
296  * This is the mechanism for creating a new kernel thread.
297  *
298  * NOTE! Only a kernel-only process(ie the swapper or direct descendants
299  * who haven't done an "execve()") should use this: it will work within
300  * a system call from a "real" process, but the process memory space will
301  * not be freed until both the parent and the child have exited.
302  */
303 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
304 {
305  struct pt_regs regs;
306 
307  memset(&regs, 0, sizeof(regs));
308  regs.regs[2] = (unsigned long)arg;
309  regs.regs[3] = (unsigned long)fn;
310 
311  regs.pc = (unsigned long)kernel_thread_helper;
312  regs.sr = (1 << 30);
313 
314  /* Ok, create the new process.. */
315  return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0,
316  &regs, 0, NULL, NULL);
317 }
319 
320 /*
321  * Free current thread data structures etc..
322  */
323 void exit_thread(void)
324 {
325  /*
326  * See arch/sparc/kernel/process.c for the precedent for doing
327  * this -- RPC.
328  *
329  * The SH-5 FPU save/restore approach relies on
330  * last_task_used_math pointing to a live task_struct. When
331  * another task tries to use the FPU for the 1st time, the FPUDIS
332  * trap handling (see arch/sh/kernel/cpu/sh5/fpu.c) will save the
333  * existing FPU state to the FP regs field within
334  * last_task_used_math before re-loading the new task's FPU state
335  * (or initialising it if the FPU has been used before). So if
336  * last_task_used_math is stale, and its page has already been
337  * re-allocated for another use, the consequences are rather
338  * grim. Unless we null it here, there is no other path through
339  * which it would get safely nulled.
340  */
341 #ifdef CONFIG_SH_FPU
342  if (last_task_used_math == current) {
343  last_task_used_math = NULL;
344  }
345 #endif
346 }
347 
348 void flush_thread(void)
349 {
350 
351  /* Called by fs/exec.c (setup_new_exec) to remove traces of a
352  * previously running executable. */
353 #ifdef CONFIG_SH_FPU
354  if (last_task_used_math == current) {
355  last_task_used_math = NULL;
356  }
357  /* Force FPU state to be reinitialised after exec */
358  clear_used_math();
359 #endif
360 
361  /* if we are a kernel thread, about to change to user thread,
362  * update kreg
363  */
364  if(current->thread.kregs==&fake_swapper_regs) {
365  current->thread.kregs =
366  ((struct pt_regs *)(THREAD_SIZE + (unsigned long) current) - 1);
367  current->thread.uregs = current->thread.kregs;
368  }
369 }
370 
371 void release_thread(struct task_struct *dead_task)
372 {
373  /* do nothing */
374 }
375 
376 /* Fill in the fpu structure for a core dump.. */
378 {
379 #ifdef CONFIG_SH_FPU
380  int fpvalid;
381  struct task_struct *tsk = current;
382 
383  fpvalid = !!tsk_used_math(tsk);
384  if (fpvalid) {
385  if (current == last_task_used_math) {
386  enable_fpu();
387  save_fpu(tsk);
388  disable_fpu();
389  last_task_used_math = 0;
390  regs->sr |= SR_FD;
391  }
392 
393  memcpy(fpu, &tsk->thread.xstate->hardfpu, sizeof(*fpu));
394  }
395 
396  return fpvalid;
397 #else
398  return 0; /* Task didn't use the fpu at all. */
399 #endif
400 }
402 
403 asmlinkage void ret_from_fork(void);
404 
405 int copy_thread(unsigned long clone_flags, unsigned long usp,
406  unsigned long unused,
407  struct task_struct *p, struct pt_regs *regs)
408 {
409  struct pt_regs *childregs;
410 
411 #ifdef CONFIG_SH_FPU
412  if(last_task_used_math == current) {
413  enable_fpu();
414  save_fpu(current);
415  disable_fpu();
416  last_task_used_math = NULL;
417  regs->sr |= SR_FD;
418  }
419 #endif
420  /* Copy from sh version */
421  childregs = (struct pt_regs *)(THREAD_SIZE + task_stack_page(p)) - 1;
422 
423  *childregs = *regs;
424 
425  /*
426  * Sign extend the edited stack.
427  * Note that thread.pc and thread.pc will stay
428  * 32-bit wide and context switch must take care
429  * of NEFF sign extension.
430  */
431  if (user_mode(regs)) {
432  childregs->regs[15] = neff_sign_extend(usp);
433  p->thread.uregs = childregs;
434  } else {
435  childregs->regs[15] =
436  neff_sign_extend((unsigned long)task_stack_page(p) +
437  THREAD_SIZE);
438  }
439 
440  childregs->regs[9] = 0; /* Set return value for child */
441  childregs->sr |= SR_FD; /* Invalidate FPU flag */
442 
443  p->thread.sp = (unsigned long) childregs;
444  p->thread.pc = (unsigned long) ret_from_fork;
445 
446  return 0;
447 }
448 
449 asmlinkage int sys_fork(unsigned long r2, unsigned long r3,
450  unsigned long r4, unsigned long r5,
451  unsigned long r6, unsigned long r7,
452  struct pt_regs *pregs)
453 {
454  return do_fork(SIGCHLD, pregs->regs[15], pregs, 0, 0, 0);
455 }
456 
457 asmlinkage int sys_clone(unsigned long clone_flags, unsigned long newsp,
458  unsigned long r4, unsigned long r5,
459  unsigned long r6, unsigned long r7,
460  struct pt_regs *pregs)
461 {
462  if (!newsp)
463  newsp = pregs->regs[15];
464  return do_fork(clone_flags, newsp, pregs, 0, 0, 0);
465 }
466 
467 /*
468  * This is trivial, and on the face of it looks like it
469  * could equally well be done in user mode.
470  *
471  * Not so, for quite unobvious reasons - register pressure.
472  * In user mode vfork() cannot have a stack frame, and if
473  * done by calling the "clone()" system call directly, you
474  * do not have enough call-clobbered registers to hold all
475  * the information you need.
476  */
477 asmlinkage int sys_vfork(unsigned long r2, unsigned long r3,
478  unsigned long r4, unsigned long r5,
479  unsigned long r6, unsigned long r7,
480  struct pt_regs *pregs)
481 {
482  return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, pregs->regs[15], pregs, 0, 0, 0);
483 }
484 
485 /*
486  * sys_execve() executes a new program.
487  */
488 asmlinkage int sys_execve(const char *ufilename, char **uargv,
489  char **uenvp, unsigned long r5,
490  unsigned long r6, unsigned long r7,
491  struct pt_regs *pregs)
492 {
493  int error;
494  struct filename *filename;
495 
496  filename = getname((char __user *)ufilename);
497  error = PTR_ERR(filename);
498  if (IS_ERR(filename))
499  goto out;
500 
501  error = do_execve(filename->name,
502  (const char __user *const __user *)uargv,
503  (const char __user *const __user *)uenvp,
504  pregs);
505  putname(filename);
506 out:
507  return error;
508 }
509 
510 #ifdef CONFIG_FRAME_POINTER
511 static int in_sh64_switch_to(unsigned long pc)
512 {
513  extern char __sh64_switch_to_end;
514  /* For a sleeping task, the PC is somewhere in the middle of the function,
515  so we don't have to worry about masking the LSB off */
516  return (pc >= (unsigned long) sh64_switch_to) &&
517  (pc < (unsigned long) &__sh64_switch_to_end);
518 }
519 #endif
520 
521 unsigned long get_wchan(struct task_struct *p)
522 {
523  unsigned long pc;
524 
525  if (!p || p == current || p->state == TASK_RUNNING)
526  return 0;
527 
528  /*
529  * The same comment as on the Alpha applies here, too ...
530  */
531  pc = thread_saved_pc(p);
532 
533 #ifdef CONFIG_FRAME_POINTER
534  if (in_sh64_switch_to(pc)) {
535  unsigned long schedule_fp;
536  unsigned long sh64_switch_to_fp;
537  unsigned long schedule_caller_pc;
538 
539  sh64_switch_to_fp = (long) p->thread.sp;
540  /* r14 is saved at offset 4 in the sh64_switch_to frame */
541  schedule_fp = *(unsigned long *) (long)(sh64_switch_to_fp + 4);
542 
543  /* and the caller of 'schedule' is (currently!) saved at offset 24
544  in the frame of schedule (from disasm) */
545  schedule_caller_pc = *(unsigned long *) (long)(schedule_fp + 24);
546  return schedule_caller_pc;
547  }
548 #endif
549  return pc;
550 }