Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
slb.c
Go to the documentation of this file.
1 /*
2  * PowerPC64 SLB support.
3  *
4  * Copyright (C) 2004 David Gibson <[email protected]>, IBM
5  * Based on earlier code written by:
6  * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
7  * Copyright (c) 2001 Dave Engebretsen
8  * Copyright (C) 2002 Anton Blanchard <[email protected]>, IBM
9  *
10  *
11  * This program is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License
13  * as published by the Free Software Foundation; either version
14  * 2 of the License, or (at your option) any later version.
15  */
16 
17 #include <asm/pgtable.h>
18 #include <asm/mmu.h>
19 #include <asm/mmu_context.h>
20 #include <asm/paca.h>
21 #include <asm/cputable.h>
22 #include <asm/cacheflush.h>
23 #include <asm/smp.h>
24 #include <linux/compiler.h>
25 #include <asm/udbg.h>
26 #include <asm/code-patching.h>
27 
28 
29 extern void slb_allocate_realmode(unsigned long ea);
30 extern void slb_allocate_user(unsigned long ea);
31 
32 static void slb_allocate(unsigned long ea)
33 {
34  /* Currently, we do real mode for all SLBs including user, but
35  * that will change if we bring back dynamic VSIDs
36  */
38 }
39 
40 #define slb_esid_mask(ssize) \
41  (((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T)
42 
43 static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
44  unsigned long slot)
45 {
46  return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | slot;
47 }
48 
49 #define slb_vsid_shift(ssize) \
50  ((ssize) == MMU_SEGSIZE_256M? SLB_VSID_SHIFT: SLB_VSID_SHIFT_1T)
51 
52 static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
53  unsigned long flags)
54 {
55  return (get_kernel_vsid(ea, ssize) << slb_vsid_shift(ssize)) | flags |
56  ((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
57 }
58 
59 static inline void slb_shadow_update(unsigned long ea, int ssize,
60  unsigned long flags,
61  unsigned long entry)
62 {
63  /*
64  * Clear the ESID first so the entry is not valid while we are
65  * updating it. No write barriers are needed here, provided
66  * we only update the current CPU's SLB shadow buffer.
67  */
68  get_slb_shadow()->save_area[entry].esid = 0;
69  get_slb_shadow()->save_area[entry].vsid = mk_vsid_data(ea, ssize, flags);
70  get_slb_shadow()->save_area[entry].esid = mk_esid_data(ea, ssize, entry);
71 }
72 
73 static inline void slb_shadow_clear(unsigned long entry)
74 {
75  get_slb_shadow()->save_area[entry].esid = 0;
76 }
77 
78 static inline void create_shadowed_slbe(unsigned long ea, int ssize,
79  unsigned long flags,
80  unsigned long entry)
81 {
82  /*
83  * Updating the shadow buffer before writing the SLB ensures
84  * we don't get a stale entry here if we get preempted by PHYP
85  * between these two statements.
86  */
87  slb_shadow_update(ea, ssize, flags, entry);
88 
89  asm volatile("slbmte %0,%1" :
90  : "r" (mk_vsid_data(ea, ssize, flags)),
91  "r" (mk_esid_data(ea, ssize, entry))
92  : "memory" );
93 }
94 
95 static void __slb_flush_and_rebolt(void)
96 {
97  /* If you change this make sure you change SLB_NUM_BOLTED
98  * appropriately too. */
99  unsigned long linear_llp, vmalloc_llp, lflags, vflags;
100  unsigned long ksp_esid_data, ksp_vsid_data;
101 
102  linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
103  vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
104  lflags = SLB_VSID_KERNEL | linear_llp;
105  vflags = SLB_VSID_KERNEL | vmalloc_llp;
106 
107  ksp_esid_data = mk_esid_data(get_paca()->kstack, mmu_kernel_ssize, 2);
108  if ((ksp_esid_data & ~0xfffffffUL) <= PAGE_OFFSET) {
109  ksp_esid_data &= ~SLB_ESID_V;
110  ksp_vsid_data = 0;
111  slb_shadow_clear(2);
112  } else {
113  /* Update stack entry; others don't change */
114  slb_shadow_update(get_paca()->kstack, mmu_kernel_ssize, lflags, 2);
115  ksp_vsid_data = get_slb_shadow()->save_area[2].vsid;
116  }
117 
118  /* We need to do this all in asm, so we're sure we don't touch
119  * the stack between the slbia and rebolting it. */
120  asm volatile("isync\n"
121  "slbia\n"
122  /* Slot 1 - first VMALLOC segment */
123  "slbmte %0,%1\n"
124  /* Slot 2 - kernel stack */
125  "slbmte %2,%3\n"
126  "isync"
127  :: "r"(mk_vsid_data(VMALLOC_START, mmu_kernel_ssize, vflags)),
128  "r"(mk_esid_data(VMALLOC_START, mmu_kernel_ssize, 1)),
129  "r"(ksp_vsid_data),
130  "r"(ksp_esid_data)
131  : "memory");
132 }
133 
135 {
136 
138 
139  /*
140  * We can't take a PMU exception in the following code, so hard
141  * disable interrupts.
142  */
144 
145  __slb_flush_and_rebolt();
146  get_paca()->slb_cache_ptr = 0;
147 }
148 
150 {
151  unsigned long vflags;
152 
154  slb_shadow_update(VMALLOC_START, mmu_kernel_ssize, vflags, 1);
156 }
157 
158 /* Helper function to compare esids. There are four cases to handle.
159  * 1. The system is not 1T segment size capable. Use the GET_ESID compare.
160  * 2. The system is 1T capable, both addresses are < 1T, use the GET_ESID compare.
161  * 3. The system is 1T capable, only one of the two addresses is > 1T. This is not a match.
162  * 4. The system is 1T capable, both addresses are > 1T, use the GET_ESID_1T macro to compare.
163  */
164 static inline int esids_match(unsigned long addr1, unsigned long addr2)
165 {
166  int esid_1t_count;
167 
168  /* System is not 1T segment size capable. */
169  if (!mmu_has_feature(MMU_FTR_1T_SEGMENT))
170  return (GET_ESID(addr1) == GET_ESID(addr2));
171 
172  esid_1t_count = (((addr1 >> SID_SHIFT_1T) != 0) +
173  ((addr2 >> SID_SHIFT_1T) != 0));
174 
175  /* both addresses are < 1T */
176  if (esid_1t_count == 0)
177  return (GET_ESID(addr1) == GET_ESID(addr2));
178 
179  /* One address < 1T, the other > 1T. Not a match */
180  if (esid_1t_count == 1)
181  return 0;
182 
183  /* Both addresses are > 1T. */
184  return (GET_ESID_1T(addr1) == GET_ESID_1T(addr2));
185 }
186 
187 /* Flush all user entries from the segment table of the current processor. */
188 void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
189 {
190  unsigned long offset;
191  unsigned long slbie_data = 0;
192  unsigned long pc = KSTK_EIP(tsk);
193  unsigned long stack = KSTK_ESP(tsk);
194  unsigned long exec_base;
195 
196  /*
197  * We need interrupts hard-disabled here, not just soft-disabled,
198  * so that a PMU interrupt can't occur, which might try to access
199  * user memory (to get a stack trace) and possible cause an SLB miss
200  * which would update the slb_cache/slb_cache_ptr fields in the PACA.
201  */
203  offset = get_paca()->slb_cache_ptr;
204  if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) &&
205  offset <= SLB_CACHE_ENTRIES) {
206  int i;
207  asm volatile("isync" : : : "memory");
208  for (i = 0; i < offset; i++) {
209  slbie_data = (unsigned long)get_paca()->slb_cache[i]
210  << SID_SHIFT; /* EA */
211  slbie_data |= user_segment_size(slbie_data)
213  slbie_data |= SLBIE_C; /* C set for user addresses */
214  asm volatile("slbie %0" : : "r" (slbie_data));
215  }
216  asm volatile("isync" : : : "memory");
217  } else {
218  __slb_flush_and_rebolt();
219  }
220 
221  /* Workaround POWER5 < DD2.1 issue */
222  if (offset == 1 || offset > SLB_CACHE_ENTRIES)
223  asm volatile("slbie %0" : : "r" (slbie_data));
224 
225  get_paca()->slb_cache_ptr = 0;
226  get_paca()->context = mm->context;
227 
228  /*
229  * preload some userspace segments into the SLB.
230  * Almost all 32 and 64bit PowerPC executables are linked at
231  * 0x10000000 so it makes sense to preload this segment.
232  */
233  exec_base = 0x10000000;
234 
235  if (is_kernel_addr(pc) || is_kernel_addr(stack) ||
236  is_kernel_addr(exec_base))
237  return;
238 
239  slb_allocate(pc);
240 
241  if (!esids_match(pc, stack))
242  slb_allocate(stack);
243 
244  if (!esids_match(pc, exec_base) &&
245  !esids_match(stack, exec_base))
246  slb_allocate(exec_base);
247 }
248 
249 static inline void patch_slb_encoding(unsigned int *insn_addr,
250  unsigned int immed)
251 {
252  int insn = (*insn_addr & 0xffff0000) | immed;
253  patch_instruction(insn_addr, insn);
254 }
255 
257 {
258  extern unsigned int *slb_compare_rr_to_size;
259 
260  if (mmu_slb_size == size)
261  return;
262 
263  mmu_slb_size = size;
264  patch_slb_encoding(slb_compare_rr_to_size, mmu_slb_size);
265 }
266 
267 void slb_initialize(void)
268 {
269  unsigned long linear_llp, vmalloc_llp, io_llp;
270  unsigned long lflags, vflags;
271  static int slb_encoding_inited;
272  extern unsigned int *slb_miss_kernel_load_linear;
273  extern unsigned int *slb_miss_kernel_load_io;
274  extern unsigned int *slb_compare_rr_to_size;
275 #ifdef CONFIG_SPARSEMEM_VMEMMAP
276  extern unsigned int *slb_miss_kernel_load_vmemmap;
277  unsigned long vmemmap_llp;
278 #endif
279 
280  /* Prepare our SLB miss handler based on our page size */
281  linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
282  io_llp = mmu_psize_defs[mmu_io_psize].sllp;
283  vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
284  get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
285 #ifdef CONFIG_SPARSEMEM_VMEMMAP
286  vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp;
287 #endif
288  if (!slb_encoding_inited) {
289  slb_encoding_inited = 1;
290  patch_slb_encoding(slb_miss_kernel_load_linear,
291  SLB_VSID_KERNEL | linear_llp);
292  patch_slb_encoding(slb_miss_kernel_load_io,
293  SLB_VSID_KERNEL | io_llp);
294  patch_slb_encoding(slb_compare_rr_to_size,
295  mmu_slb_size);
296 
297  pr_devel("SLB: linear LLP = %04lx\n", linear_llp);
298  pr_devel("SLB: io LLP = %04lx\n", io_llp);
299 
300 #ifdef CONFIG_SPARSEMEM_VMEMMAP
301  patch_slb_encoding(slb_miss_kernel_load_vmemmap,
302  SLB_VSID_KERNEL | vmemmap_llp);
303  pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp);
304 #endif
305  }
306 
307  get_paca()->stab_rr = SLB_NUM_BOLTED;
308 
309  lflags = SLB_VSID_KERNEL | linear_llp;
310  vflags = SLB_VSID_KERNEL | vmalloc_llp;
311 
312  /* Invalidate the entire SLB (even slot 0) & all the ERATS */
313  asm volatile("isync":::"memory");
314  asm volatile("slbmte %0,%0"::"r" (0) : "memory");
315  asm volatile("isync; slbia; isync":::"memory");
316  create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, 0);
317 
318  create_shadowed_slbe(VMALLOC_START, mmu_kernel_ssize, vflags, 1);
319 
320  /* For the boot cpu, we're running on the stack in init_thread_union,
321  * which is in the first segment of the linear mapping, and also
322  * get_paca()->kstack hasn't been initialized yet.
323  * For secondary cpus, we need to bolt the kernel stack entry now.
324  */
325  slb_shadow_clear(2);
326  if (raw_smp_processor_id() != boot_cpuid &&
327  (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET)
328  create_shadowed_slbe(get_paca()->kstack,
329  mmu_kernel_ssize, lflags, 2);
330 
331  asm volatile("isync":::"memory");
332 }