Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
slob.c
Go to the documentation of this file.
1 /*
2  * SLOB Allocator: Simple List Of Blocks
3  *
4  * Matt Mackall <[email protected]> 12/30/03
5  *
6  * NUMA support by Paul Mundt, 2007.
7  *
8  * How SLOB works:
9  *
10  * The core of SLOB is a traditional K&R style heap allocator, with
11  * support for returning aligned objects. The granularity of this
12  * allocator is as little as 2 bytes, however typically most architectures
13  * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
14  *
15  * The slob heap is a set of linked list of pages from alloc_pages(),
16  * and within each page, there is a singly-linked list of free blocks
17  * (slob_t). The heap is grown on demand. To reduce fragmentation,
18  * heap pages are segregated into three lists, with objects less than
19  * 256 bytes, objects less than 1024 bytes, and all other objects.
20  *
21  * Allocation from heap involves first searching for a page with
22  * sufficient free blocks (using a next-fit-like approach) followed by
23  * a first-fit scan of the page. Deallocation inserts objects back
24  * into the free list in address order, so this is effectively an
25  * address-ordered first fit.
26  *
27  * Above this is an implementation of kmalloc/kfree. Blocks returned
28  * from kmalloc are prepended with a 4-byte header with the kmalloc size.
29  * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
30  * alloc_pages() directly, allocating compound pages so the page order
31  * does not have to be separately tracked, and also stores the exact
32  * allocation size in page->private so that it can be used to accurately
33  * provide ksize(). These objects are detected in kfree() because slob_page()
34  * is false for them.
35  *
36  * SLAB is emulated on top of SLOB by simply calling constructors and
37  * destructors for every SLAB allocation. Objects are returned with the
38  * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
39  * case the low-level allocator will fragment blocks to create the proper
40  * alignment. Again, objects of page-size or greater are allocated by
41  * calling alloc_pages(). As SLAB objects know their size, no separate
42  * size bookkeeping is necessary and there is essentially no allocation
43  * space overhead, and compound pages aren't needed for multi-page
44  * allocations.
45  *
46  * NUMA support in SLOB is fairly simplistic, pushing most of the real
47  * logic down to the page allocator, and simply doing the node accounting
48  * on the upper levels. In the event that a node id is explicitly
49  * provided, alloc_pages_exact_node() with the specified node id is used
50  * instead. The common case (or when the node id isn't explicitly provided)
51  * will default to the current node, as per numa_node_id().
52  *
53  * Node aware pages are still inserted in to the global freelist, and
54  * these are scanned for by matching against the node id encoded in the
55  * page flags. As a result, block allocations that can be satisfied from
56  * the freelist will only be done so on pages residing on the same node,
57  * in order to prevent random node placement.
58  */
59 
60 #include <linux/kernel.h>
61 #include <linux/slab.h>
62 #include "slab.h"
63 
64 #include <linux/mm.h>
65 #include <linux/swap.h> /* struct reclaim_state */
66 #include <linux/cache.h>
67 #include <linux/init.h>
68 #include <linux/export.h>
69 #include <linux/rcupdate.h>
70 #include <linux/list.h>
71 #include <linux/kmemleak.h>
72 
73 #include <trace/events/kmem.h>
74 
75 #include <linux/atomic.h>
76 
77 /*
78  * slob_block has a field 'units', which indicates size of block if +ve,
79  * or offset of next block if -ve (in SLOB_UNITs).
80  *
81  * Free blocks of size 1 unit simply contain the offset of the next block.
82  * Those with larger size contain their size in the first SLOB_UNIT of
83  * memory, and the offset of the next free block in the second SLOB_UNIT.
84  */
85 #if PAGE_SIZE <= (32767 * 2)
86 typedef s16 slobidx_t;
87 #else
88 typedef s32 slobidx_t;
89 #endif
90 
91 struct slob_block {
93 };
94 typedef struct slob_block slob_t;
95 
96 /*
97  * All partially free slob pages go on these lists.
98  */
99 #define SLOB_BREAK1 256
100 #define SLOB_BREAK2 1024
101 static LIST_HEAD(free_slob_small);
102 static LIST_HEAD(free_slob_medium);
103 static LIST_HEAD(free_slob_large);
104 
105 /*
106  * slob_page_free: true for pages on free_slob_pages list.
107  */
108 static inline int slob_page_free(struct page *sp)
109 {
110  return PageSlobFree(sp);
111 }
112 
113 static void set_slob_page_free(struct page *sp, struct list_head *list)
114 {
115  list_add(&sp->list, list);
116  __SetPageSlobFree(sp);
117 }
118 
119 static inline void clear_slob_page_free(struct page *sp)
120 {
121  list_del(&sp->list);
122  __ClearPageSlobFree(sp);
123 }
124 
125 #define SLOB_UNIT sizeof(slob_t)
126 #define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT)
127 #define SLOB_ALIGN L1_CACHE_BYTES
128 
129 /*
130  * struct slob_rcu is inserted at the tail of allocated slob blocks, which
131  * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free
132  * the block using call_rcu.
133  */
134 struct slob_rcu {
135  struct rcu_head head;
136  int size;
137 };
138 
139 /*
140  * slob_lock protects all slob allocator structures.
141  */
142 static DEFINE_SPINLOCK(slob_lock);
143 
144 /*
145  * Encode the given size and next info into a free slob block s.
146  */
147 static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
148 {
149  slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
150  slobidx_t offset = next - base;
151 
152  if (size > 1) {
153  s[0].units = size;
154  s[1].units = offset;
155  } else
156  s[0].units = -offset;
157 }
158 
159 /*
160  * Return the size of a slob block.
161  */
162 static slobidx_t slob_units(slob_t *s)
163 {
164  if (s->units > 0)
165  return s->units;
166  return 1;
167 }
168 
169 /*
170  * Return the next free slob block pointer after this one.
171  */
172 static slob_t *slob_next(slob_t *s)
173 {
174  slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
175  slobidx_t next;
176 
177  if (s[0].units < 0)
178  next = -s[0].units;
179  else
180  next = s[1].units;
181  return base+next;
182 }
183 
184 /*
185  * Returns true if s is the last free block in its page.
186  */
187 static int slob_last(slob_t *s)
188 {
189  return !((unsigned long)slob_next(s) & ~PAGE_MASK);
190 }
191 
192 static void *slob_new_pages(gfp_t gfp, int order, int node)
193 {
194  void *page;
195 
196 #ifdef CONFIG_NUMA
197  if (node != NUMA_NO_NODE)
198  page = alloc_pages_exact_node(node, gfp, order);
199  else
200 #endif
201  page = alloc_pages(gfp, order);
202 
203  if (!page)
204  return NULL;
205 
206  return page_address(page);
207 }
208 
209 static void slob_free_pages(void *b, int order)
210 {
211  if (current->reclaim_state)
212  current->reclaim_state->reclaimed_slab += 1 << order;
213  free_pages((unsigned long)b, order);
214 }
215 
216 /*
217  * Allocate a slob block within a given slob_page sp.
218  */
219 static void *slob_page_alloc(struct page *sp, size_t size, int align)
220 {
221  slob_t *prev, *cur, *aligned = NULL;
222  int delta = 0, units = SLOB_UNITS(size);
223 
224  for (prev = NULL, cur = sp->freelist; ; prev = cur, cur = slob_next(cur)) {
225  slobidx_t avail = slob_units(cur);
226 
227  if (align) {
228  aligned = (slob_t *)ALIGN((unsigned long)cur, align);
229  delta = aligned - cur;
230  }
231  if (avail >= units + delta) { /* room enough? */
232  slob_t *next;
233 
234  if (delta) { /* need to fragment head to align? */
235  next = slob_next(cur);
236  set_slob(aligned, avail - delta, next);
237  set_slob(cur, delta, aligned);
238  prev = cur;
239  cur = aligned;
240  avail = slob_units(cur);
241  }
242 
243  next = slob_next(cur);
244  if (avail == units) { /* exact fit? unlink. */
245  if (prev)
246  set_slob(prev, slob_units(prev), next);
247  else
248  sp->freelist = next;
249  } else { /* fragment */
250  if (prev)
251  set_slob(prev, slob_units(prev), cur + units);
252  else
253  sp->freelist = cur + units;
254  set_slob(cur + units, avail - units, next);
255  }
256 
257  sp->units -= units;
258  if (!sp->units)
259  clear_slob_page_free(sp);
260  return cur;
261  }
262  if (slob_last(cur))
263  return NULL;
264  }
265 }
266 
267 /*
268  * slob_alloc: entry point into the slob allocator.
269  */
270 static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
271 {
272  struct page *sp;
273  struct list_head *prev;
274  struct list_head *slob_list;
275  slob_t *b = NULL;
276  unsigned long flags;
277 
278  if (size < SLOB_BREAK1)
279  slob_list = &free_slob_small;
280  else if (size < SLOB_BREAK2)
281  slob_list = &free_slob_medium;
282  else
283  slob_list = &free_slob_large;
284 
285  spin_lock_irqsave(&slob_lock, flags);
286  /* Iterate through each partially free page, try to find room */
287  list_for_each_entry(sp, slob_list, list) {
288 #ifdef CONFIG_NUMA
289  /*
290  * If there's a node specification, search for a partial
291  * page with a matching node id in the freelist.
292  */
293  if (node != NUMA_NO_NODE && page_to_nid(sp) != node)
294  continue;
295 #endif
296  /* Enough room on this page? */
297  if (sp->units < SLOB_UNITS(size))
298  continue;
299 
300  /* Attempt to alloc */
301  prev = sp->list.prev;
302  b = slob_page_alloc(sp, size, align);
303  if (!b)
304  continue;
305 
306  /* Improve fragment distribution and reduce our average
307  * search time by starting our next search here. (see
308  * Knuth vol 1, sec 2.5, pg 449) */
309  if (prev != slob_list->prev &&
310  slob_list->next != prev->next)
311  list_move_tail(slob_list, prev->next);
312  break;
313  }
314  spin_unlock_irqrestore(&slob_lock, flags);
315 
316  /* Not enough space: must allocate a new page */
317  if (!b) {
318  b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
319  if (!b)
320  return NULL;
321  sp = virt_to_page(b);
322  __SetPageSlab(sp);
323 
324  spin_lock_irqsave(&slob_lock, flags);
325  sp->units = SLOB_UNITS(PAGE_SIZE);
326  sp->freelist = b;
327  INIT_LIST_HEAD(&sp->list);
328  set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
329  set_slob_page_free(sp, slob_list);
330  b = slob_page_alloc(sp, size, align);
331  BUG_ON(!b);
332  spin_unlock_irqrestore(&slob_lock, flags);
333  }
334  if (unlikely((gfp & __GFP_ZERO) && b))
335  memset(b, 0, size);
336  return b;
337 }
338 
339 /*
340  * slob_free: entry point into the slob allocator.
341  */
342 static void slob_free(void *block, int size)
343 {
344  struct page *sp;
345  slob_t *prev, *next, *b = (slob_t *)block;
347  unsigned long flags;
348  struct list_head *slob_list;
349 
350  if (unlikely(ZERO_OR_NULL_PTR(block)))
351  return;
352  BUG_ON(!size);
353 
354  sp = virt_to_page(block);
355  units = SLOB_UNITS(size);
356 
357  spin_lock_irqsave(&slob_lock, flags);
358 
359  if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
360  /* Go directly to page allocator. Do not pass slob allocator */
361  if (slob_page_free(sp))
362  clear_slob_page_free(sp);
363  spin_unlock_irqrestore(&slob_lock, flags);
364  __ClearPageSlab(sp);
365  reset_page_mapcount(sp);
366  slob_free_pages(b, 0);
367  return;
368  }
369 
370  if (!slob_page_free(sp)) {
371  /* This slob page is about to become partially free. Easy! */
372  sp->units = units;
373  sp->freelist = b;
374  set_slob(b, units,
375  (void *)((unsigned long)(b +
377  if (size < SLOB_BREAK1)
378  slob_list = &free_slob_small;
379  else if (size < SLOB_BREAK2)
380  slob_list = &free_slob_medium;
381  else
382  slob_list = &free_slob_large;
383  set_slob_page_free(sp, slob_list);
384  goto out;
385  }
386 
387  /*
388  * Otherwise the page is already partially free, so find reinsertion
389  * point.
390  */
391  sp->units += units;
392 
393  if (b < (slob_t *)sp->freelist) {
394  if (b + units == sp->freelist) {
395  units += slob_units(sp->freelist);
396  sp->freelist = slob_next(sp->freelist);
397  }
398  set_slob(b, units, sp->freelist);
399  sp->freelist = b;
400  } else {
401  prev = sp->freelist;
402  next = slob_next(prev);
403  while (b > next) {
404  prev = next;
405  next = slob_next(prev);
406  }
407 
408  if (!slob_last(prev) && b + units == next) {
409  units += slob_units(next);
410  set_slob(b, units, slob_next(next));
411  } else
412  set_slob(b, units, next);
413 
414  if (prev + slob_units(prev) == b) {
415  units = slob_units(b) + slob_units(prev);
416  set_slob(prev, units, slob_next(b));
417  } else
418  set_slob(prev, slob_units(prev), b);
419  }
420 out:
421  spin_unlock_irqrestore(&slob_lock, flags);
422 }
423 
424 /*
425  * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
426  */
427 
428 static __always_inline void *
429 __do_kmalloc_node(size_t size, gfp_t gfp, int node, unsigned long caller)
430 {
431  unsigned int *m;
432  int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
433  void *ret;
434 
435  gfp &= gfp_allowed_mask;
436 
437  lockdep_trace_alloc(gfp);
438 
439  if (size < PAGE_SIZE - align) {
440  if (!size)
441  return ZERO_SIZE_PTR;
442 
443  m = slob_alloc(size + align, gfp, align, node);
444 
445  if (!m)
446  return NULL;
447  *m = size;
448  ret = (void *)m + align;
449 
450  trace_kmalloc_node(caller, ret,
451  size, size + align, gfp, node);
452  } else {
453  unsigned int order = get_order(size);
454 
455  if (likely(order))
456  gfp |= __GFP_COMP;
457  ret = slob_new_pages(gfp, order, node);
458  if (ret) {
459  struct page *page;
460  page = virt_to_page(ret);
461  page->private = size;
462  }
463 
464  trace_kmalloc_node(caller, ret,
465  size, PAGE_SIZE << order, gfp, node);
466  }
467 
468  kmemleak_alloc(ret, size, 1, gfp);
469  return ret;
470 }
471 
472 void *__kmalloc_node(size_t size, gfp_t gfp, int node)
473 {
474  return __do_kmalloc_node(size, gfp, node, _RET_IP_);
475 }
476 EXPORT_SYMBOL(__kmalloc_node);
477 
478 #ifdef CONFIG_TRACING
479 void *__kmalloc_track_caller(size_t size, gfp_t gfp, unsigned long caller)
480 {
481  return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, caller);
482 }
483 
484 #ifdef CONFIG_NUMA
485 void *__kmalloc_node_track_caller(size_t size, gfp_t gfp,
486  int node, unsigned long caller)
487 {
488  return __do_kmalloc_node(size, gfp, node, caller);
489 }
490 #endif
491 #endif
492 
493 void kfree(const void *block)
494 {
495  struct page *sp;
496 
497  trace_kfree(_RET_IP_, block);
498 
499  if (unlikely(ZERO_OR_NULL_PTR(block)))
500  return;
501  kmemleak_free(block);
502 
503  sp = virt_to_page(block);
504  if (PageSlab(sp)) {
505  int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
506  unsigned int *m = (unsigned int *)(block - align);
507  slob_free(m, *m + align);
508  } else
509  put_page(sp);
510 }
512 
513 /* can't use ksize for kmem_cache_alloc memory, only kmalloc */
514 size_t ksize(const void *block)
515 {
516  struct page *sp;
517 
518  BUG_ON(!block);
519  if (unlikely(block == ZERO_SIZE_PTR))
520  return 0;
521 
522  sp = virt_to_page(block);
523  if (PageSlab(sp)) {
524  int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
525  unsigned int *m = (unsigned int *)(block - align);
526  return SLOB_UNITS(*m) * SLOB_UNIT;
527  } else
528  return sp->private;
529 }
531 
532 int __kmem_cache_create(struct kmem_cache *c, unsigned long flags)
533 {
534  size_t align = c->size;
535 
536  if (flags & SLAB_DESTROY_BY_RCU) {
537  /* leave room for rcu footer at the end of object */
538  c->size += sizeof(struct slob_rcu);
539  }
540  c->flags = flags;
541  /* ignore alignment unless it's forced */
542  c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0;
543  if (c->align < ARCH_SLAB_MINALIGN)
545  if (c->align < align)
546  c->align = align;
547 
548  return 0;
549 }
550 
551 void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
552 {
553  void *b;
554 
555  flags &= gfp_allowed_mask;
556 
557  lockdep_trace_alloc(flags);
558 
559  if (c->size < PAGE_SIZE) {
560  b = slob_alloc(c->size, flags, c->align, node);
561  trace_kmem_cache_alloc_node(_RET_IP_, b, c->size,
562  SLOB_UNITS(c->size) * SLOB_UNIT,
563  flags, node);
564  } else {
565  b = slob_new_pages(flags, get_order(c->size), node);
566  trace_kmem_cache_alloc_node(_RET_IP_, b, c->size,
567  PAGE_SIZE << get_order(c->size),
568  flags, node);
569  }
570 
571  if (c->ctor)
572  c->ctor(b);
573 
574  kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags);
575  return b;
576 }
577 EXPORT_SYMBOL(kmem_cache_alloc_node);
578 
579 static void __kmem_cache_free(void *b, int size)
580 {
581  if (size < PAGE_SIZE)
582  slob_free(b, size);
583  else
584  slob_free_pages(b, get_order(size));
585 }
586 
587 static void kmem_rcu_free(struct rcu_head *head)
588 {
589  struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
590  void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));
591 
592  __kmem_cache_free(b, slob_rcu->size);
593 }
594 
595 void kmem_cache_free(struct kmem_cache *c, void *b)
596 {
597  kmemleak_free_recursive(b, c->flags);
598  if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) {
599  struct slob_rcu *slob_rcu;
600  slob_rcu = b + (c->size - sizeof(struct slob_rcu));
601  slob_rcu->size = c->size;
602  call_rcu(&slob_rcu->head, kmem_rcu_free);
603  } else {
604  __kmem_cache_free(b, c->size);
605  }
606 
607  trace_kmem_cache_free(_RET_IP_, b);
608 }
610 
611 unsigned int kmem_cache_size(struct kmem_cache *c)
612 {
613  return c->size;
614 }
616 
618 {
619  /* No way to check for remaining objects */
620  return 0;
621 }
622 
624 {
625  return 0;
626 }
628 
630  .name = "kmem_cache",
631  .size = sizeof(struct kmem_cache),
632  .flags = SLAB_PANIC,
633  .align = ARCH_KMALLOC_MINALIGN,
634 };
635 
637 {
639  slab_state = UP;
640 }
641 
643 {
644  slab_state = FULL;
645 }