Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
snap.c
Go to the documentation of this file.
2 
3 #include <linux/sort.h>
4 #include <linux/slab.h>
5 
6 #include "super.h"
7 #include "mds_client.h"
8 
9 #include <linux/ceph/decode.h>
10 
11 /*
12  * Snapshots in ceph are driven in large part by cooperation from the
13  * client. In contrast to local file systems or file servers that
14  * implement snapshots at a single point in the system, ceph's
15  * distributed access to storage requires clients to help decide
16  * whether a write logically occurs before or after a recently created
17  * snapshot.
18  *
19  * This provides a perfect instantanous client-wide snapshot. Between
20  * clients, however, snapshots may appear to be applied at slightly
21  * different points in time, depending on delays in delivering the
22  * snapshot notification.
23  *
24  * Snapshots are _not_ file system-wide. Instead, each snapshot
25  * applies to the subdirectory nested beneath some directory. This
26  * effectively divides the hierarchy into multiple "realms," where all
27  * of the files contained by each realm share the same set of
28  * snapshots. An individual realm's snap set contains snapshots
29  * explicitly created on that realm, as well as any snaps in its
30  * parent's snap set _after_ the point at which the parent became it's
31  * parent (due to, say, a rename). Similarly, snaps from prior parents
32  * during the time intervals during which they were the parent are included.
33  *
34  * The client is spared most of this detail, fortunately... it must only
35  * maintains a hierarchy of realms reflecting the current parent/child
36  * realm relationship, and for each realm has an explicit list of snaps
37  * inherited from prior parents.
38  *
39  * A snap_realm struct is maintained for realms containing every inode
40  * with an open cap in the system. (The needed snap realm information is
41  * provided by the MDS whenever a cap is issued, i.e., on open.) A 'seq'
42  * version number is used to ensure that as realm parameters change (new
43  * snapshot, new parent, etc.) the client's realm hierarchy is updated.
44  *
45  * The realm hierarchy drives the generation of a 'snap context' for each
46  * realm, which simply lists the resulting set of snaps for the realm. This
47  * is attached to any writes sent to OSDs.
48  */
49 /*
50  * Unfortunately error handling is a bit mixed here. If we get a snap
51  * update, but don't have enough memory to update our realm hierarchy,
52  * it's not clear what we can do about it (besides complaining to the
53  * console).
54  */
55 
56 
57 /*
58  * increase ref count for the realm
59  *
60  * caller must hold snap_rwsem for write.
61  */
63  struct ceph_snap_realm *realm)
64 {
65  dout("get_realm %p %d -> %d\n", realm,
66  atomic_read(&realm->nref), atomic_read(&realm->nref)+1);
67  /*
68  * since we _only_ increment realm refs or empty the empty
69  * list with snap_rwsem held, adjusting the empty list here is
70  * safe. we do need to protect against concurrent empty list
71  * additions, however.
72  */
73  if (atomic_read(&realm->nref) == 0) {
74  spin_lock(&mdsc->snap_empty_lock);
75  list_del_init(&realm->empty_item);
76  spin_unlock(&mdsc->snap_empty_lock);
77  }
78 
79  atomic_inc(&realm->nref);
80 }
81 
82 static void __insert_snap_realm(struct rb_root *root,
83  struct ceph_snap_realm *new)
84 {
85  struct rb_node **p = &root->rb_node;
86  struct rb_node *parent = NULL;
87  struct ceph_snap_realm *r = NULL;
88 
89  while (*p) {
90  parent = *p;
91  r = rb_entry(parent, struct ceph_snap_realm, node);
92  if (new->ino < r->ino)
93  p = &(*p)->rb_left;
94  else if (new->ino > r->ino)
95  p = &(*p)->rb_right;
96  else
97  BUG();
98  }
99 
100  rb_link_node(&new->node, parent, p);
101  rb_insert_color(&new->node, root);
102 }
103 
104 /*
105  * create and get the realm rooted at @ino and bump its ref count.
106  *
107  * caller must hold snap_rwsem for write.
108  */
109 static struct ceph_snap_realm *ceph_create_snap_realm(
110  struct ceph_mds_client *mdsc,
111  u64 ino)
112 {
113  struct ceph_snap_realm *realm;
114 
115  realm = kzalloc(sizeof(*realm), GFP_NOFS);
116  if (!realm)
117  return ERR_PTR(-ENOMEM);
118 
119  atomic_set(&realm->nref, 0); /* tree does not take a ref */
120  realm->ino = ino;
121  INIT_LIST_HEAD(&realm->children);
122  INIT_LIST_HEAD(&realm->child_item);
123  INIT_LIST_HEAD(&realm->empty_item);
124  INIT_LIST_HEAD(&realm->dirty_item);
125  INIT_LIST_HEAD(&realm->inodes_with_caps);
127  __insert_snap_realm(&mdsc->snap_realms, realm);
128  dout("create_snap_realm %llx %p\n", realm->ino, realm);
129  return realm;
130 }
131 
132 /*
133  * lookup the realm rooted at @ino.
134  *
135  * caller must hold snap_rwsem for write.
136  */
138  u64 ino)
139 {
140  struct rb_node *n = mdsc->snap_realms.rb_node;
141  struct ceph_snap_realm *r;
142 
143  while (n) {
144  r = rb_entry(n, struct ceph_snap_realm, node);
145  if (ino < r->ino)
146  n = n->rb_left;
147  else if (ino > r->ino)
148  n = n->rb_right;
149  else {
150  dout("lookup_snap_realm %llx %p\n", r->ino, r);
151  return r;
152  }
153  }
154  return NULL;
155 }
156 
157 static void __put_snap_realm(struct ceph_mds_client *mdsc,
158  struct ceph_snap_realm *realm);
159 
160 /*
161  * called with snap_rwsem (write)
162  */
163 static void __destroy_snap_realm(struct ceph_mds_client *mdsc,
164  struct ceph_snap_realm *realm)
165 {
166  dout("__destroy_snap_realm %p %llx\n", realm, realm->ino);
167 
168  rb_erase(&realm->node, &mdsc->snap_realms);
169 
170  if (realm->parent) {
171  list_del_init(&realm->child_item);
172  __put_snap_realm(mdsc, realm->parent);
173  }
174 
175  kfree(realm->prior_parent_snaps);
176  kfree(realm->snaps);
177  ceph_put_snap_context(realm->cached_context);
178  kfree(realm);
179 }
180 
181 /*
182  * caller holds snap_rwsem (write)
183  */
184 static void __put_snap_realm(struct ceph_mds_client *mdsc,
185  struct ceph_snap_realm *realm)
186 {
187  dout("__put_snap_realm %llx %p %d -> %d\n", realm->ino, realm,
188  atomic_read(&realm->nref), atomic_read(&realm->nref)-1);
189  if (atomic_dec_and_test(&realm->nref))
190  __destroy_snap_realm(mdsc, realm);
191 }
192 
193 /*
194  * caller needn't hold any locks
195  */
197  struct ceph_snap_realm *realm)
198 {
199  dout("put_snap_realm %llx %p %d -> %d\n", realm->ino, realm,
200  atomic_read(&realm->nref), atomic_read(&realm->nref)-1);
201  if (!atomic_dec_and_test(&realm->nref))
202  return;
203 
204  if (down_write_trylock(&mdsc->snap_rwsem)) {
205  __destroy_snap_realm(mdsc, realm);
206  up_write(&mdsc->snap_rwsem);
207  } else {
208  spin_lock(&mdsc->snap_empty_lock);
209  list_add(&realm->empty_item, &mdsc->snap_empty);
210  spin_unlock(&mdsc->snap_empty_lock);
211  }
212 }
213 
214 /*
215  * Clean up any realms whose ref counts have dropped to zero. Note
216  * that this does not include realms who were created but not yet
217  * used.
218  *
219  * Called under snap_rwsem (write)
220  */
221 static void __cleanup_empty_realms(struct ceph_mds_client *mdsc)
222 {
223  struct ceph_snap_realm *realm;
224 
225  spin_lock(&mdsc->snap_empty_lock);
226  while (!list_empty(&mdsc->snap_empty)) {
227  realm = list_first_entry(&mdsc->snap_empty,
228  struct ceph_snap_realm, empty_item);
229  list_del(&realm->empty_item);
230  spin_unlock(&mdsc->snap_empty_lock);
231  __destroy_snap_realm(mdsc, realm);
232  spin_lock(&mdsc->snap_empty_lock);
233  }
234  spin_unlock(&mdsc->snap_empty_lock);
235 }
236 
238 {
239  down_write(&mdsc->snap_rwsem);
240  __cleanup_empty_realms(mdsc);
241  up_write(&mdsc->snap_rwsem);
242 }
243 
244 /*
245  * adjust the parent realm of a given @realm. adjust child list, and parent
246  * pointers, and ref counts appropriately.
247  *
248  * return true if parent was changed, 0 if unchanged, <0 on error.
249  *
250  * caller must hold snap_rwsem for write.
251  */
252 static int adjust_snap_realm_parent(struct ceph_mds_client *mdsc,
253  struct ceph_snap_realm *realm,
254  u64 parentino)
255 {
256  struct ceph_snap_realm *parent;
257 
258  if (realm->parent_ino == parentino)
259  return 0;
260 
261  parent = ceph_lookup_snap_realm(mdsc, parentino);
262  if (!parent) {
263  parent = ceph_create_snap_realm(mdsc, parentino);
264  if (IS_ERR(parent))
265  return PTR_ERR(parent);
266  }
267  dout("adjust_snap_realm_parent %llx %p: %llx %p -> %llx %p\n",
268  realm->ino, realm, realm->parent_ino, realm->parent,
269  parentino, parent);
270  if (realm->parent) {
271  list_del_init(&realm->child_item);
272  ceph_put_snap_realm(mdsc, realm->parent);
273  }
274  realm->parent_ino = parentino;
275  realm->parent = parent;
276  ceph_get_snap_realm(mdsc, parent);
277  list_add(&realm->child_item, &parent->children);
278  return 1;
279 }
280 
281 
282 static int cmpu64_rev(const void *a, const void *b)
283 {
284  if (*(u64 *)a < *(u64 *)b)
285  return 1;
286  if (*(u64 *)a > *(u64 *)b)
287  return -1;
288  return 0;
289 }
290 
291 /*
292  * build the snap context for a given realm.
293  */
294 static int build_snap_context(struct ceph_snap_realm *realm)
295 {
296  struct ceph_snap_realm *parent = realm->parent;
297  struct ceph_snap_context *snapc;
298  int err = 0;
299  u32 num = realm->num_prior_parent_snaps + realm->num_snaps;
300 
301  /*
302  * build parent context, if it hasn't been built.
303  * conservatively estimate that all parent snaps might be
304  * included by us.
305  */
306  if (parent) {
307  if (!parent->cached_context) {
308  err = build_snap_context(parent);
309  if (err)
310  goto fail;
311  }
312  num += parent->cached_context->num_snaps;
313  }
314 
315  /* do i actually need to update? not if my context seq
316  matches realm seq, and my parents' does to. (this works
317  because we rebuild_snap_realms() works _downward_ in
318  hierarchy after each update.) */
319  if (realm->cached_context &&
320  realm->cached_context->seq == realm->seq &&
321  (!parent ||
322  realm->cached_context->seq >= parent->cached_context->seq)) {
323  dout("build_snap_context %llx %p: %p seq %lld (%u snaps)"
324  " (unchanged)\n",
325  realm->ino, realm, realm->cached_context,
326  realm->cached_context->seq,
327  (unsigned int) realm->cached_context->num_snaps);
328  return 0;
329  }
330 
331  /* alloc new snap context */
332  err = -ENOMEM;
333  if (num > (SIZE_MAX - sizeof(*snapc)) / sizeof(u64))
334  goto fail;
335  snapc = kzalloc(sizeof(*snapc) + num*sizeof(u64), GFP_NOFS);
336  if (!snapc)
337  goto fail;
338  atomic_set(&snapc->nref, 1);
339 
340  /* build (reverse sorted) snap vector */
341  num = 0;
342  snapc->seq = realm->seq;
343  if (parent) {
344  u32 i;
345 
346  /* include any of parent's snaps occurring _after_ my
347  parent became my parent */
348  for (i = 0; i < parent->cached_context->num_snaps; i++)
349  if (parent->cached_context->snaps[i] >=
350  realm->parent_since)
351  snapc->snaps[num++] =
352  parent->cached_context->snaps[i];
353  if (parent->cached_context->seq > snapc->seq)
354  snapc->seq = parent->cached_context->seq;
355  }
356  memcpy(snapc->snaps + num, realm->snaps,
357  sizeof(u64)*realm->num_snaps);
358  num += realm->num_snaps;
359  memcpy(snapc->snaps + num, realm->prior_parent_snaps,
360  sizeof(u64)*realm->num_prior_parent_snaps);
361  num += realm->num_prior_parent_snaps;
362 
363  sort(snapc->snaps, num, sizeof(u64), cmpu64_rev, NULL);
364  snapc->num_snaps = num;
365  dout("build_snap_context %llx %p: %p seq %lld (%u snaps)\n",
366  realm->ino, realm, snapc, snapc->seq,
367  (unsigned int) snapc->num_snaps);
368 
369  if (realm->cached_context)
370  ceph_put_snap_context(realm->cached_context);
371  realm->cached_context = snapc;
372  return 0;
373 
374 fail:
375  /*
376  * if we fail, clear old (incorrect) cached_context... hopefully
377  * we'll have better luck building it later
378  */
379  if (realm->cached_context) {
380  ceph_put_snap_context(realm->cached_context);
381  realm->cached_context = NULL;
382  }
383  pr_err("build_snap_context %llx %p fail %d\n", realm->ino,
384  realm, err);
385  return err;
386 }
387 
388 /*
389  * rebuild snap context for the given realm and all of its children.
390  */
391 static void rebuild_snap_realms(struct ceph_snap_realm *realm)
392 {
393  struct ceph_snap_realm *child;
394 
395  dout("rebuild_snap_realms %llx %p\n", realm->ino, realm);
396  build_snap_context(realm);
397 
398  list_for_each_entry(child, &realm->children, child_item)
399  rebuild_snap_realms(child);
400 }
401 
402 
403 /*
404  * helper to allocate and decode an array of snapids. free prior
405  * instance, if any.
406  */
407 static int dup_array(u64 **dst, __le64 *src, u32 num)
408 {
409  u32 i;
410 
411  kfree(*dst);
412  if (num) {
413  *dst = kcalloc(num, sizeof(u64), GFP_NOFS);
414  if (!*dst)
415  return -ENOMEM;
416  for (i = 0; i < num; i++)
417  (*dst)[i] = get_unaligned_le64(src + i);
418  } else {
419  *dst = NULL;
420  }
421  return 0;
422 }
423 
424 
425 /*
426  * When a snapshot is applied, the size/mtime inode metadata is queued
427  * in a ceph_cap_snap (one for each snapshot) until writeback
428  * completes and the metadata can be flushed back to the MDS.
429  *
430  * However, if a (sync) write is currently in-progress when we apply
431  * the snapshot, we have to wait until the write succeeds or fails
432  * (and a final size/mtime is known). In this case the
433  * cap_snap->writing = 1, and is said to be "pending." When the write
434  * finishes, we __ceph_finish_cap_snap().
435  *
436  * Caller must hold snap_rwsem for read (i.e., the realm topology won't
437  * change).
438  */
440 {
441  struct inode *inode = &ci->vfs_inode;
442  struct ceph_cap_snap *capsnap;
443  int used, dirty;
444 
445  capsnap = kzalloc(sizeof(*capsnap), GFP_NOFS);
446  if (!capsnap) {
447  pr_err("ENOMEM allocating ceph_cap_snap on %p\n", inode);
448  return;
449  }
450 
451  spin_lock(&ci->i_ceph_lock);
452  used = __ceph_caps_used(ci);
453  dirty = __ceph_caps_dirty(ci);
454 
455  /*
456  * If there is a write in progress, treat that as a dirty Fw,
457  * even though it hasn't completed yet; by the time we finish
458  * up this capsnap it will be.
459  */
460  if (used & CEPH_CAP_FILE_WR)
461  dirty |= CEPH_CAP_FILE_WR;
462 
463  if (__ceph_have_pending_cap_snap(ci)) {
464  /* there is no point in queuing multiple "pending" cap_snaps,
465  as no new writes are allowed to start when pending, so any
466  writes in progress now were started before the previous
467  cap_snap. lucky us. */
468  dout("queue_cap_snap %p already pending\n", inode);
469  kfree(capsnap);
470  } else if (dirty & (CEPH_CAP_AUTH_EXCL|CEPH_CAP_XATTR_EXCL|
471  CEPH_CAP_FILE_EXCL|CEPH_CAP_FILE_WR)) {
472  struct ceph_snap_context *snapc = ci->i_head_snapc;
473 
474  /*
475  * if we are a sync write, we may need to go to the snaprealm
476  * to get the current snapc.
477  */
478  if (!snapc)
479  snapc = ci->i_snap_realm->cached_context;
480 
481  dout("queue_cap_snap %p cap_snap %p queuing under %p %s\n",
482  inode, capsnap, snapc, ceph_cap_string(dirty));
483  ihold(inode);
484 
485  atomic_set(&capsnap->nref, 1);
486  capsnap->ci = ci;
487  INIT_LIST_HEAD(&capsnap->ci_item);
488  INIT_LIST_HEAD(&capsnap->flushing_item);
489 
490  capsnap->follows = snapc->seq;
491  capsnap->issued = __ceph_caps_issued(ci, NULL);
492  capsnap->dirty = dirty;
493 
494  capsnap->mode = inode->i_mode;
495  capsnap->uid = inode->i_uid;
496  capsnap->gid = inode->i_gid;
497 
498  if (dirty & CEPH_CAP_XATTR_EXCL) {
500  capsnap->xattr_blob =
501  ceph_buffer_get(ci->i_xattrs.blob);
502  capsnap->xattr_version = ci->i_xattrs.version;
503  } else {
504  capsnap->xattr_blob = NULL;
505  capsnap->xattr_version = 0;
506  }
507 
508  /* dirty page count moved from _head to this cap_snap;
509  all subsequent writes page dirties occur _after_ this
510  snapshot. */
511  capsnap->dirty_pages = ci->i_wrbuffer_ref_head;
512  ci->i_wrbuffer_ref_head = 0;
513  capsnap->context = snapc;
514  ci->i_head_snapc =
515  ceph_get_snap_context(ci->i_snap_realm->cached_context);
516  dout(" new snapc is %p\n", ci->i_head_snapc);
517  list_add_tail(&capsnap->ci_item, &ci->i_cap_snaps);
518 
519  if (used & CEPH_CAP_FILE_WR) {
520  dout("queue_cap_snap %p cap_snap %p snapc %p"
521  " seq %llu used WR, now pending\n", inode,
522  capsnap, snapc, snapc->seq);
523  capsnap->writing = 1;
524  } else {
525  /* note mtime, size NOW. */
526  __ceph_finish_cap_snap(ci, capsnap);
527  }
528  } else {
529  dout("queue_cap_snap %p nothing dirty|writing\n", inode);
530  kfree(capsnap);
531  }
532 
533  spin_unlock(&ci->i_ceph_lock);
534 }
535 
536 /*
537  * Finalize the size, mtime for a cap_snap.. that is, settle on final values
538  * to be used for the snapshot, to be flushed back to the mds.
539  *
540  * If capsnap can now be flushed, add to snap_flush list, and return 1.
541  *
542  * Caller must hold i_ceph_lock.
543  */
545  struct ceph_cap_snap *capsnap)
546 {
547  struct inode *inode = &ci->vfs_inode;
548  struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
549 
550  BUG_ON(capsnap->writing);
551  capsnap->size = inode->i_size;
552  capsnap->mtime = inode->i_mtime;
553  capsnap->atime = inode->i_atime;
554  capsnap->ctime = inode->i_ctime;
555  capsnap->time_warp_seq = ci->i_time_warp_seq;
556  if (capsnap->dirty_pages) {
557  dout("finish_cap_snap %p cap_snap %p snapc %p %llu %s s=%llu "
558  "still has %d dirty pages\n", inode, capsnap,
559  capsnap->context, capsnap->context->seq,
560  ceph_cap_string(capsnap->dirty), capsnap->size,
561  capsnap->dirty_pages);
562  return 0;
563  }
564  dout("finish_cap_snap %p cap_snap %p snapc %p %llu %s s=%llu\n",
565  inode, capsnap, capsnap->context,
566  capsnap->context->seq, ceph_cap_string(capsnap->dirty),
567  capsnap->size);
568 
569  spin_lock(&mdsc->snap_flush_lock);
571  spin_unlock(&mdsc->snap_flush_lock);
572  return 1; /* caller may want to ceph_flush_snaps */
573 }
574 
575 /*
576  * Queue cap_snaps for snap writeback for this realm and its children.
577  * Called under snap_rwsem, so realm topology won't change.
578  */
579 static void queue_realm_cap_snaps(struct ceph_snap_realm *realm)
580 {
581  struct ceph_inode_info *ci;
582  struct inode *lastinode = NULL;
583  struct ceph_snap_realm *child;
584 
585  dout("queue_realm_cap_snaps %p %llx inodes\n", realm, realm->ino);
586 
587  spin_lock(&realm->inodes_with_caps_lock);
589  i_snap_realm_item) {
590  struct inode *inode = igrab(&ci->vfs_inode);
591  if (!inode)
592  continue;
593  spin_unlock(&realm->inodes_with_caps_lock);
594  if (lastinode)
595  iput(lastinode);
596  lastinode = inode;
598  spin_lock(&realm->inodes_with_caps_lock);
599  }
600  spin_unlock(&realm->inodes_with_caps_lock);
601  if (lastinode)
602  iput(lastinode);
603 
604  list_for_each_entry(child, &realm->children, child_item) {
605  dout("queue_realm_cap_snaps %p %llx queue child %p %llx\n",
606  realm, realm->ino, child, child->ino);
607  list_del_init(&child->dirty_item);
608  list_add(&child->dirty_item, &realm->dirty_item);
609  }
610 
611  list_del_init(&realm->dirty_item);
612  dout("queue_realm_cap_snaps %p %llx done\n", realm, realm->ino);
613 }
614 
615 /*
616  * Parse and apply a snapblob "snap trace" from the MDS. This specifies
617  * the snap realm parameters from a given realm and all of its ancestors,
618  * up to the root.
619  *
620  * Caller must hold snap_rwsem for write.
621  */
623  void *p, void *e, bool deletion)
624 {
625  struct ceph_mds_snap_realm *ri; /* encoded */
626  __le64 *snaps; /* encoded */
627  __le64 *prior_parent_snaps; /* encoded */
628  struct ceph_snap_realm *realm;
629  int invalidate = 0;
630  int err = -ENOMEM;
631  LIST_HEAD(dirty_realms);
632 
633  dout("update_snap_trace deletion=%d\n", deletion);
634 more:
635  ceph_decode_need(&p, e, sizeof(*ri), bad);
636  ri = p;
637  p += sizeof(*ri);
638  ceph_decode_need(&p, e, sizeof(u64)*(le32_to_cpu(ri->num_snaps) +
640  snaps = p;
641  p += sizeof(u64) * le32_to_cpu(ri->num_snaps);
642  prior_parent_snaps = p;
643  p += sizeof(u64) * le32_to_cpu(ri->num_prior_parent_snaps);
644 
645  realm = ceph_lookup_snap_realm(mdsc, le64_to_cpu(ri->ino));
646  if (!realm) {
647  realm = ceph_create_snap_realm(mdsc, le64_to_cpu(ri->ino));
648  if (IS_ERR(realm)) {
649  err = PTR_ERR(realm);
650  goto fail;
651  }
652  }
653 
654  /* ensure the parent is correct */
655  err = adjust_snap_realm_parent(mdsc, realm, le64_to_cpu(ri->parent));
656  if (err < 0)
657  goto fail;
658  invalidate += err;
659 
660  if (le64_to_cpu(ri->seq) > realm->seq) {
661  dout("update_snap_trace updating %llx %p %lld -> %lld\n",
662  realm->ino, realm, realm->seq, le64_to_cpu(ri->seq));
663  /* update realm parameters, snap lists */
664  realm->seq = le64_to_cpu(ri->seq);
665  realm->created = le64_to_cpu(ri->created);
666  realm->parent_since = le64_to_cpu(ri->parent_since);
667 
668  realm->num_snaps = le32_to_cpu(ri->num_snaps);
669  err = dup_array(&realm->snaps, snaps, realm->num_snaps);
670  if (err < 0)
671  goto fail;
672 
673  realm->num_prior_parent_snaps =
675  err = dup_array(&realm->prior_parent_snaps, prior_parent_snaps,
676  realm->num_prior_parent_snaps);
677  if (err < 0)
678  goto fail;
679 
680  /* queue realm for cap_snap creation */
681  list_add(&realm->dirty_item, &dirty_realms);
682 
683  invalidate = 1;
684  } else if (!realm->cached_context) {
685  dout("update_snap_trace %llx %p seq %lld new\n",
686  realm->ino, realm, realm->seq);
687  invalidate = 1;
688  } else {
689  dout("update_snap_trace %llx %p seq %lld unchanged\n",
690  realm->ino, realm, realm->seq);
691  }
692 
693  dout("done with %llx %p, invalidated=%d, %p %p\n", realm->ino,
694  realm, invalidate, p, e);
695 
696  if (p < e)
697  goto more;
698 
699  /* invalidate when we reach the _end_ (root) of the trace */
700  if (invalidate)
701  rebuild_snap_realms(realm);
702 
703  /*
704  * queue cap snaps _after_ we've built the new snap contexts,
705  * so that i_head_snapc can be set appropriately.
706  */
707  while (!list_empty(&dirty_realms)) {
708  realm = list_first_entry(&dirty_realms, struct ceph_snap_realm,
709  dirty_item);
710  queue_realm_cap_snaps(realm);
711  }
712 
713  __cleanup_empty_realms(mdsc);
714  return 0;
715 
716 bad:
717  err = -EINVAL;
718 fail:
719  pr_err("update_snap_trace error %d\n", err);
720  return err;
721 }
722 
723 
724 /*
725  * Send any cap_snaps that are queued for flush. Try to carry
726  * s_mutex across multiple snap flushes to avoid locking overhead.
727  *
728  * Caller holds no locks.
729  */
730 static void flush_snaps(struct ceph_mds_client *mdsc)
731 {
732  struct ceph_inode_info *ci;
733  struct inode *inode;
734  struct ceph_mds_session *session = NULL;
735 
736  dout("flush_snaps\n");
737  spin_lock(&mdsc->snap_flush_lock);
738  while (!list_empty(&mdsc->snap_flush_list)) {
739  ci = list_first_entry(&mdsc->snap_flush_list,
740  struct ceph_inode_info, i_snap_flush_item);
741  inode = &ci->vfs_inode;
742  ihold(inode);
743  spin_unlock(&mdsc->snap_flush_lock);
744  spin_lock(&ci->i_ceph_lock);
745  __ceph_flush_snaps(ci, &session, 0);
746  spin_unlock(&ci->i_ceph_lock);
747  iput(inode);
748  spin_lock(&mdsc->snap_flush_lock);
749  }
750  spin_unlock(&mdsc->snap_flush_lock);
751 
752  if (session) {
753  mutex_unlock(&session->s_mutex);
754  ceph_put_mds_session(session);
755  }
756  dout("flush_snaps done\n");
757 }
758 
759 
760 /*
761  * Handle a snap notification from the MDS.
762  *
763  * This can take two basic forms: the simplest is just a snap creation
764  * or deletion notification on an existing realm. This should update the
765  * realm and its children.
766  *
767  * The more difficult case is realm creation, due to snap creation at a
768  * new point in the file hierarchy, or due to a rename that moves a file or
769  * directory into another realm.
770  */
772  struct ceph_mds_session *session,
773  struct ceph_msg *msg)
774 {
775  struct super_block *sb = mdsc->fsc->sb;
776  int mds = session->s_mds;
777  u64 split;
778  int op;
779  int trace_len;
780  struct ceph_snap_realm *realm = NULL;
781  void *p = msg->front.iov_base;
782  void *e = p + msg->front.iov_len;
783  struct ceph_mds_snap_head *h;
785  __le64 *split_inos = NULL, *split_realms = NULL;
786  int i;
787  int locked_rwsem = 0;
788 
789  /* decode */
790  if (msg->front.iov_len < sizeof(*h))
791  goto bad;
792  h = p;
793  op = le32_to_cpu(h->op);
794  split = le64_to_cpu(h->split); /* non-zero if we are splitting an
795  * existing realm */
796  num_split_inos = le32_to_cpu(h->num_split_inos);
797  num_split_realms = le32_to_cpu(h->num_split_realms);
798  trace_len = le32_to_cpu(h->trace_len);
799  p += sizeof(*h);
800 
801  dout("handle_snap from mds%d op %s split %llx tracelen %d\n", mds,
802  ceph_snap_op_name(op), split, trace_len);
803 
804  mutex_lock(&session->s_mutex);
805  session->s_seq++;
806  mutex_unlock(&session->s_mutex);
807 
808  down_write(&mdsc->snap_rwsem);
809  locked_rwsem = 1;
810 
811  if (op == CEPH_SNAP_OP_SPLIT) {
812  struct ceph_mds_snap_realm *ri;
813 
814  /*
815  * A "split" breaks part of an existing realm off into
816  * a new realm. The MDS provides a list of inodes
817  * (with caps) and child realms that belong to the new
818  * child.
819  */
820  split_inos = p;
821  p += sizeof(u64) * num_split_inos;
822  split_realms = p;
823  p += sizeof(u64) * num_split_realms;
824  ceph_decode_need(&p, e, sizeof(*ri), bad);
825  /* we will peek at realm info here, but will _not_
826  * advance p, as the realm update will occur below in
827  * ceph_update_snap_trace. */
828  ri = p;
829 
830  realm = ceph_lookup_snap_realm(mdsc, split);
831  if (!realm) {
832  realm = ceph_create_snap_realm(mdsc, split);
833  if (IS_ERR(realm))
834  goto out;
835  }
836  ceph_get_snap_realm(mdsc, realm);
837 
838  dout("splitting snap_realm %llx %p\n", realm->ino, realm);
839  for (i = 0; i < num_split_inos; i++) {
840  struct ceph_vino vino = {
841  .ino = le64_to_cpu(split_inos[i]),
842  .snap = CEPH_NOSNAP,
843  };
844  struct inode *inode = ceph_find_inode(sb, vino);
845  struct ceph_inode_info *ci;
846  struct ceph_snap_realm *oldrealm;
847 
848  if (!inode)
849  continue;
850  ci = ceph_inode(inode);
851 
852  spin_lock(&ci->i_ceph_lock);
853  if (!ci->i_snap_realm)
854  goto skip_inode;
855  /*
856  * If this inode belongs to a realm that was
857  * created after our new realm, we experienced
858  * a race (due to another split notifications
859  * arriving from a different MDS). So skip
860  * this inode.
861  */
862  if (ci->i_snap_realm->created >
863  le64_to_cpu(ri->created)) {
864  dout(" leaving %p in newer realm %llx %p\n",
865  inode, ci->i_snap_realm->ino,
866  ci->i_snap_realm);
867  goto skip_inode;
868  }
869  dout(" will move %p to split realm %llx %p\n",
870  inode, realm->ino, realm);
871  /*
872  * Move the inode to the new realm
873  */
874  spin_lock(&realm->inodes_with_caps_lock);
875  list_del_init(&ci->i_snap_realm_item);
876  list_add(&ci->i_snap_realm_item,
877  &realm->inodes_with_caps);
878  oldrealm = ci->i_snap_realm;
879  ci->i_snap_realm = realm;
880  spin_unlock(&realm->inodes_with_caps_lock);
881  spin_unlock(&ci->i_ceph_lock);
882 
883  ceph_get_snap_realm(mdsc, realm);
884  ceph_put_snap_realm(mdsc, oldrealm);
885 
886  iput(inode);
887  continue;
888 
889 skip_inode:
890  spin_unlock(&ci->i_ceph_lock);
891  iput(inode);
892  }
893 
894  /* we may have taken some of the old realm's children. */
895  for (i = 0; i < num_split_realms; i++) {
896  struct ceph_snap_realm *child =
898  le64_to_cpu(split_realms[i]));
899  if (!child)
900  continue;
901  adjust_snap_realm_parent(mdsc, child, realm->ino);
902  }
903  }
904 
905  /*
906  * update using the provided snap trace. if we are deleting a
907  * snap, we can avoid queueing cap_snaps.
908  */
909  ceph_update_snap_trace(mdsc, p, e,
910  op == CEPH_SNAP_OP_DESTROY);
911 
912  if (op == CEPH_SNAP_OP_SPLIT)
913  /* we took a reference when we created the realm, above */
914  ceph_put_snap_realm(mdsc, realm);
915 
916  __cleanup_empty_realms(mdsc);
917 
918  up_write(&mdsc->snap_rwsem);
919 
920  flush_snaps(mdsc);
921  return;
922 
923 bad:
924  pr_err("corrupt snap message from mds%d\n", mds);
925  ceph_msg_dump(msg);
926 out:
927  if (locked_rwsem)
928  up_write(&mdsc->snap_rwsem);
929  return;
930 }
931 
932 
933