Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
spidev.c
Go to the documentation of this file.
1 /*
2  * Simple synchronous userspace interface to SPI devices
3  *
4  * Copyright (C) 2006 SWAPP
5  * Andrea Paterniani <[email protected]>
6  * Copyright (C) 2007 David Brownell (simplification, cleanup)
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/ioctl.h>
26 #include <linux/fs.h>
27 #include <linux/device.h>
28 #include <linux/err.h>
29 #include <linux/list.h>
30 #include <linux/errno.h>
31 #include <linux/mutex.h>
32 #include <linux/slab.h>
33 #include <linux/compat.h>
34 
35 #include <linux/spi/spi.h>
36 #include <linux/spi/spidev.h>
37 
38 #include <asm/uaccess.h>
39 
40 
41 /*
42  * This supports access to SPI devices using normal userspace I/O calls.
43  * Note that while traditional UNIX/POSIX I/O semantics are half duplex,
44  * and often mask message boundaries, full SPI support requires full duplex
45  * transfers. There are several kinds of internal message boundaries to
46  * handle chipselect management and other protocol options.
47  *
48  * SPI has a character major number assigned. We allocate minor numbers
49  * dynamically using a bitmask. You must use hotplug tools, such as udev
50  * (or mdev with busybox) to create and destroy the /dev/spidevB.C device
51  * nodes, since there is no fixed association of minor numbers with any
52  * particular SPI bus or device.
53  */
54 #define SPIDEV_MAJOR 153 /* assigned */
55 #define N_SPI_MINORS 32 /* ... up to 256 */
56 
57 static DECLARE_BITMAP(minors, N_SPI_MINORS);
58 
59 
60 /* Bit masks for spi_device.mode management. Note that incorrect
61  * settings for some settings can cause *lots* of trouble for other
62  * devices on a shared bus:
63  *
64  * - CS_HIGH ... this device will be active when it shouldn't be
65  * - 3WIRE ... when active, it won't behave as it should
66  * - NO_CS ... there will be no explicit message boundaries; this
67  * is completely incompatible with the shared bus model
68  * - READY ... transfers may proceed when they shouldn't.
69  *
70  * REVISIT should changing those flags be privileged?
71  */
72 #define SPI_MODE_MASK (SPI_CPHA | SPI_CPOL | SPI_CS_HIGH \
73  | SPI_LSB_FIRST | SPI_3WIRE | SPI_LOOP \
74  | SPI_NO_CS | SPI_READY)
75 
76 struct spidev_data {
79  struct spi_device *spi;
81 
82  /* buffer is NULL unless this device is open (users > 0) */
83  struct mutex buf_lock;
84  unsigned users;
86 };
87 
88 static LIST_HEAD(device_list);
89 static DEFINE_MUTEX(device_list_lock);
90 
91 static unsigned bufsiz = 4096;
92 module_param(bufsiz, uint, S_IRUGO);
93 MODULE_PARM_DESC(bufsiz, "data bytes in biggest supported SPI message");
94 
95 /*-------------------------------------------------------------------------*/
96 
97 /*
98  * We can't use the standard synchronous wrappers for file I/O; we
99  * need to protect against async removal of the underlying spi_device.
100  */
101 static void spidev_complete(void *arg)
102 {
103  complete(arg);
104 }
105 
106 static ssize_t
107 spidev_sync(struct spidev_data *spidev, struct spi_message *message)
108 {
110  int status;
111 
112  message->complete = spidev_complete;
113  message->context = &done;
114 
115  spin_lock_irq(&spidev->spi_lock);
116  if (spidev->spi == NULL)
117  status = -ESHUTDOWN;
118  else
119  status = spi_async(spidev->spi, message);
120  spin_unlock_irq(&spidev->spi_lock);
121 
122  if (status == 0) {
124  status = message->status;
125  if (status == 0)
126  status = message->actual_length;
127  }
128  return status;
129 }
130 
131 static inline ssize_t
132 spidev_sync_write(struct spidev_data *spidev, size_t len)
133 {
134  struct spi_transfer t = {
135  .tx_buf = spidev->buffer,
136  .len = len,
137  };
138  struct spi_message m;
139 
140  spi_message_init(&m);
141  spi_message_add_tail(&t, &m);
142  return spidev_sync(spidev, &m);
143 }
144 
145 static inline ssize_t
146 spidev_sync_read(struct spidev_data *spidev, size_t len)
147 {
148  struct spi_transfer t = {
149  .rx_buf = spidev->buffer,
150  .len = len,
151  };
152  struct spi_message m;
153 
154  spi_message_init(&m);
155  spi_message_add_tail(&t, &m);
156  return spidev_sync(spidev, &m);
157 }
158 
159 /*-------------------------------------------------------------------------*/
160 
161 /* Read-only message with current device setup */
162 static ssize_t
163 spidev_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
164 {
165  struct spidev_data *spidev;
166  ssize_t status = 0;
167 
168  /* chipselect only toggles at start or end of operation */
169  if (count > bufsiz)
170  return -EMSGSIZE;
171 
172  spidev = filp->private_data;
173 
174  mutex_lock(&spidev->buf_lock);
175  status = spidev_sync_read(spidev, count);
176  if (status > 0) {
177  unsigned long missing;
178 
179  missing = copy_to_user(buf, spidev->buffer, status);
180  if (missing == status)
181  status = -EFAULT;
182  else
183  status = status - missing;
184  }
185  mutex_unlock(&spidev->buf_lock);
186 
187  return status;
188 }
189 
190 /* Write-only message with current device setup */
191 static ssize_t
192 spidev_write(struct file *filp, const char __user *buf,
193  size_t count, loff_t *f_pos)
194 {
195  struct spidev_data *spidev;
196  ssize_t status = 0;
197  unsigned long missing;
198 
199  /* chipselect only toggles at start or end of operation */
200  if (count > bufsiz)
201  return -EMSGSIZE;
202 
203  spidev = filp->private_data;
204 
205  mutex_lock(&spidev->buf_lock);
206  missing = copy_from_user(spidev->buffer, buf, count);
207  if (missing == 0) {
208  status = spidev_sync_write(spidev, count);
209  } else
210  status = -EFAULT;
211  mutex_unlock(&spidev->buf_lock);
212 
213  return status;
214 }
215 
216 static int spidev_message(struct spidev_data *spidev,
217  struct spi_ioc_transfer *u_xfers, unsigned n_xfers)
218 {
219  struct spi_message msg;
220  struct spi_transfer *k_xfers;
221  struct spi_transfer *k_tmp;
222  struct spi_ioc_transfer *u_tmp;
223  unsigned n, total;
224  u8 *buf;
225  int status = -EFAULT;
226 
227  spi_message_init(&msg);
228  k_xfers = kcalloc(n_xfers, sizeof(*k_tmp), GFP_KERNEL);
229  if (k_xfers == NULL)
230  return -ENOMEM;
231 
232  /* Construct spi_message, copying any tx data to bounce buffer.
233  * We walk the array of user-provided transfers, using each one
234  * to initialize a kernel version of the same transfer.
235  */
236  buf = spidev->buffer;
237  total = 0;
238  for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
239  n;
240  n--, k_tmp++, u_tmp++) {
241  k_tmp->len = u_tmp->len;
242 
243  total += k_tmp->len;
244  if (total > bufsiz) {
245  status = -EMSGSIZE;
246  goto done;
247  }
248 
249  if (u_tmp->rx_buf) {
250  k_tmp->rx_buf = buf;
251  if (!access_ok(VERIFY_WRITE, (u8 __user *)
252  (uintptr_t) u_tmp->rx_buf,
253  u_tmp->len))
254  goto done;
255  }
256  if (u_tmp->tx_buf) {
257  k_tmp->tx_buf = buf;
258  if (copy_from_user(buf, (const u8 __user *)
259  (uintptr_t) u_tmp->tx_buf,
260  u_tmp->len))
261  goto done;
262  }
263  buf += k_tmp->len;
264 
265  k_tmp->cs_change = !!u_tmp->cs_change;
266  k_tmp->bits_per_word = u_tmp->bits_per_word;
267  k_tmp->delay_usecs = u_tmp->delay_usecs;
268  k_tmp->speed_hz = u_tmp->speed_hz;
269 #ifdef VERBOSE
270  dev_dbg(&spidev->spi->dev,
271  " xfer len %zd %s%s%s%dbits %u usec %uHz\n",
272  u_tmp->len,
273  u_tmp->rx_buf ? "rx " : "",
274  u_tmp->tx_buf ? "tx " : "",
275  u_tmp->cs_change ? "cs " : "",
276  u_tmp->bits_per_word ? : spidev->spi->bits_per_word,
277  u_tmp->delay_usecs,
278  u_tmp->speed_hz ? : spidev->spi->max_speed_hz);
279 #endif
280  spi_message_add_tail(k_tmp, &msg);
281  }
282 
283  status = spidev_sync(spidev, &msg);
284  if (status < 0)
285  goto done;
286 
287  /* copy any rx data out of bounce buffer */
288  buf = spidev->buffer;
289  for (n = n_xfers, u_tmp = u_xfers; n; n--, u_tmp++) {
290  if (u_tmp->rx_buf) {
291  if (__copy_to_user((u8 __user *)
292  (uintptr_t) u_tmp->rx_buf, buf,
293  u_tmp->len)) {
294  status = -EFAULT;
295  goto done;
296  }
297  }
298  buf += u_tmp->len;
299  }
300  status = total;
301 
302 done:
303  kfree(k_xfers);
304  return status;
305 }
306 
307 static long
308 spidev_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
309 {
310  int err = 0;
311  int retval = 0;
312  struct spidev_data *spidev;
313  struct spi_device *spi;
314  u32 tmp;
315  unsigned n_ioc;
316  struct spi_ioc_transfer *ioc;
317 
318  /* Check type and command number */
319  if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC)
320  return -ENOTTY;
321 
322  /* Check access direction once here; don't repeat below.
323  * IOC_DIR is from the user perspective, while access_ok is
324  * from the kernel perspective; so they look reversed.
325  */
326  if (_IOC_DIR(cmd) & _IOC_READ)
327  err = !access_ok(VERIFY_WRITE,
328  (void __user *)arg, _IOC_SIZE(cmd));
329  if (err == 0 && _IOC_DIR(cmd) & _IOC_WRITE)
330  err = !access_ok(VERIFY_READ,
331  (void __user *)arg, _IOC_SIZE(cmd));
332  if (err)
333  return -EFAULT;
334 
335  /* guard against device removal before, or while,
336  * we issue this ioctl.
337  */
338  spidev = filp->private_data;
339  spin_lock_irq(&spidev->spi_lock);
340  spi = spi_dev_get(spidev->spi);
341  spin_unlock_irq(&spidev->spi_lock);
342 
343  if (spi == NULL)
344  return -ESHUTDOWN;
345 
346  /* use the buffer lock here for triple duty:
347  * - prevent I/O (from us) so calling spi_setup() is safe;
348  * - prevent concurrent SPI_IOC_WR_* from morphing
349  * data fields while SPI_IOC_RD_* reads them;
350  * - SPI_IOC_MESSAGE needs the buffer locked "normally".
351  */
352  mutex_lock(&spidev->buf_lock);
353 
354  switch (cmd) {
355  /* read requests */
356  case SPI_IOC_RD_MODE:
357  retval = __put_user(spi->mode & SPI_MODE_MASK,
358  (__u8 __user *)arg);
359  break;
361  retval = __put_user((spi->mode & SPI_LSB_FIRST) ? 1 : 0,
362  (__u8 __user *)arg);
363  break;
365  retval = __put_user(spi->bits_per_word, (__u8 __user *)arg);
366  break;
368  retval = __put_user(spi->max_speed_hz, (__u32 __user *)arg);
369  break;
370 
371  /* write requests */
372  case SPI_IOC_WR_MODE:
373  retval = __get_user(tmp, (u8 __user *)arg);
374  if (retval == 0) {
375  u8 save = spi->mode;
376 
377  if (tmp & ~SPI_MODE_MASK) {
378  retval = -EINVAL;
379  break;
380  }
381 
382  tmp |= spi->mode & ~SPI_MODE_MASK;
383  spi->mode = (u8)tmp;
384  retval = spi_setup(spi);
385  if (retval < 0)
386  spi->mode = save;
387  else
388  dev_dbg(&spi->dev, "spi mode %02x\n", tmp);
389  }
390  break;
392  retval = __get_user(tmp, (__u8 __user *)arg);
393  if (retval == 0) {
394  u8 save = spi->mode;
395 
396  if (tmp)
397  spi->mode |= SPI_LSB_FIRST;
398  else
399  spi->mode &= ~SPI_LSB_FIRST;
400  retval = spi_setup(spi);
401  if (retval < 0)
402  spi->mode = save;
403  else
404  dev_dbg(&spi->dev, "%csb first\n",
405  tmp ? 'l' : 'm');
406  }
407  break;
409  retval = __get_user(tmp, (__u8 __user *)arg);
410  if (retval == 0) {
411  u8 save = spi->bits_per_word;
412 
413  spi->bits_per_word = tmp;
414  retval = spi_setup(spi);
415  if (retval < 0)
416  spi->bits_per_word = save;
417  else
418  dev_dbg(&spi->dev, "%d bits per word\n", tmp);
419  }
420  break;
422  retval = __get_user(tmp, (__u32 __user *)arg);
423  if (retval == 0) {
424  u32 save = spi->max_speed_hz;
425 
426  spi->max_speed_hz = tmp;
427  retval = spi_setup(spi);
428  if (retval < 0)
429  spi->max_speed_hz = save;
430  else
431  dev_dbg(&spi->dev, "%d Hz (max)\n", tmp);
432  }
433  break;
434 
435  default:
436  /* segmented and/or full-duplex I/O request */
437  if (_IOC_NR(cmd) != _IOC_NR(SPI_IOC_MESSAGE(0))
438  || _IOC_DIR(cmd) != _IOC_WRITE) {
439  retval = -ENOTTY;
440  break;
441  }
442 
443  tmp = _IOC_SIZE(cmd);
444  if ((tmp % sizeof(struct spi_ioc_transfer)) != 0) {
445  retval = -EINVAL;
446  break;
447  }
448  n_ioc = tmp / sizeof(struct spi_ioc_transfer);
449  if (n_ioc == 0)
450  break;
451 
452  /* copy into scratch area */
453  ioc = kmalloc(tmp, GFP_KERNEL);
454  if (!ioc) {
455  retval = -ENOMEM;
456  break;
457  }
458  if (__copy_from_user(ioc, (void __user *)arg, tmp)) {
459  kfree(ioc);
460  retval = -EFAULT;
461  break;
462  }
463 
464  /* translate to spi_message, execute */
465  retval = spidev_message(spidev, ioc, n_ioc);
466  kfree(ioc);
467  break;
468  }
469 
470  mutex_unlock(&spidev->buf_lock);
471  spi_dev_put(spi);
472  return retval;
473 }
474 
475 #ifdef CONFIG_COMPAT
476 static long
477 spidev_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
478 {
479  return spidev_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
480 }
481 #else
482 #define spidev_compat_ioctl NULL
483 #endif /* CONFIG_COMPAT */
484 
485 static int spidev_open(struct inode *inode, struct file *filp)
486 {
487  struct spidev_data *spidev;
488  int status = -ENXIO;
489 
490  mutex_lock(&device_list_lock);
491 
493  if (spidev->devt == inode->i_rdev) {
494  status = 0;
495  break;
496  }
497  }
498  if (status == 0) {
499  if (!spidev->buffer) {
500  spidev->buffer = kmalloc(bufsiz, GFP_KERNEL);
501  if (!spidev->buffer) {
502  dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
503  status = -ENOMEM;
504  }
505  }
506  if (status == 0) {
507  spidev->users++;
508  filp->private_data = spidev;
509  nonseekable_open(inode, filp);
510  }
511  } else
512  pr_debug("spidev: nothing for minor %d\n", iminor(inode));
513 
514  mutex_unlock(&device_list_lock);
515  return status;
516 }
517 
518 static int spidev_release(struct inode *inode, struct file *filp)
519 {
520  struct spidev_data *spidev;
521  int status = 0;
522 
523  mutex_lock(&device_list_lock);
524  spidev = filp->private_data;
525  filp->private_data = NULL;
526 
527  /* last close? */
528  spidev->users--;
529  if (!spidev->users) {
530  int dofree;
531 
532  kfree(spidev->buffer);
533  spidev->buffer = NULL;
534 
535  /* ... after we unbound from the underlying device? */
536  spin_lock_irq(&spidev->spi_lock);
537  dofree = (spidev->spi == NULL);
538  spin_unlock_irq(&spidev->spi_lock);
539 
540  if (dofree)
541  kfree(spidev);
542  }
543  mutex_unlock(&device_list_lock);
544 
545  return status;
546 }
547 
548 static const struct file_operations spidev_fops = {
549  .owner = THIS_MODULE,
550  /* REVISIT switch to aio primitives, so that userspace
551  * gets more complete API coverage. It'll simplify things
552  * too, except for the locking.
553  */
554  .write = spidev_write,
555  .read = spidev_read,
556  .unlocked_ioctl = spidev_ioctl,
557  .compat_ioctl = spidev_compat_ioctl,
558  .open = spidev_open,
559  .release = spidev_release,
560  .llseek = no_llseek,
561 };
562 
563 /*-------------------------------------------------------------------------*/
564 
565 /* The main reason to have this class is to make mdev/udev create the
566  * /dev/spidevB.C character device nodes exposing our userspace API.
567  * It also simplifies memory management.
568  */
569 
570 static struct class *spidev_class;
571 
572 /*-------------------------------------------------------------------------*/
573 
574 static int __devinit spidev_probe(struct spi_device *spi)
575 {
576  struct spidev_data *spidev;
577  int status;
578  unsigned long minor;
579 
580  /* Allocate driver data */
581  spidev = kzalloc(sizeof(*spidev), GFP_KERNEL);
582  if (!spidev)
583  return -ENOMEM;
584 
585  /* Initialize the driver data */
586  spidev->spi = spi;
587  spin_lock_init(&spidev->spi_lock);
588  mutex_init(&spidev->buf_lock);
589 
590  INIT_LIST_HEAD(&spidev->device_entry);
591 
592  /* If we can allocate a minor number, hook up this device.
593  * Reusing minors is fine so long as udev or mdev is working.
594  */
595  mutex_lock(&device_list_lock);
596  minor = find_first_zero_bit(minors, N_SPI_MINORS);
597  if (minor < N_SPI_MINORS) {
598  struct device *dev;
599 
600  spidev->devt = MKDEV(SPIDEV_MAJOR, minor);
601  dev = device_create(spidev_class, &spi->dev, spidev->devt,
602  spidev, "spidev%d.%d",
603  spi->master->bus_num, spi->chip_select);
604  status = IS_ERR(dev) ? PTR_ERR(dev) : 0;
605  } else {
606  dev_dbg(&spi->dev, "no minor number available!\n");
607  status = -ENODEV;
608  }
609  if (status == 0) {
610  set_bit(minor, minors);
611  list_add(&spidev->device_entry, &device_list);
612  }
613  mutex_unlock(&device_list_lock);
614 
615  if (status == 0)
616  spi_set_drvdata(spi, spidev);
617  else
618  kfree(spidev);
619 
620  return status;
621 }
622 
623 static int __devexit spidev_remove(struct spi_device *spi)
624 {
625  struct spidev_data *spidev = spi_get_drvdata(spi);
626 
627  /* make sure ops on existing fds can abort cleanly */
628  spin_lock_irq(&spidev->spi_lock);
629  spidev->spi = NULL;
630  spi_set_drvdata(spi, NULL);
631  spin_unlock_irq(&spidev->spi_lock);
632 
633  /* prevent new opens */
634  mutex_lock(&device_list_lock);
635  list_del(&spidev->device_entry);
636  device_destroy(spidev_class, spidev->devt);
637  clear_bit(MINOR(spidev->devt), minors);
638  if (spidev->users == 0)
639  kfree(spidev);
640  mutex_unlock(&device_list_lock);
641 
642  return 0;
643 }
644 
645 static struct spi_driver spidev_spi_driver = {
646  .driver = {
647  .name = "spidev",
648  .owner = THIS_MODULE,
649  },
650  .probe = spidev_probe,
651  .remove = __devexit_p(spidev_remove),
652 
653  /* NOTE: suspend/resume methods are not necessary here.
654  * We don't do anything except pass the requests to/from
655  * the underlying controller. The refrigerator handles
656  * most issues; the controller driver handles the rest.
657  */
658 };
659 
660 /*-------------------------------------------------------------------------*/
661 
662 static int __init spidev_init(void)
663 {
664  int status;
665 
666  /* Claim our 256 reserved device numbers. Then register a class
667  * that will key udev/mdev to add/remove /dev nodes. Last, register
668  * the driver which manages those device numbers.
669  */
670  BUILD_BUG_ON(N_SPI_MINORS > 256);
671  status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);
672  if (status < 0)
673  return status;
674 
675  spidev_class = class_create(THIS_MODULE, "spidev");
676  if (IS_ERR(spidev_class)) {
677  unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
678  return PTR_ERR(spidev_class);
679  }
680 
681  status = spi_register_driver(&spidev_spi_driver);
682  if (status < 0) {
683  class_destroy(spidev_class);
684  unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
685  }
686  return status;
687 }
688 module_init(spidev_init);
689 
690 static void __exit spidev_exit(void)
691 {
692  spi_unregister_driver(&spidev_spi_driver);
693  class_destroy(spidev_class);
694  unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
695 }
696 module_exit(spidev_exit);
697 
698 MODULE_AUTHOR("Andrea Paterniani, <[email protected]>");
699 MODULE_DESCRIPTION("User mode SPI device interface");
700 MODULE_LICENSE("GPL");
701 MODULE_ALIAS("spi:spidev");