Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
tcp_vegas.c
Go to the documentation of this file.
1 /*
2  * TCP Vegas congestion control
3  *
4  * This is based on the congestion detection/avoidance scheme described in
5  * Lawrence S. Brakmo and Larry L. Peterson.
6  * "TCP Vegas: End to end congestion avoidance on a global internet."
7  * IEEE Journal on Selected Areas in Communication, 13(8):1465--1480,
8  * October 1995. Available from:
9  * ftp://ftp.cs.arizona.edu/xkernel/Papers/jsac.ps
10  *
11  * See http://www.cs.arizona.edu/xkernel/ for their implementation.
12  * The main aspects that distinguish this implementation from the
13  * Arizona Vegas implementation are:
14  * o We do not change the loss detection or recovery mechanisms of
15  * Linux in any way. Linux already recovers from losses quite well,
16  * using fine-grained timers, NewReno, and FACK.
17  * o To avoid the performance penalty imposed by increasing cwnd
18  * only every-other RTT during slow start, we increase during
19  * every RTT during slow start, just like Reno.
20  * o Largely to allow continuous cwnd growth during slow start,
21  * we use the rate at which ACKs come back as the "actual"
22  * rate, rather than the rate at which data is sent.
23  * o To speed convergence to the right rate, we set the cwnd
24  * to achieve the right ("actual") rate when we exit slow start.
25  * o To filter out the noise caused by delayed ACKs, we use the
26  * minimum RTT sample observed during the last RTT to calculate
27  * the actual rate.
28  * o When the sender re-starts from idle, it waits until it has
29  * received ACKs for an entire flight of new data before making
30  * a cwnd adjustment decision. The original Vegas implementation
31  * assumed senders never went idle.
32  */
33 
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/skbuff.h>
37 #include <linux/inet_diag.h>
38 
39 #include <net/tcp.h>
40 
41 #include "tcp_vegas.h"
42 
43 static int alpha = 2;
44 static int beta = 4;
45 static int gamma = 1;
46 
47 module_param(alpha, int, 0644);
48 MODULE_PARM_DESC(alpha, "lower bound of packets in network");
49 module_param(beta, int, 0644);
50 MODULE_PARM_DESC(beta, "upper bound of packets in network");
51 module_param(gamma, int, 0644);
52 MODULE_PARM_DESC(gamma, "limit on increase (scale by 2)");
53 
54 
55 /* There are several situations when we must "re-start" Vegas:
56  *
57  * o when a connection is established
58  * o after an RTO
59  * o after fast recovery
60  * o when we send a packet and there is no outstanding
61  * unacknowledged data (restarting an idle connection)
62  *
63  * In these circumstances we cannot do a Vegas calculation at the
64  * end of the first RTT, because any calculation we do is using
65  * stale info -- both the saved cwnd and congestion feedback are
66  * stale.
67  *
68  * Instead we must wait until the completion of an RTT during
69  * which we actually receive ACKs.
70  */
71 static void vegas_enable(struct sock *sk)
72 {
73  const struct tcp_sock *tp = tcp_sk(sk);
74  struct vegas *vegas = inet_csk_ca(sk);
75 
76  /* Begin taking Vegas samples next time we send something. */
77  vegas->doing_vegas_now = 1;
78 
79  /* Set the beginning of the next send window. */
80  vegas->beg_snd_nxt = tp->snd_nxt;
81 
82  vegas->cntRTT = 0;
83  vegas->minRTT = 0x7fffffff;
84 }
85 
86 /* Stop taking Vegas samples for now. */
87 static inline void vegas_disable(struct sock *sk)
88 {
89  struct vegas *vegas = inet_csk_ca(sk);
90 
91  vegas->doing_vegas_now = 0;
92 }
93 
94 void tcp_vegas_init(struct sock *sk)
95 {
96  struct vegas *vegas = inet_csk_ca(sk);
97 
98  vegas->baseRTT = 0x7fffffff;
99  vegas_enable(sk);
100 }
102 
103 /* Do RTT sampling needed for Vegas.
104  * Basically we:
105  * o min-filter RTT samples from within an RTT to get the current
106  * propagation delay + queuing delay (we are min-filtering to try to
107  * avoid the effects of delayed ACKs)
108  * o min-filter RTT samples from a much longer window (forever for now)
109  * to find the propagation delay (baseRTT)
110  */
111 void tcp_vegas_pkts_acked(struct sock *sk, u32 cnt, s32 rtt_us)
112 {
113  struct vegas *vegas = inet_csk_ca(sk);
114  u32 vrtt;
115 
116  if (rtt_us < 0)
117  return;
118 
119  /* Never allow zero rtt or baseRTT */
120  vrtt = rtt_us + 1;
121 
122  /* Filter to find propagation delay: */
123  if (vrtt < vegas->baseRTT)
124  vegas->baseRTT = vrtt;
125 
126  /* Find the min RTT during the last RTT to find
127  * the current prop. delay + queuing delay:
128  */
129  vegas->minRTT = min(vegas->minRTT, vrtt);
130  vegas->cntRTT++;
131 }
133 
134 void tcp_vegas_state(struct sock *sk, u8 ca_state)
135 {
136 
137  if (ca_state == TCP_CA_Open)
138  vegas_enable(sk);
139  else
140  vegas_disable(sk);
141 }
143 
144 /*
145  * If the connection is idle and we are restarting,
146  * then we don't want to do any Vegas calculations
147  * until we get fresh RTT samples. So when we
148  * restart, we reset our Vegas state to a clean
149  * slate. After we get acks for this flight of
150  * packets, _then_ we can make Vegas calculations
151  * again.
152  */
154 {
155  if (event == CA_EVENT_CWND_RESTART ||
156  event == CA_EVENT_TX_START)
157  tcp_vegas_init(sk);
158 }
160 
161 static inline u32 tcp_vegas_ssthresh(struct tcp_sock *tp)
162 {
163  return min(tp->snd_ssthresh, tp->snd_cwnd-1);
164 }
165 
166 static void tcp_vegas_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
167 {
168  struct tcp_sock *tp = tcp_sk(sk);
169  struct vegas *vegas = inet_csk_ca(sk);
170 
171  if (!vegas->doing_vegas_now) {
172  tcp_reno_cong_avoid(sk, ack, in_flight);
173  return;
174  }
175 
176  if (after(ack, vegas->beg_snd_nxt)) {
177  /* Do the Vegas once-per-RTT cwnd adjustment. */
178 
179  /* Save the extent of the current window so we can use this
180  * at the end of the next RTT.
181  */
182  vegas->beg_snd_nxt = tp->snd_nxt;
183 
184  /* We do the Vegas calculations only if we got enough RTT
185  * samples that we can be reasonably sure that we got
186  * at least one RTT sample that wasn't from a delayed ACK.
187  * If we only had 2 samples total,
188  * then that means we're getting only 1 ACK per RTT, which
189  * means they're almost certainly delayed ACKs.
190  * If we have 3 samples, we should be OK.
191  */
192 
193  if (vegas->cntRTT <= 2) {
194  /* We don't have enough RTT samples to do the Vegas
195  * calculation, so we'll behave like Reno.
196  */
197  tcp_reno_cong_avoid(sk, ack, in_flight);
198  } else {
199  u32 rtt, diff;
200  u64 target_cwnd;
201 
202  /* We have enough RTT samples, so, using the Vegas
203  * algorithm, we determine if we should increase or
204  * decrease cwnd, and by how much.
205  */
206 
207  /* Pluck out the RTT we are using for the Vegas
208  * calculations. This is the min RTT seen during the
209  * last RTT. Taking the min filters out the effects
210  * of delayed ACKs, at the cost of noticing congestion
211  * a bit later.
212  */
213  rtt = vegas->minRTT;
214 
215  /* Calculate the cwnd we should have, if we weren't
216  * going too fast.
217  *
218  * This is:
219  * (actual rate in segments) * baseRTT
220  */
221  target_cwnd = tp->snd_cwnd * vegas->baseRTT / rtt;
222 
223  /* Calculate the difference between the window we had,
224  * and the window we would like to have. This quantity
225  * is the "Diff" from the Arizona Vegas papers.
226  */
227  diff = tp->snd_cwnd * (rtt-vegas->baseRTT) / vegas->baseRTT;
228 
229  if (diff > gamma && tp->snd_cwnd <= tp->snd_ssthresh) {
230  /* Going too fast. Time to slow down
231  * and switch to congestion avoidance.
232  */
233 
234  /* Set cwnd to match the actual rate
235  * exactly:
236  * cwnd = (actual rate) * baseRTT
237  * Then we add 1 because the integer
238  * truncation robs us of full link
239  * utilization.
240  */
241  tp->snd_cwnd = min(tp->snd_cwnd, (u32)target_cwnd+1);
242  tp->snd_ssthresh = tcp_vegas_ssthresh(tp);
243 
244  } else if (tp->snd_cwnd <= tp->snd_ssthresh) {
245  /* Slow start. */
246  tcp_slow_start(tp);
247  } else {
248  /* Congestion avoidance. */
249 
250  /* Figure out where we would like cwnd
251  * to be.
252  */
253  if (diff > beta) {
254  /* The old window was too fast, so
255  * we slow down.
256  */
257  tp->snd_cwnd--;
258  tp->snd_ssthresh
259  = tcp_vegas_ssthresh(tp);
260  } else if (diff < alpha) {
261  /* We don't have enough extra packets
262  * in the network, so speed up.
263  */
264  tp->snd_cwnd++;
265  } else {
266  /* Sending just as fast as we
267  * should be.
268  */
269  }
270  }
271 
272  if (tp->snd_cwnd < 2)
273  tp->snd_cwnd = 2;
274  else if (tp->snd_cwnd > tp->snd_cwnd_clamp)
275  tp->snd_cwnd = tp->snd_cwnd_clamp;
276 
277  tp->snd_ssthresh = tcp_current_ssthresh(sk);
278  }
279 
280  /* Wipe the slate clean for the next RTT. */
281  vegas->cntRTT = 0;
282  vegas->minRTT = 0x7fffffff;
283  }
284  /* Use normal slow start */
285  else if (tp->snd_cwnd <= tp->snd_ssthresh)
286  tcp_slow_start(tp);
287 
288 }
289 
290 /* Extract info for Tcp socket info provided via netlink. */
291 void tcp_vegas_get_info(struct sock *sk, u32 ext, struct sk_buff *skb)
292 {
293  const struct vegas *ca = inet_csk_ca(sk);
294  if (ext & (1 << (INET_DIAG_VEGASINFO - 1))) {
295  struct tcpvegas_info info = {
297  .tcpv_rttcnt = ca->cntRTT,
298  .tcpv_rtt = ca->baseRTT,
299  .tcpv_minrtt = ca->minRTT,
300  };
301 
302  nla_put(skb, INET_DIAG_VEGASINFO, sizeof(info), &info);
303  }
304 }
306 
307 static struct tcp_congestion_ops tcp_vegas __read_mostly = {
308  .flags = TCP_CONG_RTT_STAMP,
309  .init = tcp_vegas_init,
310  .ssthresh = tcp_reno_ssthresh,
311  .cong_avoid = tcp_vegas_cong_avoid,
312  .min_cwnd = tcp_reno_min_cwnd,
313  .pkts_acked = tcp_vegas_pkts_acked,
314  .set_state = tcp_vegas_state,
315  .cwnd_event = tcp_vegas_cwnd_event,
316  .get_info = tcp_vegas_get_info,
317 
318  .owner = THIS_MODULE,
319  .name = "vegas",
320 };
321 
322 static int __init tcp_vegas_register(void)
323 {
324  BUILD_BUG_ON(sizeof(struct vegas) > ICSK_CA_PRIV_SIZE);
326  return 0;
327 }
328 
329 static void __exit tcp_vegas_unregister(void)
330 {
332 }
333 
334 module_init(tcp_vegas_register);
335 module_exit(tcp_vegas_unregister);
336 
337 MODULE_AUTHOR("Stephen Hemminger");
338 MODULE_LICENSE("GPL");
339 MODULE_DESCRIPTION("TCP Vegas");