Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
tea.c
Go to the documentation of this file.
1 /*
2  * Cryptographic API.
3  *
4  * TEA, XTEA, and XETA crypto alogrithms
5  *
6  * The TEA and Xtended TEA algorithms were developed by David Wheeler
7  * and Roger Needham at the Computer Laboratory of Cambridge University.
8  *
9  * Due to the order of evaluation in XTEA many people have incorrectly
10  * implemented it. XETA (XTEA in the wrong order), exists for
11  * compatibility with these implementations.
12  *
13  * Copyright (c) 2004 Aaron Grothe [email protected]
14  *
15  * This program is free software; you can redistribute it and/or modify
16  * it under the terms of the GNU General Public License as published by
17  * the Free Software Foundation; either version 2 of the License, or
18  * (at your option) any later version.
19  *
20  */
21 
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/mm.h>
25 #include <asm/byteorder.h>
26 #include <linux/crypto.h>
27 #include <linux/types.h>
28 
29 #define TEA_KEY_SIZE 16
30 #define TEA_BLOCK_SIZE 8
31 #define TEA_ROUNDS 32
32 #define TEA_DELTA 0x9e3779b9
33 
34 #define XTEA_KEY_SIZE 16
35 #define XTEA_BLOCK_SIZE 8
36 #define XTEA_ROUNDS 32
37 #define XTEA_DELTA 0x9e3779b9
38 
39 struct tea_ctx {
40  u32 KEY[4];
41 };
42 
43 struct xtea_ctx {
44  u32 KEY[4];
45 };
46 
47 static int tea_setkey(struct crypto_tfm *tfm, const u8 *in_key,
48  unsigned int key_len)
49 {
50  struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
51  const __le32 *key = (const __le32 *)in_key;
52 
53  ctx->KEY[0] = le32_to_cpu(key[0]);
54  ctx->KEY[1] = le32_to_cpu(key[1]);
55  ctx->KEY[2] = le32_to_cpu(key[2]);
56  ctx->KEY[3] = le32_to_cpu(key[3]);
57 
58  return 0;
59 
60 }
61 
62 static void tea_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
63 {
64  u32 y, z, n, sum = 0;
65  u32 k0, k1, k2, k3;
66  struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
67  const __le32 *in = (const __le32 *)src;
68  __le32 *out = (__le32 *)dst;
69 
70  y = le32_to_cpu(in[0]);
71  z = le32_to_cpu(in[1]);
72 
73  k0 = ctx->KEY[0];
74  k1 = ctx->KEY[1];
75  k2 = ctx->KEY[2];
76  k3 = ctx->KEY[3];
77 
78  n = TEA_ROUNDS;
79 
80  while (n-- > 0) {
81  sum += TEA_DELTA;
82  y += ((z << 4) + k0) ^ (z + sum) ^ ((z >> 5) + k1);
83  z += ((y << 4) + k2) ^ (y + sum) ^ ((y >> 5) + k3);
84  }
85 
86  out[0] = cpu_to_le32(y);
87  out[1] = cpu_to_le32(z);
88 }
89 
90 static void tea_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
91 {
92  u32 y, z, n, sum;
93  u32 k0, k1, k2, k3;
94  struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
95  const __le32 *in = (const __le32 *)src;
96  __le32 *out = (__le32 *)dst;
97 
98  y = le32_to_cpu(in[0]);
99  z = le32_to_cpu(in[1]);
100 
101  k0 = ctx->KEY[0];
102  k1 = ctx->KEY[1];
103  k2 = ctx->KEY[2];
104  k3 = ctx->KEY[3];
105 
106  sum = TEA_DELTA << 5;
107 
108  n = TEA_ROUNDS;
109 
110  while (n-- > 0) {
111  z -= ((y << 4) + k2) ^ (y + sum) ^ ((y >> 5) + k3);
112  y -= ((z << 4) + k0) ^ (z + sum) ^ ((z >> 5) + k1);
113  sum -= TEA_DELTA;
114  }
115 
116  out[0] = cpu_to_le32(y);
117  out[1] = cpu_to_le32(z);
118 }
119 
120 static int xtea_setkey(struct crypto_tfm *tfm, const u8 *in_key,
121  unsigned int key_len)
122 {
123  struct xtea_ctx *ctx = crypto_tfm_ctx(tfm);
124  const __le32 *key = (const __le32 *)in_key;
125 
126  ctx->KEY[0] = le32_to_cpu(key[0]);
127  ctx->KEY[1] = le32_to_cpu(key[1]);
128  ctx->KEY[2] = le32_to_cpu(key[2]);
129  ctx->KEY[3] = le32_to_cpu(key[3]);
130 
131  return 0;
132 
133 }
134 
135 static void xtea_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
136 {
137  u32 y, z, sum = 0;
139  struct xtea_ctx *ctx = crypto_tfm_ctx(tfm);
140  const __le32 *in = (const __le32 *)src;
141  __le32 *out = (__le32 *)dst;
142 
143  y = le32_to_cpu(in[0]);
144  z = le32_to_cpu(in[1]);
145 
146  while (sum != limit) {
147  y += ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum&3]);
148  sum += XTEA_DELTA;
149  z += ((y << 4 ^ y >> 5) + y) ^ (sum + ctx->KEY[sum>>11 &3]);
150  }
151 
152  out[0] = cpu_to_le32(y);
153  out[1] = cpu_to_le32(z);
154 }
155 
156 static void xtea_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
157 {
158  u32 y, z, sum;
159  struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
160  const __le32 *in = (const __le32 *)src;
161  __le32 *out = (__le32 *)dst;
162 
163  y = le32_to_cpu(in[0]);
164  z = le32_to_cpu(in[1]);
165 
166  sum = XTEA_DELTA * XTEA_ROUNDS;
167 
168  while (sum) {
169  z -= ((y << 4 ^ y >> 5) + y) ^ (sum + ctx->KEY[sum>>11 & 3]);
170  sum -= XTEA_DELTA;
171  y -= ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum & 3]);
172  }
173 
174  out[0] = cpu_to_le32(y);
175  out[1] = cpu_to_le32(z);
176 }
177 
178 
179 static void xeta_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
180 {
181  u32 y, z, sum = 0;
182  u32 limit = XTEA_DELTA * XTEA_ROUNDS;
183  struct xtea_ctx *ctx = crypto_tfm_ctx(tfm);
184  const __le32 *in = (const __le32 *)src;
185  __le32 *out = (__le32 *)dst;
186 
187  y = le32_to_cpu(in[0]);
188  z = le32_to_cpu(in[1]);
189 
190  while (sum != limit) {
191  y += (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum&3];
192  sum += XTEA_DELTA;
193  z += (y << 4 ^ y >> 5) + (y ^ sum) + ctx->KEY[sum>>11 &3];
194  }
195 
196  out[0] = cpu_to_le32(y);
197  out[1] = cpu_to_le32(z);
198 }
199 
200 static void xeta_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
201 {
202  u32 y, z, sum;
203  struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
204  const __le32 *in = (const __le32 *)src;
205  __le32 *out = (__le32 *)dst;
206 
207  y = le32_to_cpu(in[0]);
208  z = le32_to_cpu(in[1]);
209 
210  sum = XTEA_DELTA * XTEA_ROUNDS;
211 
212  while (sum) {
213  z -= (y << 4 ^ y >> 5) + (y ^ sum) + ctx->KEY[sum>>11 & 3];
214  sum -= XTEA_DELTA;
215  y -= (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum & 3];
216  }
217 
218  out[0] = cpu_to_le32(y);
219  out[1] = cpu_to_le32(z);
220 }
221 
222 static struct crypto_alg tea_algs[3] = { {
223  .cra_name = "tea",
224  .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
225  .cra_blocksize = TEA_BLOCK_SIZE,
226  .cra_ctxsize = sizeof (struct tea_ctx),
227  .cra_alignmask = 3,
228  .cra_module = THIS_MODULE,
229  .cra_u = { .cipher = {
230  .cia_min_keysize = TEA_KEY_SIZE,
231  .cia_max_keysize = TEA_KEY_SIZE,
232  .cia_setkey = tea_setkey,
233  .cia_encrypt = tea_encrypt,
234  .cia_decrypt = tea_decrypt } }
235 }, {
236  .cra_name = "xtea",
237  .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
238  .cra_blocksize = XTEA_BLOCK_SIZE,
239  .cra_ctxsize = sizeof (struct xtea_ctx),
240  .cra_alignmask = 3,
241  .cra_module = THIS_MODULE,
242  .cra_u = { .cipher = {
243  .cia_min_keysize = XTEA_KEY_SIZE,
244  .cia_max_keysize = XTEA_KEY_SIZE,
245  .cia_setkey = xtea_setkey,
246  .cia_encrypt = xtea_encrypt,
247  .cia_decrypt = xtea_decrypt } }
248 }, {
249  .cra_name = "xeta",
250  .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
251  .cra_blocksize = XTEA_BLOCK_SIZE,
252  .cra_ctxsize = sizeof (struct xtea_ctx),
253  .cra_alignmask = 3,
254  .cra_module = THIS_MODULE,
255  .cra_u = { .cipher = {
256  .cia_min_keysize = XTEA_KEY_SIZE,
257  .cia_max_keysize = XTEA_KEY_SIZE,
258  .cia_setkey = xtea_setkey,
259  .cia_encrypt = xeta_encrypt,
260  .cia_decrypt = xeta_decrypt } }
261 } };
262 
263 static int __init tea_mod_init(void)
264 {
265  return crypto_register_algs(tea_algs, ARRAY_SIZE(tea_algs));
266 }
267 
268 static void __exit tea_mod_fini(void)
269 {
270  crypto_unregister_algs(tea_algs, ARRAY_SIZE(tea_algs));
271 }
272 
273 MODULE_ALIAS("xtea");
274 MODULE_ALIAS("xeta");
275 
276 module_init(tea_mod_init);
277 module_exit(tea_mod_fini);
278 
279 MODULE_LICENSE("GPL");
280 MODULE_DESCRIPTION("TEA, XTEA & XETA Cryptographic Algorithms");