Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
threads.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2006 Oracle. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses. You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  * Redistribution and use in source and binary forms, with or
11  * without modification, are permitted provided that the following
12  * conditions are met:
13  *
14  * - Redistributions of source code must retain the above
15  * copyright notice, this list of conditions and the following
16  * disclaimer.
17  *
18  * - Redistributions in binary form must reproduce the above
19  * copyright notice, this list of conditions and the following
20  * disclaimer in the documentation and/or other materials
21  * provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/random.h>
35 #include <linux/export.h>
36 
37 #include "rds.h"
38 
39 /*
40  * All of connection management is simplified by serializing it through
41  * work queues that execute in a connection managing thread.
42  *
43  * TCP wants to send acks through sendpage() in response to data_ready(),
44  * but it needs a process context to do so.
45  *
46  * The receive paths need to allocate but can't drop packets (!) so we have
47  * a thread around to block allocating if the receive fast path sees an
48  * allocation failure.
49  */
50 
51 /* Grand Unified Theory of connection life cycle:
52  * At any point in time, the connection can be in one of these states:
53  * DOWN, CONNECTING, UP, DISCONNECTING, ERROR
54  *
55  * The following transitions are possible:
56  * ANY -> ERROR
57  * UP -> DISCONNECTING
58  * ERROR -> DISCONNECTING
59  * DISCONNECTING -> DOWN
60  * DOWN -> CONNECTING
61  * CONNECTING -> UP
62  *
63  * Transition to state DISCONNECTING/DOWN:
64  * - Inside the shutdown worker; synchronizes with xmit path
65  * through RDS_IN_XMIT, and with connection management callbacks
66  * via c_cm_lock.
67  *
68  * For receive callbacks, we rely on the underlying transport
69  * (TCP, IB/RDMA) to provide the necessary synchronisation.
70  */
72 EXPORT_SYMBOL_GPL(rds_wq);
73 
75 {
76  if (!rds_conn_transition(conn, RDS_CONN_CONNECTING, RDS_CONN_UP)) {
77  printk(KERN_WARNING "%s: Cannot transition to state UP, "
78  "current state is %d\n",
79  __func__,
80  atomic_read(&conn->c_state));
82  queue_work(rds_wq, &conn->c_down_w);
83  return;
84  }
85 
86  rdsdebug("conn %p for %pI4 to %pI4 complete\n",
87  conn, &conn->c_laddr, &conn->c_faddr);
88 
89  conn->c_reconnect_jiffies = 0;
90  set_bit(0, &conn->c_map_queued);
91  queue_delayed_work(rds_wq, &conn->c_send_w, 0);
92  queue_delayed_work(rds_wq, &conn->c_recv_w, 0);
93 }
95 
96 /*
97  * This random exponential backoff is relied on to eventually resolve racing
98  * connects.
99  *
100  * If connect attempts race then both parties drop both connections and come
101  * here to wait for a random amount of time before trying again. Eventually
102  * the backoff range will be so much greater than the time it takes to
103  * establish a connection that one of the pair will establish the connection
104  * before the other's random delay fires.
105  *
106  * Connection attempts that arrive while a connection is already established
107  * are also considered to be racing connects. This lets a connection from
108  * a rebooted machine replace an existing stale connection before the transport
109  * notices that the connection has failed.
110  *
111  * We should *always* start with a random backoff; otherwise a broken connection
112  * will always take several iterations to be re-established.
113  */
115 {
116  unsigned long rand;
117 
118  rdsdebug("conn %p for %pI4 to %pI4 reconnect jiffies %lu\n",
119  conn, &conn->c_laddr, &conn->c_faddr,
120  conn->c_reconnect_jiffies);
121 
123  if (conn->c_reconnect_jiffies == 0) {
125  queue_delayed_work(rds_wq, &conn->c_conn_w, 0);
126  return;
127  }
128 
129  get_random_bytes(&rand, sizeof(rand));
130  rdsdebug("%lu delay %lu ceil conn %p for %pI4 -> %pI4\n",
131  rand % conn->c_reconnect_jiffies, conn->c_reconnect_jiffies,
132  conn, &conn->c_laddr, &conn->c_faddr);
133  queue_delayed_work(rds_wq, &conn->c_conn_w,
134  rand % conn->c_reconnect_jiffies);
135 
136  conn->c_reconnect_jiffies = min(conn->c_reconnect_jiffies * 2,
138 }
139 
141 {
142  struct rds_connection *conn = container_of(work, struct rds_connection, c_conn_w.work);
143  int ret;
144 
146  if (rds_conn_transition(conn, RDS_CONN_DOWN, RDS_CONN_CONNECTING)) {
147  ret = conn->c_trans->conn_connect(conn);
148  rdsdebug("conn %p for %pI4 to %pI4 dispatched, ret %d\n",
149  conn, &conn->c_laddr, &conn->c_faddr, ret);
150 
151  if (ret) {
152  if (rds_conn_transition(conn, RDS_CONN_CONNECTING, RDS_CONN_DOWN))
153  rds_queue_reconnect(conn);
154  else
155  rds_conn_error(conn, "RDS: connect failed\n");
156  }
157  }
158 }
159 
161 {
162  struct rds_connection *conn = container_of(work, struct rds_connection, c_send_w.work);
163  int ret;
164 
165  if (rds_conn_state(conn) == RDS_CONN_UP) {
166  ret = rds_send_xmit(conn);
167  rdsdebug("conn %p ret %d\n", conn, ret);
168  switch (ret) {
169  case -EAGAIN:
170  rds_stats_inc(s_send_immediate_retry);
171  queue_delayed_work(rds_wq, &conn->c_send_w, 0);
172  break;
173  case -ENOMEM:
174  rds_stats_inc(s_send_delayed_retry);
175  queue_delayed_work(rds_wq, &conn->c_send_w, 2);
176  default:
177  break;
178  }
179  }
180 }
181 
183 {
184  struct rds_connection *conn = container_of(work, struct rds_connection, c_recv_w.work);
185  int ret;
186 
187  if (rds_conn_state(conn) == RDS_CONN_UP) {
188  ret = conn->c_trans->recv(conn);
189  rdsdebug("conn %p ret %d\n", conn, ret);
190  switch (ret) {
191  case -EAGAIN:
192  rds_stats_inc(s_recv_immediate_retry);
193  queue_delayed_work(rds_wq, &conn->c_recv_w, 0);
194  break;
195  case -ENOMEM:
196  rds_stats_inc(s_recv_delayed_retry);
197  queue_delayed_work(rds_wq, &conn->c_recv_w, 2);
198  default:
199  break;
200  }
201  }
202 }
203 
205 {
206  struct rds_connection *conn = container_of(work, struct rds_connection, c_down_w);
207 
208  rds_conn_shutdown(conn);
209 }
210 
212 {
213  destroy_workqueue(rds_wq);
214 }
215 
217 {
218  rds_wq = create_singlethread_workqueue("krdsd");
219  if (!rds_wq)
220  return -ENOMEM;
221 
222  return 0;
223 }