Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
orphan.c
Go to the documentation of this file.
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Author: Adrian Hunter
20  */
21 
22 #include "ubifs.h"
23 
24 /*
25  * An orphan is an inode number whose inode node has been committed to the index
26  * with a link count of zero. That happens when an open file is deleted
27  * (unlinked) and then a commit is run. In the normal course of events the inode
28  * would be deleted when the file is closed. However in the case of an unclean
29  * unmount, orphans need to be accounted for. After an unclean unmount, the
30  * orphans' inodes must be deleted which means either scanning the entire index
31  * looking for them, or keeping a list on flash somewhere. This unit implements
32  * the latter approach.
33  *
34  * The orphan area is a fixed number of LEBs situated between the LPT area and
35  * the main area. The number of orphan area LEBs is specified when the file
36  * system is created. The minimum number is 1. The size of the orphan area
37  * should be so that it can hold the maximum number of orphans that are expected
38  * to ever exist at one time.
39  *
40  * The number of orphans that can fit in a LEB is:
41  *
42  * (c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)
43  *
44  * For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough.
45  *
46  * Orphans are accumulated in a rb-tree. When an inode's link count drops to
47  * zero, the inode number is added to the rb-tree. It is removed from the tree
48  * when the inode is deleted. Any new orphans that are in the orphan tree when
49  * the commit is run, are written to the orphan area in 1 or more orphan nodes.
50  * If the orphan area is full, it is consolidated to make space. There is
51  * always enough space because validation prevents the user from creating more
52  * than the maximum number of orphans allowed.
53  */
54 
55 static int dbg_check_orphans(struct ubifs_info *c);
56 
66 {
67  struct ubifs_orphan *orphan, *o;
68  struct rb_node **p, *parent = NULL;
69 
70  orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_NOFS);
71  if (!orphan)
72  return -ENOMEM;
73  orphan->inum = inum;
74  orphan->new = 1;
75 
76  spin_lock(&c->orphan_lock);
77  if (c->tot_orphans >= c->max_orphans) {
78  spin_unlock(&c->orphan_lock);
79  kfree(orphan);
80  return -ENFILE;
81  }
82  p = &c->orph_tree.rb_node;
83  while (*p) {
84  parent = *p;
85  o = rb_entry(parent, struct ubifs_orphan, rb);
86  if (inum < o->inum)
87  p = &(*p)->rb_left;
88  else if (inum > o->inum)
89  p = &(*p)->rb_right;
90  else {
91  ubifs_err("orphaned twice");
92  spin_unlock(&c->orphan_lock);
93  kfree(orphan);
94  return 0;
95  }
96  }
97  c->tot_orphans += 1;
98  c->new_orphans += 1;
99  rb_link_node(&orphan->rb, parent, p);
100  rb_insert_color(&orphan->rb, &c->orph_tree);
101  list_add_tail(&orphan->list, &c->orph_list);
102  list_add_tail(&orphan->new_list, &c->orph_new);
103  spin_unlock(&c->orphan_lock);
104  dbg_gen("ino %lu", (unsigned long)inum);
105  return 0;
106 }
107 
116 {
117  struct ubifs_orphan *o;
118  struct rb_node *p;
119 
120  spin_lock(&c->orphan_lock);
121  p = c->orph_tree.rb_node;
122  while (p) {
123  o = rb_entry(p, struct ubifs_orphan, rb);
124  if (inum < o->inum)
125  p = p->rb_left;
126  else if (inum > o->inum)
127  p = p->rb_right;
128  else {
129  if (o->dnext) {
130  spin_unlock(&c->orphan_lock);
131  dbg_gen("deleted twice ino %lu",
132  (unsigned long)inum);
133  return;
134  }
135  if (o->cnext) {
136  o->dnext = c->orph_dnext;
137  c->orph_dnext = o;
138  spin_unlock(&c->orphan_lock);
139  dbg_gen("delete later ino %lu",
140  (unsigned long)inum);
141  return;
142  }
143  rb_erase(p, &c->orph_tree);
144  list_del(&o->list);
145  c->tot_orphans -= 1;
146  if (o->new) {
147  list_del(&o->new_list);
148  c->new_orphans -= 1;
149  }
150  spin_unlock(&c->orphan_lock);
151  kfree(o);
152  dbg_gen("inum %lu", (unsigned long)inum);
153  return;
154  }
155  }
156  spin_unlock(&c->orphan_lock);
157  ubifs_err("missing orphan ino %lu", (unsigned long)inum);
158  dump_stack();
159 }
160 
168 {
169  struct ubifs_orphan *orphan, **last;
170 
171  spin_lock(&c->orphan_lock);
172  last = &c->orph_cnext;
173  list_for_each_entry(orphan, &c->orph_new, new_list) {
174  ubifs_assert(orphan->new);
175  orphan->new = 0;
176  *last = orphan;
177  last = &orphan->cnext;
178  }
179  *last = NULL;
180  c->cmt_orphans = c->new_orphans;
181  c->new_orphans = 0;
182  dbg_cmt("%d orphans to commit", c->cmt_orphans);
183  INIT_LIST_HEAD(&c->orph_new);
184  if (c->tot_orphans == 0)
185  c->no_orphs = 1;
186  else
187  c->no_orphs = 0;
188  spin_unlock(&c->orphan_lock);
189  return 0;
190 }
191 
199 static int avail_orphs(struct ubifs_info *c)
200 {
201  int avail_lebs, avail, gap;
202 
203  avail_lebs = c->orph_lebs - (c->ohead_lnum - c->orph_first) - 1;
204  avail = avail_lebs *
205  ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
206  gap = c->leb_size - c->ohead_offs;
207  if (gap >= UBIFS_ORPH_NODE_SZ + sizeof(__le64))
208  avail += (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
209  return avail;
210 }
211 
219 static int tot_avail_orphs(struct ubifs_info *c)
220 {
221  int avail_lebs, avail;
222 
223  avail_lebs = c->orph_lebs;
224  avail = avail_lebs *
225  ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
226  return avail / 2;
227 }
228 
239 static int do_write_orph_node(struct ubifs_info *c, int len, int atomic)
240 {
241  int err = 0;
242 
243  if (atomic) {
244  ubifs_assert(c->ohead_offs == 0);
245  ubifs_prepare_node(c, c->orph_buf, len, 1);
246  len = ALIGN(len, c->min_io_size);
247  err = ubifs_leb_change(c, c->ohead_lnum, c->orph_buf, len);
248  } else {
249  if (c->ohead_offs == 0) {
250  /* Ensure LEB has been unmapped */
251  err = ubifs_leb_unmap(c, c->ohead_lnum);
252  if (err)
253  return err;
254  }
255  err = ubifs_write_node(c, c->orph_buf, len, c->ohead_lnum,
256  c->ohead_offs);
257  }
258  return err;
259 }
260 
270 static int write_orph_node(struct ubifs_info *c, int atomic)
271 {
272  struct ubifs_orphan *orphan, *cnext;
273  struct ubifs_orph_node *orph;
274  int gap, err, len, cnt, i;
275 
276  ubifs_assert(c->cmt_orphans > 0);
277  gap = c->leb_size - c->ohead_offs;
278  if (gap < UBIFS_ORPH_NODE_SZ + sizeof(__le64)) {
279  c->ohead_lnum += 1;
280  c->ohead_offs = 0;
281  gap = c->leb_size;
282  if (c->ohead_lnum > c->orph_last) {
283  /*
284  * We limit the number of orphans so that this should
285  * never happen.
286  */
287  ubifs_err("out of space in orphan area");
288  return -EINVAL;
289  }
290  }
291  cnt = (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
292  if (cnt > c->cmt_orphans)
293  cnt = c->cmt_orphans;
294  len = UBIFS_ORPH_NODE_SZ + cnt * sizeof(__le64);
296  orph = c->orph_buf;
297  orph->ch.node_type = UBIFS_ORPH_NODE;
298  spin_lock(&c->orphan_lock);
299  cnext = c->orph_cnext;
300  for (i = 0; i < cnt; i++) {
301  orphan = cnext;
302  orph->inos[i] = cpu_to_le64(orphan->inum);
303  cnext = orphan->cnext;
304  orphan->cnext = NULL;
305  }
306  c->orph_cnext = cnext;
307  c->cmt_orphans -= cnt;
308  spin_unlock(&c->orphan_lock);
309  if (c->cmt_orphans)
310  orph->cmt_no = cpu_to_le64(c->cmt_no);
311  else
312  /* Mark the last node of the commit */
313  orph->cmt_no = cpu_to_le64((c->cmt_no) | (1ULL << 63));
314  ubifs_assert(c->ohead_offs + len <= c->leb_size);
317  err = do_write_orph_node(c, len, atomic);
318  c->ohead_offs += ALIGN(len, c->min_io_size);
319  c->ohead_offs = ALIGN(c->ohead_offs, 8);
320  return err;
321 }
322 
331 static int write_orph_nodes(struct ubifs_info *c, int atomic)
332 {
333  int err;
334 
335  while (c->cmt_orphans > 0) {
336  err = write_orph_node(c, atomic);
337  if (err)
338  return err;
339  }
340  if (atomic) {
341  int lnum;
342 
343  /* Unmap any unused LEBs after consolidation */
344  lnum = c->ohead_lnum + 1;
345  for (lnum = c->ohead_lnum + 1; lnum <= c->orph_last; lnum++) {
346  err = ubifs_leb_unmap(c, lnum);
347  if (err)
348  return err;
349  }
350  }
351  return 0;
352 }
353 
365 static int consolidate(struct ubifs_info *c)
366 {
367  int tot_avail = tot_avail_orphs(c), err = 0;
368 
369  spin_lock(&c->orphan_lock);
370  dbg_cmt("there is space for %d orphans and there are %d",
371  tot_avail, c->tot_orphans);
372  if (c->tot_orphans - c->new_orphans <= tot_avail) {
373  struct ubifs_orphan *orphan, **last;
374  int cnt = 0;
375 
376  /* Change the cnext list to include all non-new orphans */
377  last = &c->orph_cnext;
378  list_for_each_entry(orphan, &c->orph_list, list) {
379  if (orphan->new)
380  continue;
381  *last = orphan;
382  last = &orphan->cnext;
383  cnt += 1;
384  }
385  *last = NULL;
386  ubifs_assert(cnt == c->tot_orphans - c->new_orphans);
387  c->cmt_orphans = cnt;
388  c->ohead_lnum = c->orph_first;
389  c->ohead_offs = 0;
390  } else {
391  /*
392  * We limit the number of orphans so that this should
393  * never happen.
394  */
395  ubifs_err("out of space in orphan area");
396  err = -EINVAL;
397  }
398  spin_unlock(&c->orphan_lock);
399  return err;
400 }
401 
409 static int commit_orphans(struct ubifs_info *c)
410 {
411  int avail, atomic = 0, err;
412 
413  ubifs_assert(c->cmt_orphans > 0);
414  avail = avail_orphs(c);
415  if (avail < c->cmt_orphans) {
416  /* Not enough space to write new orphans, so consolidate */
417  err = consolidate(c);
418  if (err)
419  return err;
420  atomic = 1;
421  }
422  err = write_orph_nodes(c, atomic);
423  return err;
424 }
425 
435 static void erase_deleted(struct ubifs_info *c)
436 {
437  struct ubifs_orphan *orphan, *dnext;
438 
439  spin_lock(&c->orphan_lock);
440  dnext = c->orph_dnext;
441  while (dnext) {
442  orphan = dnext;
443  dnext = orphan->dnext;
444  ubifs_assert(!orphan->new);
445  rb_erase(&orphan->rb, &c->orph_tree);
446  list_del(&orphan->list);
447  c->tot_orphans -= 1;
448  dbg_gen("deleting orphan ino %lu", (unsigned long)orphan->inum);
449  kfree(orphan);
450  }
451  c->orph_dnext = NULL;
452  spin_unlock(&c->orphan_lock);
453 }
454 
462 {
463  int err;
464 
465  if (c->cmt_orphans != 0) {
466  err = commit_orphans(c);
467  if (err)
468  return err;
469  }
470  erase_deleted(c);
471  err = dbg_check_orphans(c);
472  return err;
473 }
474 
484 {
485  int lnum, err;
486 
487  for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
488  err = ubifs_leb_unmap(c, lnum);
489  if (err)
490  return err;
491  }
492  c->ohead_lnum = c->orph_first;
493  c->ohead_offs = 0;
494  return 0;
495 }
496 
506 static int insert_dead_orphan(struct ubifs_info *c, ino_t inum)
507 {
508  struct ubifs_orphan *orphan, *o;
509  struct rb_node **p, *parent = NULL;
510 
511  orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_KERNEL);
512  if (!orphan)
513  return -ENOMEM;
514  orphan->inum = inum;
515 
516  p = &c->orph_tree.rb_node;
517  while (*p) {
518  parent = *p;
519  o = rb_entry(parent, struct ubifs_orphan, rb);
520  if (inum < o->inum)
521  p = &(*p)->rb_left;
522  else if (inum > o->inum)
523  p = &(*p)->rb_right;
524  else {
525  /* Already added - no problem */
526  kfree(orphan);
527  return 0;
528  }
529  }
530  c->tot_orphans += 1;
531  rb_link_node(&orphan->rb, parent, p);
532  rb_insert_color(&orphan->rb, &c->orph_tree);
533  list_add_tail(&orphan->list, &c->orph_list);
534  orphan->dnext = c->orph_dnext;
535  c->orph_dnext = orphan;
536  dbg_mnt("ino %lu, new %d, tot %d", (unsigned long)inum,
537  c->new_orphans, c->tot_orphans);
538  return 0;
539 }
540 
553 static int do_kill_orphans(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
554  unsigned long long *last_cmt_no, int *outofdate,
555  int *last_flagged)
556 {
557  struct ubifs_scan_node *snod;
558  struct ubifs_orph_node *orph;
559  unsigned long long cmt_no;
560  ino_t inum;
561  int i, n, err, first = 1;
562 
563  list_for_each_entry(snod, &sleb->nodes, list) {
564  if (snod->type != UBIFS_ORPH_NODE) {
565  ubifs_err("invalid node type %d in orphan area at %d:%d",
566  snod->type, sleb->lnum, snod->offs);
567  ubifs_dump_node(c, snod->node);
568  return -EINVAL;
569  }
570 
571  orph = snod->node;
572 
573  /* Check commit number */
574  cmt_no = le64_to_cpu(orph->cmt_no) & LLONG_MAX;
575  /*
576  * The commit number on the master node may be less, because
577  * of a failed commit. If there are several failed commits in a
578  * row, the commit number written on orphan nodes will continue
579  * to increase (because the commit number is adjusted here) even
580  * though the commit number on the master node stays the same
581  * because the master node has not been re-written.
582  */
583  if (cmt_no > c->cmt_no)
584  c->cmt_no = cmt_no;
585  if (cmt_no < *last_cmt_no && *last_flagged) {
586  /*
587  * The last orphan node had a higher commit number and
588  * was flagged as the last written for that commit
589  * number. That makes this orphan node, out of date.
590  */
591  if (!first) {
592  ubifs_err("out of order commit number %llu in orphan node at %d:%d",
593  cmt_no, sleb->lnum, snod->offs);
594  ubifs_dump_node(c, snod->node);
595  return -EINVAL;
596  }
597  dbg_rcvry("out of date LEB %d", sleb->lnum);
598  *outofdate = 1;
599  return 0;
600  }
601 
602  if (first)
603  first = 0;
604 
605  n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
606  for (i = 0; i < n; i++) {
607  inum = le64_to_cpu(orph->inos[i]);
608  dbg_rcvry("deleting orphaned inode %lu",
609  (unsigned long)inum);
610  err = ubifs_tnc_remove_ino(c, inum);
611  if (err)
612  return err;
613  err = insert_dead_orphan(c, inum);
614  if (err)
615  return err;
616  }
617 
618  *last_cmt_no = cmt_no;
619  if (le64_to_cpu(orph->cmt_no) & (1ULL << 63)) {
620  dbg_rcvry("last orph node for commit %llu at %d:%d",
621  cmt_no, sleb->lnum, snod->offs);
622  *last_flagged = 1;
623  } else
624  *last_flagged = 0;
625  }
626 
627  return 0;
628 }
629 
640 static int kill_orphans(struct ubifs_info *c)
641 {
642  unsigned long long last_cmt_no = 0;
643  int lnum, err = 0, outofdate = 0, last_flagged = 0;
644 
645  c->ohead_lnum = c->orph_first;
646  c->ohead_offs = 0;
647  /* Check no-orphans flag and skip this if no orphans */
648  if (c->no_orphs) {
649  dbg_rcvry("no orphans");
650  return 0;
651  }
652  /*
653  * Orph nodes always start at c->orph_first and are written to each
654  * successive LEB in turn. Generally unused LEBs will have been unmapped
655  * but may contain out of date orphan nodes if the unmap didn't go
656  * through. In addition, the last orphan node written for each commit is
657  * marked (top bit of orph->cmt_no is set to 1). It is possible that
658  * there are orphan nodes from the next commit (i.e. the commit did not
659  * complete successfully). In that case, no orphans will have been lost
660  * due to the way that orphans are written, and any orphans added will
661  * be valid orphans anyway and so can be deleted.
662  */
663  for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
664  struct ubifs_scan_leb *sleb;
665 
666  dbg_rcvry("LEB %d", lnum);
667  sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1);
668  if (IS_ERR(sleb)) {
669  if (PTR_ERR(sleb) == -EUCLEAN)
670  sleb = ubifs_recover_leb(c, lnum, 0,
671  c->sbuf, -1);
672  if (IS_ERR(sleb)) {
673  err = PTR_ERR(sleb);
674  break;
675  }
676  }
677  err = do_kill_orphans(c, sleb, &last_cmt_no, &outofdate,
678  &last_flagged);
679  if (err || outofdate) {
680  ubifs_scan_destroy(sleb);
681  break;
682  }
683  if (sleb->endpt) {
684  c->ohead_lnum = lnum;
685  c->ohead_offs = sleb->endpt;
686  }
687  ubifs_scan_destroy(sleb);
688  }
689  return err;
690 }
691 
702 int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only)
703 {
704  int err = 0;
705 
706  c->max_orphans = tot_avail_orphs(c);
707 
708  if (!read_only) {
709  c->orph_buf = vmalloc(c->leb_size);
710  if (!c->orph_buf)
711  return -ENOMEM;
712  }
713 
714  if (unclean)
715  err = kill_orphans(c);
716  else if (!read_only)
717  err = ubifs_clear_orphans(c);
718 
719  return err;
720 }
721 
722 /*
723  * Everything below is related to debugging.
724  */
725 
726 struct check_orphan {
727  struct rb_node rb;
729 };
730 
731 struct check_info {
732  unsigned long last_ino;
733  unsigned long tot_inos;
734  unsigned long missing;
735  unsigned long long leaf_cnt;
737  struct rb_root root;
738 };
739 
740 static int dbg_find_orphan(struct ubifs_info *c, ino_t inum)
741 {
742  struct ubifs_orphan *o;
743  struct rb_node *p;
744 
745  spin_lock(&c->orphan_lock);
746  p = c->orph_tree.rb_node;
747  while (p) {
748  o = rb_entry(p, struct ubifs_orphan, rb);
749  if (inum < o->inum)
750  p = p->rb_left;
751  else if (inum > o->inum)
752  p = p->rb_right;
753  else {
754  spin_unlock(&c->orphan_lock);
755  return 1;
756  }
757  }
758  spin_unlock(&c->orphan_lock);
759  return 0;
760 }
761 
762 static int dbg_ins_check_orphan(struct rb_root *root, ino_t inum)
763 {
764  struct check_orphan *orphan, *o;
765  struct rb_node **p, *parent = NULL;
766 
767  orphan = kzalloc(sizeof(struct check_orphan), GFP_NOFS);
768  if (!orphan)
769  return -ENOMEM;
770  orphan->inum = inum;
771 
772  p = &root->rb_node;
773  while (*p) {
774  parent = *p;
775  o = rb_entry(parent, struct check_orphan, rb);
776  if (inum < o->inum)
777  p = &(*p)->rb_left;
778  else if (inum > o->inum)
779  p = &(*p)->rb_right;
780  else {
781  kfree(orphan);
782  return 0;
783  }
784  }
785  rb_link_node(&orphan->rb, parent, p);
786  rb_insert_color(&orphan->rb, root);
787  return 0;
788 }
789 
790 static int dbg_find_check_orphan(struct rb_root *root, ino_t inum)
791 {
792  struct check_orphan *o;
793  struct rb_node *p;
794 
795  p = root->rb_node;
796  while (p) {
797  o = rb_entry(p, struct check_orphan, rb);
798  if (inum < o->inum)
799  p = p->rb_left;
800  else if (inum > o->inum)
801  p = p->rb_right;
802  else
803  return 1;
804  }
805  return 0;
806 }
807 
808 static void dbg_free_check_tree(struct rb_root *root)
809 {
810  struct rb_node *this = root->rb_node;
811  struct check_orphan *o;
812 
813  while (this) {
814  if (this->rb_left) {
815  this = this->rb_left;
816  continue;
817  } else if (this->rb_right) {
818  this = this->rb_right;
819  continue;
820  }
821  o = rb_entry(this, struct check_orphan, rb);
822  this = rb_parent(this);
823  if (this) {
824  if (this->rb_left == &o->rb)
825  this->rb_left = NULL;
826  else
827  this->rb_right = NULL;
828  }
829  kfree(o);
830  }
831 }
832 
833 static int dbg_orphan_check(struct ubifs_info *c, struct ubifs_zbranch *zbr,
834  void *priv)
835 {
836  struct check_info *ci = priv;
837  ino_t inum;
838  int err;
839 
840  inum = key_inum(c, &zbr->key);
841  if (inum != ci->last_ino) {
842  /* Lowest node type is the inode node, so it comes first */
843  if (key_type(c, &zbr->key) != UBIFS_INO_KEY)
844  ubifs_err("found orphan node ino %lu, type %d",
845  (unsigned long)inum, key_type(c, &zbr->key));
846  ci->last_ino = inum;
847  ci->tot_inos += 1;
848  err = ubifs_tnc_read_node(c, zbr, ci->node);
849  if (err) {
850  ubifs_err("node read failed, error %d", err);
851  return err;
852  }
853  if (ci->node->nlink == 0)
854  /* Must be recorded as an orphan */
855  if (!dbg_find_check_orphan(&ci->root, inum) &&
856  !dbg_find_orphan(c, inum)) {
857  ubifs_err("missing orphan, ino %lu",
858  (unsigned long)inum);
859  ci->missing += 1;
860  }
861  }
862  ci->leaf_cnt += 1;
863  return 0;
864 }
865 
866 static int dbg_read_orphans(struct check_info *ci, struct ubifs_scan_leb *sleb)
867 {
868  struct ubifs_scan_node *snod;
869  struct ubifs_orph_node *orph;
870  ino_t inum;
871  int i, n, err;
872 
873  list_for_each_entry(snod, &sleb->nodes, list) {
874  cond_resched();
875  if (snod->type != UBIFS_ORPH_NODE)
876  continue;
877  orph = snod->node;
878  n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
879  for (i = 0; i < n; i++) {
880  inum = le64_to_cpu(orph->inos[i]);
881  err = dbg_ins_check_orphan(&ci->root, inum);
882  if (err)
883  return err;
884  }
885  }
886  return 0;
887 }
888 
889 static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci)
890 {
891  int lnum, err = 0;
892  void *buf;
893 
894  /* Check no-orphans flag and skip this if no orphans */
895  if (c->no_orphs)
896  return 0;
897 
898  buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
899  if (!buf) {
900  ubifs_err("cannot allocate memory to check orphans");
901  return 0;
902  }
903 
904  for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
905  struct ubifs_scan_leb *sleb;
906 
907  sleb = ubifs_scan(c, lnum, 0, buf, 0);
908  if (IS_ERR(sleb)) {
909  err = PTR_ERR(sleb);
910  break;
911  }
912 
913  err = dbg_read_orphans(ci, sleb);
914  ubifs_scan_destroy(sleb);
915  if (err)
916  break;
917  }
918 
919  vfree(buf);
920  return err;
921 }
922 
923 static int dbg_check_orphans(struct ubifs_info *c)
924 {
925  struct check_info ci;
926  int err;
927 
928  if (!dbg_is_chk_orph(c))
929  return 0;
930 
931  ci.last_ino = 0;
932  ci.tot_inos = 0;
933  ci.missing = 0;
934  ci.leaf_cnt = 0;
935  ci.root = RB_ROOT;
937  if (!ci.node) {
938  ubifs_err("out of memory");
939  return -ENOMEM;
940  }
941 
942  err = dbg_scan_orphans(c, &ci);
943  if (err)
944  goto out;
945 
946  err = dbg_walk_index(c, &dbg_orphan_check, NULL, &ci);
947  if (err) {
948  ubifs_err("cannot scan TNC, error %d", err);
949  goto out;
950  }
951 
952  if (ci.missing) {
953  ubifs_err("%lu missing orphan(s)", ci.missing);
954  err = -EINVAL;
955  goto out;
956  }
957 
958  dbg_cmt("last inode number is %lu", ci.last_ino);
959  dbg_cmt("total number of inodes is %lu", ci.tot_inos);
960  dbg_cmt("total number of leaf nodes is %llu", ci.leaf_cnt);
961 
962 out:
963  dbg_free_check_tree(&ci.root);
964  kfree(ci.node);
965  return err;
966 }