Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ulist.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2011 STRATO AG
3  * written by Arne Jansen <[email protected]>
4  * Distributed under the GNU GPL license version 2.
5  */
6 
7 #include <linux/slab.h>
8 #include <linux/module.h>
9 #include "ulist.h"
10 
11 /*
12  * ulist is a generic data structure to hold a collection of unique u64
13  * values. The only operations it supports is adding to the list and
14  * enumerating it.
15  * It is possible to store an auxiliary value along with the key.
16  *
17  * The implementation is preliminary and can probably be sped up
18  * significantly. A first step would be to store the values in an rbtree
19  * as soon as ULIST_SIZE is exceeded.
20  *
21  * A sample usage for ulists is the enumeration of directed graphs without
22  * visiting a node twice. The pseudo-code could look like this:
23  *
24  * ulist = ulist_alloc();
25  * ulist_add(ulist, root);
26  * ULIST_ITER_INIT(&uiter);
27  *
28  * while ((elem = ulist_next(ulist, &uiter)) {
29  * for (all child nodes n in elem)
30  * ulist_add(ulist, n);
31  * do something useful with the node;
32  * }
33  * ulist_free(ulist);
34  *
35  * This assumes the graph nodes are adressable by u64. This stems from the
36  * usage for tree enumeration in btrfs, where the logical addresses are
37  * 64 bit.
38  *
39  * It is also useful for tree enumeration which could be done elegantly
40  * recursively, but is not possible due to kernel stack limitations. The
41  * loop would be similar to the above.
42  */
43 
51 void ulist_init(struct ulist *ulist)
52 {
53  ulist->nnodes = 0;
54  ulist->nodes = ulist->int_nodes;
55  ulist->nodes_alloced = ULIST_SIZE;
56 }
58 
66 void ulist_fini(struct ulist *ulist)
67 {
68  /*
69  * The first ULIST_SIZE elements are stored inline in struct ulist.
70  * Only if more elements are alocated they need to be freed.
71  */
72  if (ulist->nodes_alloced > ULIST_SIZE)
73  kfree(ulist->nodes);
74  ulist->nodes_alloced = 0; /* in case ulist_fini is called twice */
75 }
77 
85 void ulist_reinit(struct ulist *ulist)
86 {
87  ulist_fini(ulist);
88  ulist_init(ulist);
89 }
91 
99 {
100  struct ulist *ulist = kmalloc(sizeof(*ulist), gfp_mask);
101 
102  if (!ulist)
103  return NULL;
104 
105  ulist_init(ulist);
106 
107  return ulist;
108 }
110 
117 void ulist_free(struct ulist *ulist)
118 {
119  if (!ulist)
120  return;
121  ulist_fini(ulist);
122  kfree(ulist);
123 }
125 
147 {
148  return ulist_add_merge(ulist, val, aux, NULL, gfp_mask);
149 }
150 
152  u64 *old_aux, gfp_t gfp_mask)
153 {
154  int i;
155 
156  for (i = 0; i < ulist->nnodes; ++i) {
157  if (ulist->nodes[i].val == val) {
158  if (old_aux)
159  *old_aux = ulist->nodes[i].aux;
160  return 0;
161  }
162  }
163 
164  if (ulist->nnodes >= ulist->nodes_alloced) {
165  u64 new_alloced = ulist->nodes_alloced + 128;
166  struct ulist_node *new_nodes;
167  void *old = NULL;
168 
169  /*
170  * if nodes_alloced == ULIST_SIZE no memory has been allocated
171  * yet, so pass NULL to krealloc
172  */
173  if (ulist->nodes_alloced > ULIST_SIZE)
174  old = ulist->nodes;
175 
176  new_nodes = krealloc(old, sizeof(*new_nodes) * new_alloced,
177  gfp_mask);
178  if (!new_nodes)
179  return -ENOMEM;
180 
181  if (!old)
182  memcpy(new_nodes, ulist->int_nodes,
183  sizeof(ulist->int_nodes));
184 
185  ulist->nodes = new_nodes;
186  ulist->nodes_alloced = new_alloced;
187  }
188  ulist->nodes[ulist->nnodes].val = val;
189  ulist->nodes[ulist->nnodes].aux = aux;
190  ++ulist->nnodes;
191 
192  return 1;
193 }
195 
212 struct ulist_node *ulist_next(struct ulist *ulist, struct ulist_iterator *uiter)
213 {
214  if (ulist->nnodes == 0)
215  return NULL;
216  if (uiter->i < 0 || uiter->i >= ulist->nnodes)
217  return NULL;
218 
219  return &ulist->nodes[uiter->i++];
220 }