Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ulpqueue.c
Go to the documentation of this file.
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This abstraction carries sctp events to the ULP (sockets).
10  *
11  * This SCTP implementation is free software;
12  * you can redistribute it and/or modify it under the terms of
13  * the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This SCTP implementation is distributed in the hope that it
18  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
19  * ************************
20  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
21  * See the GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with GNU CC; see the file COPYING. If not, write to
25  * the Free Software Foundation, 59 Temple Place - Suite 330,
26  * Boston, MA 02111-1307, USA.
27  *
28  * Please send any bug reports or fixes you make to the
29  * email address(es):
30  * lksctp developers <[email protected]>
31  *
32  * Or submit a bug report through the following website:
33  * http://www.sf.net/projects/lksctp
34  *
35  * Written or modified by:
36  * Jon Grimm <[email protected]>
37  * La Monte H.P. Yarroll <[email protected]>
38  * Sridhar Samudrala <[email protected]>
39  *
40  * Any bugs reported given to us we will try to fix... any fixes shared will
41  * be incorporated into the next SCTP release.
42  */
43 
44 #include <linux/slab.h>
45 #include <linux/types.h>
46 #include <linux/skbuff.h>
47 #include <net/sock.h>
48 #include <net/sctp/structs.h>
49 #include <net/sctp/sctp.h>
50 #include <net/sctp/sm.h>
51 
52 /* Forward declarations for internal helpers. */
53 static struct sctp_ulpevent * sctp_ulpq_reasm(struct sctp_ulpq *ulpq,
54  struct sctp_ulpevent *);
55 static struct sctp_ulpevent * sctp_ulpq_order(struct sctp_ulpq *,
56  struct sctp_ulpevent *);
57 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq);
58 
59 /* 1st Level Abstractions */
60 
61 /* Initialize a ULP queue from a block of memory. */
62 struct sctp_ulpq *sctp_ulpq_init(struct sctp_ulpq *ulpq,
63  struct sctp_association *asoc)
64 {
65  memset(ulpq, 0, sizeof(struct sctp_ulpq));
66 
67  ulpq->asoc = asoc;
68  skb_queue_head_init(&ulpq->reasm);
69  skb_queue_head_init(&ulpq->lobby);
70  ulpq->pd_mode = 0;
71  ulpq->malloced = 0;
72 
73  return ulpq;
74 }
75 
76 
77 /* Flush the reassembly and ordering queues. */
78 void sctp_ulpq_flush(struct sctp_ulpq *ulpq)
79 {
80  struct sk_buff *skb;
81  struct sctp_ulpevent *event;
82 
83  while ((skb = __skb_dequeue(&ulpq->lobby)) != NULL) {
84  event = sctp_skb2event(skb);
85  sctp_ulpevent_free(event);
86  }
87 
88  while ((skb = __skb_dequeue(&ulpq->reasm)) != NULL) {
89  event = sctp_skb2event(skb);
90  sctp_ulpevent_free(event);
91  }
92 
93 }
94 
95 /* Dispose of a ulpqueue. */
96 void sctp_ulpq_free(struct sctp_ulpq *ulpq)
97 {
98  sctp_ulpq_flush(ulpq);
99  if (ulpq->malloced)
100  kfree(ulpq);
101 }
102 
103 /* Process an incoming DATA chunk. */
104 int sctp_ulpq_tail_data(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk,
105  gfp_t gfp)
106 {
107  struct sk_buff_head temp;
108  struct sctp_ulpevent *event;
109 
110  /* Create an event from the incoming chunk. */
111  event = sctp_ulpevent_make_rcvmsg(chunk->asoc, chunk, gfp);
112  if (!event)
113  return -ENOMEM;
114 
115  /* Do reassembly if needed. */
116  event = sctp_ulpq_reasm(ulpq, event);
117 
118  /* Do ordering if needed. */
119  if ((event) && (event->msg_flags & MSG_EOR)){
120  /* Create a temporary list to collect chunks on. */
121  skb_queue_head_init(&temp);
122  __skb_queue_tail(&temp, sctp_event2skb(event));
123 
124  event = sctp_ulpq_order(ulpq, event);
125  }
126 
127  /* Send event to the ULP. 'event' is the sctp_ulpevent for
128  * very first SKB on the 'temp' list.
129  */
130  if (event)
131  sctp_ulpq_tail_event(ulpq, event);
132 
133  return 0;
134 }
135 
136 /* Add a new event for propagation to the ULP. */
137 /* Clear the partial delivery mode for this socket. Note: This
138  * assumes that no association is currently in partial delivery mode.
139  */
141 {
142  struct sctp_sock *sp = sctp_sk(sk);
143 
144  if (atomic_dec_and_test(&sp->pd_mode)) {
145  /* This means there are no other associations in PD, so
146  * we can go ahead and clear out the lobby in one shot
147  */
148  if (!skb_queue_empty(&sp->pd_lobby)) {
149  struct list_head *list;
150  sctp_skb_list_tail(&sp->pd_lobby, &sk->sk_receive_queue);
151  list = (struct list_head *)&sctp_sk(sk)->pd_lobby;
152  INIT_LIST_HEAD(list);
153  return 1;
154  }
155  } else {
156  /* There are other associations in PD, so we only need to
157  * pull stuff out of the lobby that belongs to the
158  * associations that is exiting PD (all of its notifications
159  * are posted here).
160  */
161  if (!skb_queue_empty(&sp->pd_lobby) && asoc) {
162  struct sk_buff *skb, *tmp;
163  struct sctp_ulpevent *event;
164 
165  sctp_skb_for_each(skb, &sp->pd_lobby, tmp) {
166  event = sctp_skb2event(skb);
167  if (event->asoc == asoc) {
168  __skb_unlink(skb, &sp->pd_lobby);
169  __skb_queue_tail(&sk->sk_receive_queue,
170  skb);
171  }
172  }
173  }
174  }
175 
176  return 0;
177 }
178 
179 /* Set the pd_mode on the socket and ulpq */
180 static void sctp_ulpq_set_pd(struct sctp_ulpq *ulpq)
181 {
182  struct sctp_sock *sp = sctp_sk(ulpq->asoc->base.sk);
183 
184  atomic_inc(&sp->pd_mode);
185  ulpq->pd_mode = 1;
186 }
187 
188 /* Clear the pd_mode and restart any pending messages waiting for delivery. */
189 static int sctp_ulpq_clear_pd(struct sctp_ulpq *ulpq)
190 {
191  ulpq->pd_mode = 0;
192  sctp_ulpq_reasm_drain(ulpq);
193  return sctp_clear_pd(ulpq->asoc->base.sk, ulpq->asoc);
194 }
195 
196 /* If the SKB of 'event' is on a list, it is the first such member
197  * of that list.
198  */
200 {
201  struct sock *sk = ulpq->asoc->base.sk;
202  struct sk_buff_head *queue, *skb_list;
203  struct sk_buff *skb = sctp_event2skb(event);
204  int clear_pd = 0;
205 
206  skb_list = (struct sk_buff_head *) skb->prev;
207 
208  /* If the socket is just going to throw this away, do not
209  * even try to deliver it.
210  */
211  if (sock_flag(sk, SOCK_DEAD) || (sk->sk_shutdown & RCV_SHUTDOWN))
212  goto out_free;
213 
214  /* Check if the user wishes to receive this event. */
215  if (!sctp_ulpevent_is_enabled(event, &sctp_sk(sk)->subscribe))
216  goto out_free;
217 
218  /* If we are in partial delivery mode, post to the lobby until
219  * partial delivery is cleared, unless, of course _this_ is
220  * the association the cause of the partial delivery.
221  */
222 
223  if (atomic_read(&sctp_sk(sk)->pd_mode) == 0) {
224  queue = &sk->sk_receive_queue;
225  } else {
226  if (ulpq->pd_mode) {
227  /* If the association is in partial delivery, we
228  * need to finish delivering the partially processed
229  * packet before passing any other data. This is
230  * because we don't truly support stream interleaving.
231  */
232  if ((event->msg_flags & MSG_NOTIFICATION) ||
234  (event->msg_flags & SCTP_DATA_FRAG_MASK)))
235  queue = &sctp_sk(sk)->pd_lobby;
236  else {
237  clear_pd = event->msg_flags & MSG_EOR;
238  queue = &sk->sk_receive_queue;
239  }
240  } else {
241  /*
242  * If fragment interleave is enabled, we
243  * can queue this to the receive queue instead
244  * of the lobby.
245  */
246  if (sctp_sk(sk)->frag_interleave)
247  queue = &sk->sk_receive_queue;
248  else
249  queue = &sctp_sk(sk)->pd_lobby;
250  }
251  }
252 
253  /* If we are harvesting multiple skbs they will be
254  * collected on a list.
255  */
256  if (skb_list)
257  sctp_skb_list_tail(skb_list, queue);
258  else
259  __skb_queue_tail(queue, skb);
260 
261  /* Did we just complete partial delivery and need to get
262  * rolling again? Move pending data to the receive
263  * queue.
264  */
265  if (clear_pd)
266  sctp_ulpq_clear_pd(ulpq);
267 
268  if (queue == &sk->sk_receive_queue)
269  sk->sk_data_ready(sk, 0);
270  return 1;
271 
272 out_free:
273  if (skb_list)
274  sctp_queue_purge_ulpevents(skb_list);
275  else
276  sctp_ulpevent_free(event);
277 
278  return 0;
279 }
280 
281 /* 2nd Level Abstractions */
282 
283 /* Helper function to store chunks that need to be reassembled. */
284 static void sctp_ulpq_store_reasm(struct sctp_ulpq *ulpq,
285  struct sctp_ulpevent *event)
286 {
287  struct sk_buff *pos;
288  struct sctp_ulpevent *cevent;
289  __u32 tsn, ctsn;
290 
291  tsn = event->tsn;
292 
293  /* See if it belongs at the end. */
294  pos = skb_peek_tail(&ulpq->reasm);
295  if (!pos) {
296  __skb_queue_tail(&ulpq->reasm, sctp_event2skb(event));
297  return;
298  }
299 
300  /* Short circuit just dropping it at the end. */
301  cevent = sctp_skb2event(pos);
302  ctsn = cevent->tsn;
303  if (TSN_lt(ctsn, tsn)) {
304  __skb_queue_tail(&ulpq->reasm, sctp_event2skb(event));
305  return;
306  }
307 
308  /* Find the right place in this list. We store them by TSN. */
309  skb_queue_walk(&ulpq->reasm, pos) {
310  cevent = sctp_skb2event(pos);
311  ctsn = cevent->tsn;
312 
313  if (TSN_lt(tsn, ctsn))
314  break;
315  }
316 
317  /* Insert before pos. */
318  __skb_queue_before(&ulpq->reasm, pos, sctp_event2skb(event));
319 
320 }
321 
322 /* Helper function to return an event corresponding to the reassembled
323  * datagram.
324  * This routine creates a re-assembled skb given the first and last skb's
325  * as stored in the reassembly queue. The skb's may be non-linear if the sctp
326  * payload was fragmented on the way and ip had to reassemble them.
327  * We add the rest of skb's to the first skb's fraglist.
328  */
329 static struct sctp_ulpevent *sctp_make_reassembled_event(struct net *net,
330  struct sk_buff_head *queue, struct sk_buff *f_frag,
331  struct sk_buff *l_frag)
332 {
333  struct sk_buff *pos;
334  struct sk_buff *new = NULL;
335  struct sctp_ulpevent *event;
336  struct sk_buff *pnext, *last;
337  struct sk_buff *list = skb_shinfo(f_frag)->frag_list;
338 
339  /* Store the pointer to the 2nd skb */
340  if (f_frag == l_frag)
341  pos = NULL;
342  else
343  pos = f_frag->next;
344 
345  /* Get the last skb in the f_frag's frag_list if present. */
346  for (last = list; list; last = list, list = list->next);
347 
348  /* Add the list of remaining fragments to the first fragments
349  * frag_list.
350  */
351  if (last)
352  last->next = pos;
353  else {
354  if (skb_cloned(f_frag)) {
355  /* This is a cloned skb, we can't just modify
356  * the frag_list. We need a new skb to do that.
357  * Instead of calling skb_unshare(), we'll do it
358  * ourselves since we need to delay the free.
359  */
360  new = skb_copy(f_frag, GFP_ATOMIC);
361  if (!new)
362  return NULL; /* try again later */
363 
364  sctp_skb_set_owner_r(new, f_frag->sk);
365 
366  skb_shinfo(new)->frag_list = pos;
367  } else
368  skb_shinfo(f_frag)->frag_list = pos;
369  }
370 
371  /* Remove the first fragment from the reassembly queue. */
372  __skb_unlink(f_frag, queue);
373 
374  /* if we did unshare, then free the old skb and re-assign */
375  if (new) {
376  kfree_skb(f_frag);
377  f_frag = new;
378  }
379 
380  while (pos) {
381 
382  pnext = pos->next;
383 
384  /* Update the len and data_len fields of the first fragment. */
385  f_frag->len += pos->len;
386  f_frag->data_len += pos->len;
387 
388  /* Remove the fragment from the reassembly queue. */
389  __skb_unlink(pos, queue);
390 
391  /* Break if we have reached the last fragment. */
392  if (pos == l_frag)
393  break;
394  pos->next = pnext;
395  pos = pnext;
396  }
397 
398  event = sctp_skb2event(f_frag);
400 
401  return event;
402 }
403 
404 
405 /* Helper function to check if an incoming chunk has filled up the last
406  * missing fragment in a SCTP datagram and return the corresponding event.
407  */
408 static struct sctp_ulpevent *sctp_ulpq_retrieve_reassembled(struct sctp_ulpq *ulpq)
409 {
410  struct sk_buff *pos;
411  struct sctp_ulpevent *cevent;
412  struct sk_buff *first_frag = NULL;
413  __u32 ctsn, next_tsn;
414  struct sctp_ulpevent *retval = NULL;
415  struct sk_buff *pd_first = NULL;
416  struct sk_buff *pd_last = NULL;
417  size_t pd_len = 0;
418  struct sctp_association *asoc;
419  u32 pd_point;
420 
421  /* Initialized to 0 just to avoid compiler warning message. Will
422  * never be used with this value. It is referenced only after it
423  * is set when we find the first fragment of a message.
424  */
425  next_tsn = 0;
426 
427  /* The chunks are held in the reasm queue sorted by TSN.
428  * Walk through the queue sequentially and look for a sequence of
429  * fragmented chunks that complete a datagram.
430  * 'first_frag' and next_tsn are reset when we find a chunk which
431  * is the first fragment of a datagram. Once these 2 fields are set
432  * we expect to find the remaining middle fragments and the last
433  * fragment in order. If not, first_frag is reset to NULL and we
434  * start the next pass when we find another first fragment.
435  *
436  * There is a potential to do partial delivery if user sets
437  * SCTP_PARTIAL_DELIVERY_POINT option. Lets count some things here
438  * to see if can do PD.
439  */
440  skb_queue_walk(&ulpq->reasm, pos) {
441  cevent = sctp_skb2event(pos);
442  ctsn = cevent->tsn;
443 
444  switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
446  /* If this "FIRST_FRAG" is the first
447  * element in the queue, then count it towards
448  * possible PD.
449  */
450  if (pos == ulpq->reasm.next) {
451  pd_first = pos;
452  pd_last = pos;
453  pd_len = pos->len;
454  } else {
455  pd_first = NULL;
456  pd_last = NULL;
457  pd_len = 0;
458  }
459 
460  first_frag = pos;
461  next_tsn = ctsn + 1;
462  break;
463 
465  if ((first_frag) && (ctsn == next_tsn)) {
466  next_tsn++;
467  if (pd_first) {
468  pd_last = pos;
469  pd_len += pos->len;
470  }
471  } else
472  first_frag = NULL;
473  break;
474 
475  case SCTP_DATA_LAST_FRAG:
476  if (first_frag && (ctsn == next_tsn))
477  goto found;
478  else
479  first_frag = NULL;
480  break;
481  }
482  }
483 
484  asoc = ulpq->asoc;
485  if (pd_first) {
486  /* Make sure we can enter partial deliver.
487  * We can trigger partial delivery only if framgent
488  * interleave is set, or the socket is not already
489  * in partial delivery.
490  */
491  if (!sctp_sk(asoc->base.sk)->frag_interleave &&
492  atomic_read(&sctp_sk(asoc->base.sk)->pd_mode))
493  goto done;
494 
495  cevent = sctp_skb2event(pd_first);
496  pd_point = sctp_sk(asoc->base.sk)->pd_point;
497  if (pd_point && pd_point <= pd_len) {
498  retval = sctp_make_reassembled_event(sock_net(asoc->base.sk),
499  &ulpq->reasm,
500  pd_first,
501  pd_last);
502  if (retval)
503  sctp_ulpq_set_pd(ulpq);
504  }
505  }
506 done:
507  return retval;
508 found:
509  retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk),
510  &ulpq->reasm, first_frag, pos);
511  if (retval)
512  retval->msg_flags |= MSG_EOR;
513  goto done;
514 }
515 
516 /* Retrieve the next set of fragments of a partial message. */
517 static struct sctp_ulpevent *sctp_ulpq_retrieve_partial(struct sctp_ulpq *ulpq)
518 {
519  struct sk_buff *pos, *last_frag, *first_frag;
520  struct sctp_ulpevent *cevent;
521  __u32 ctsn, next_tsn;
522  int is_last;
523  struct sctp_ulpevent *retval;
524 
525  /* The chunks are held in the reasm queue sorted by TSN.
526  * Walk through the queue sequentially and look for the first
527  * sequence of fragmented chunks.
528  */
529 
530  if (skb_queue_empty(&ulpq->reasm))
531  return NULL;
532 
533  last_frag = first_frag = NULL;
534  retval = NULL;
535  next_tsn = 0;
536  is_last = 0;
537 
538  skb_queue_walk(&ulpq->reasm, pos) {
539  cevent = sctp_skb2event(pos);
540  ctsn = cevent->tsn;
541 
542  switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
544  if (!first_frag) {
545  first_frag = pos;
546  next_tsn = ctsn + 1;
547  last_frag = pos;
548  } else if (next_tsn == ctsn)
549  next_tsn++;
550  else
551  goto done;
552  break;
553  case SCTP_DATA_LAST_FRAG:
554  if (!first_frag)
555  first_frag = pos;
556  else if (ctsn != next_tsn)
557  goto done;
558  last_frag = pos;
559  is_last = 1;
560  goto done;
561  default:
562  return NULL;
563  }
564  }
565 
566  /* We have the reassembled event. There is no need to look
567  * further.
568  */
569 done:
570  retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk),
571  &ulpq->reasm, first_frag, last_frag);
572  if (retval && is_last)
573  retval->msg_flags |= MSG_EOR;
574 
575  return retval;
576 }
577 
578 
579 /* Helper function to reassemble chunks. Hold chunks on the reasm queue that
580  * need reassembling.
581  */
582 static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq,
583  struct sctp_ulpevent *event)
584 {
585  struct sctp_ulpevent *retval = NULL;
586 
587  /* Check if this is part of a fragmented message. */
589  event->msg_flags |= MSG_EOR;
590  return event;
591  }
592 
593  sctp_ulpq_store_reasm(ulpq, event);
594  if (!ulpq->pd_mode)
595  retval = sctp_ulpq_retrieve_reassembled(ulpq);
596  else {
597  __u32 ctsn, ctsnap;
598 
599  /* Do not even bother unless this is the next tsn to
600  * be delivered.
601  */
602  ctsn = event->tsn;
603  ctsnap = sctp_tsnmap_get_ctsn(&ulpq->asoc->peer.tsn_map);
604  if (TSN_lte(ctsn, ctsnap))
605  retval = sctp_ulpq_retrieve_partial(ulpq);
606  }
607 
608  return retval;
609 }
610 
611 /* Retrieve the first part (sequential fragments) for partial delivery. */
612 static struct sctp_ulpevent *sctp_ulpq_retrieve_first(struct sctp_ulpq *ulpq)
613 {
614  struct sk_buff *pos, *last_frag, *first_frag;
615  struct sctp_ulpevent *cevent;
616  __u32 ctsn, next_tsn;
617  struct sctp_ulpevent *retval;
618 
619  /* The chunks are held in the reasm queue sorted by TSN.
620  * Walk through the queue sequentially and look for a sequence of
621  * fragmented chunks that start a datagram.
622  */
623 
624  if (skb_queue_empty(&ulpq->reasm))
625  return NULL;
626 
627  last_frag = first_frag = NULL;
628  retval = NULL;
629  next_tsn = 0;
630 
631  skb_queue_walk(&ulpq->reasm, pos) {
632  cevent = sctp_skb2event(pos);
633  ctsn = cevent->tsn;
634 
635  switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
637  if (!first_frag) {
638  first_frag = pos;
639  next_tsn = ctsn + 1;
640  last_frag = pos;
641  } else
642  goto done;
643  break;
644 
646  if (!first_frag)
647  return NULL;
648  if (ctsn == next_tsn) {
649  next_tsn++;
650  last_frag = pos;
651  } else
652  goto done;
653  break;
654  default:
655  return NULL;
656  }
657  }
658 
659  /* We have the reassembled event. There is no need to look
660  * further.
661  */
662 done:
663  retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk),
664  &ulpq->reasm, first_frag, last_frag);
665  return retval;
666 }
667 
668 /*
669  * Flush out stale fragments from the reassembly queue when processing
670  * a Forward TSN.
671  *
672  * RFC 3758, Section 3.6
673  *
674  * After receiving and processing a FORWARD TSN, the data receiver MUST
675  * take cautions in updating its re-assembly queue. The receiver MUST
676  * remove any partially reassembled message, which is still missing one
677  * or more TSNs earlier than or equal to the new cumulative TSN point.
678  * In the event that the receiver has invoked the partial delivery API,
679  * a notification SHOULD also be generated to inform the upper layer API
680  * that the message being partially delivered will NOT be completed.
681  */
682 void sctp_ulpq_reasm_flushtsn(struct sctp_ulpq *ulpq, __u32 fwd_tsn)
683 {
684  struct sk_buff *pos, *tmp;
685  struct sctp_ulpevent *event;
686  __u32 tsn;
687 
688  if (skb_queue_empty(&ulpq->reasm))
689  return;
690 
691  skb_queue_walk_safe(&ulpq->reasm, pos, tmp) {
692  event = sctp_skb2event(pos);
693  tsn = event->tsn;
694 
695  /* Since the entire message must be abandoned by the
696  * sender (item A3 in Section 3.5, RFC 3758), we can
697  * free all fragments on the list that are less then
698  * or equal to ctsn_point
699  */
700  if (TSN_lte(tsn, fwd_tsn)) {
701  __skb_unlink(pos, &ulpq->reasm);
702  sctp_ulpevent_free(event);
703  } else
704  break;
705  }
706 }
707 
708 /*
709  * Drain the reassembly queue. If we just cleared parted delivery, it
710  * is possible that the reassembly queue will contain already reassembled
711  * messages. Retrieve any such messages and give them to the user.
712  */
713 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq)
714 {
715  struct sctp_ulpevent *event = NULL;
716  struct sk_buff_head temp;
717 
718  if (skb_queue_empty(&ulpq->reasm))
719  return;
720 
721  while ((event = sctp_ulpq_retrieve_reassembled(ulpq)) != NULL) {
722  /* Do ordering if needed. */
723  if ((event) && (event->msg_flags & MSG_EOR)){
724  skb_queue_head_init(&temp);
725  __skb_queue_tail(&temp, sctp_event2skb(event));
726 
727  event = sctp_ulpq_order(ulpq, event);
728  }
729 
730  /* Send event to the ULP. 'event' is the
731  * sctp_ulpevent for very first SKB on the temp' list.
732  */
733  if (event)
734  sctp_ulpq_tail_event(ulpq, event);
735  }
736 }
737 
738 
739 /* Helper function to gather skbs that have possibly become
740  * ordered by an an incoming chunk.
741  */
742 static void sctp_ulpq_retrieve_ordered(struct sctp_ulpq *ulpq,
743  struct sctp_ulpevent *event)
744 {
745  struct sk_buff_head *event_list;
746  struct sk_buff *pos, *tmp;
747  struct sctp_ulpevent *cevent;
748  struct sctp_stream *in;
749  __u16 sid, csid, cssn;
750 
751  sid = event->stream;
752  in = &ulpq->asoc->ssnmap->in;
753 
754  event_list = (struct sk_buff_head *) sctp_event2skb(event)->prev;
755 
756  /* We are holding the chunks by stream, by SSN. */
757  sctp_skb_for_each(pos, &ulpq->lobby, tmp) {
758  cevent = (struct sctp_ulpevent *) pos->cb;
759  csid = cevent->stream;
760  cssn = cevent->ssn;
761 
762  /* Have we gone too far? */
763  if (csid > sid)
764  break;
765 
766  /* Have we not gone far enough? */
767  if (csid < sid)
768  continue;
769 
770  if (cssn != sctp_ssn_peek(in, sid))
771  break;
772 
773  /* Found it, so mark in the ssnmap. */
774  sctp_ssn_next(in, sid);
775 
776  __skb_unlink(pos, &ulpq->lobby);
777 
778  /* Attach all gathered skbs to the event. */
779  __skb_queue_tail(event_list, pos);
780  }
781 }
782 
783 /* Helper function to store chunks needing ordering. */
784 static void sctp_ulpq_store_ordered(struct sctp_ulpq *ulpq,
785  struct sctp_ulpevent *event)
786 {
787  struct sk_buff *pos;
788  struct sctp_ulpevent *cevent;
789  __u16 sid, csid;
790  __u16 ssn, cssn;
791 
792  pos = skb_peek_tail(&ulpq->lobby);
793  if (!pos) {
794  __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
795  return;
796  }
797 
798  sid = event->stream;
799  ssn = event->ssn;
800 
801  cevent = (struct sctp_ulpevent *) pos->cb;
802  csid = cevent->stream;
803  cssn = cevent->ssn;
804  if (sid > csid) {
805  __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
806  return;
807  }
808 
809  if ((sid == csid) && SSN_lt(cssn, ssn)) {
810  __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
811  return;
812  }
813 
814  /* Find the right place in this list. We store them by
815  * stream ID and then by SSN.
816  */
817  skb_queue_walk(&ulpq->lobby, pos) {
818  cevent = (struct sctp_ulpevent *) pos->cb;
819  csid = cevent->stream;
820  cssn = cevent->ssn;
821 
822  if (csid > sid)
823  break;
824  if (csid == sid && SSN_lt(ssn, cssn))
825  break;
826  }
827 
828 
829  /* Insert before pos. */
830  __skb_queue_before(&ulpq->lobby, pos, sctp_event2skb(event));
831 }
832 
833 static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *ulpq,
834  struct sctp_ulpevent *event)
835 {
836  __u16 sid, ssn;
837  struct sctp_stream *in;
838 
839  /* Check if this message needs ordering. */
840  if (SCTP_DATA_UNORDERED & event->msg_flags)
841  return event;
842 
843  /* Note: The stream ID must be verified before this routine. */
844  sid = event->stream;
845  ssn = event->ssn;
846  in = &ulpq->asoc->ssnmap->in;
847 
848  /* Is this the expected SSN for this stream ID? */
849  if (ssn != sctp_ssn_peek(in, sid)) {
850  /* We've received something out of order, so find where it
851  * needs to be placed. We order by stream and then by SSN.
852  */
853  sctp_ulpq_store_ordered(ulpq, event);
854  return NULL;
855  }
856 
857  /* Mark that the next chunk has been found. */
858  sctp_ssn_next(in, sid);
859 
860  /* Go find any other chunks that were waiting for
861  * ordering.
862  */
863  sctp_ulpq_retrieve_ordered(ulpq, event);
864 
865  return event;
866 }
867 
868 /* Helper function to gather skbs that have possibly become
869  * ordered by forward tsn skipping their dependencies.
870  */
871 static void sctp_ulpq_reap_ordered(struct sctp_ulpq *ulpq, __u16 sid)
872 {
873  struct sk_buff *pos, *tmp;
874  struct sctp_ulpevent *cevent;
875  struct sctp_ulpevent *event;
876  struct sctp_stream *in;
877  struct sk_buff_head temp;
878  struct sk_buff_head *lobby = &ulpq->lobby;
879  __u16 csid, cssn;
880 
881  in = &ulpq->asoc->ssnmap->in;
882 
883  /* We are holding the chunks by stream, by SSN. */
884  skb_queue_head_init(&temp);
885  event = NULL;
886  sctp_skb_for_each(pos, lobby, tmp) {
887  cevent = (struct sctp_ulpevent *) pos->cb;
888  csid = cevent->stream;
889  cssn = cevent->ssn;
890 
891  /* Have we gone too far? */
892  if (csid > sid)
893  break;
894 
895  /* Have we not gone far enough? */
896  if (csid < sid)
897  continue;
898 
899  /* see if this ssn has been marked by skipping */
900  if (!SSN_lt(cssn, sctp_ssn_peek(in, csid)))
901  break;
902 
903  __skb_unlink(pos, lobby);
904  if (!event)
905  /* Create a temporary list to collect chunks on. */
906  event = sctp_skb2event(pos);
907 
908  /* Attach all gathered skbs to the event. */
909  __skb_queue_tail(&temp, pos);
910  }
911 
912  /* If we didn't reap any data, see if the next expected SSN
913  * is next on the queue and if so, use that.
914  */
915  if (event == NULL && pos != (struct sk_buff *)lobby) {
916  cevent = (struct sctp_ulpevent *) pos->cb;
917  csid = cevent->stream;
918  cssn = cevent->ssn;
919 
920  if (csid == sid && cssn == sctp_ssn_peek(in, csid)) {
921  sctp_ssn_next(in, csid);
922  __skb_unlink(pos, lobby);
923  __skb_queue_tail(&temp, pos);
924  event = sctp_skb2event(pos);
925  }
926  }
927 
928  /* Send event to the ULP. 'event' is the sctp_ulpevent for
929  * very first SKB on the 'temp' list.
930  */
931  if (event) {
932  /* see if we have more ordered that we can deliver */
933  sctp_ulpq_retrieve_ordered(ulpq, event);
934  sctp_ulpq_tail_event(ulpq, event);
935  }
936 }
937 
938 /* Skip over an SSN. This is used during the processing of
939  * Forwared TSN chunk to skip over the abandoned ordered data
940  */
941 void sctp_ulpq_skip(struct sctp_ulpq *ulpq, __u16 sid, __u16 ssn)
942 {
943  struct sctp_stream *in;
944 
945  /* Note: The stream ID must be verified before this routine. */
946  in = &ulpq->asoc->ssnmap->in;
947 
948  /* Is this an old SSN? If so ignore. */
949  if (SSN_lt(ssn, sctp_ssn_peek(in, sid)))
950  return;
951 
952  /* Mark that we are no longer expecting this SSN or lower. */
953  sctp_ssn_skip(in, sid, ssn);
954 
955  /* Go find any other chunks that were waiting for
956  * ordering and deliver them if needed.
957  */
958  sctp_ulpq_reap_ordered(ulpq, sid);
959 }
960 
961 static __u16 sctp_ulpq_renege_list(struct sctp_ulpq *ulpq,
962  struct sk_buff_head *list, __u16 needed)
963 {
964  __u16 freed = 0;
965  __u32 tsn;
966  struct sk_buff *skb;
967  struct sctp_ulpevent *event;
968  struct sctp_tsnmap *tsnmap;
969 
970  tsnmap = &ulpq->asoc->peer.tsn_map;
971 
972  while ((skb = __skb_dequeue_tail(list)) != NULL) {
973  freed += skb_headlen(skb);
974  event = sctp_skb2event(skb);
975  tsn = event->tsn;
976 
977  sctp_ulpevent_free(event);
978  sctp_tsnmap_renege(tsnmap, tsn);
979  if (freed >= needed)
980  return freed;
981  }
982 
983  return freed;
984 }
985 
986 /* Renege 'needed' bytes from the ordering queue. */
987 static __u16 sctp_ulpq_renege_order(struct sctp_ulpq *ulpq, __u16 needed)
988 {
989  return sctp_ulpq_renege_list(ulpq, &ulpq->lobby, needed);
990 }
991 
992 /* Renege 'needed' bytes from the reassembly queue. */
993 static __u16 sctp_ulpq_renege_frags(struct sctp_ulpq *ulpq, __u16 needed)
994 {
995  return sctp_ulpq_renege_list(ulpq, &ulpq->reasm, needed);
996 }
997 
998 /* Partial deliver the first message as there is pressure on rwnd. */
1000  struct sctp_chunk *chunk,
1001  gfp_t gfp)
1002 {
1003  struct sctp_ulpevent *event;
1004  struct sctp_association *asoc;
1005  struct sctp_sock *sp;
1006 
1007  asoc = ulpq->asoc;
1008  sp = sctp_sk(asoc->base.sk);
1009 
1010  /* If the association is already in Partial Delivery mode
1011  * we have noting to do.
1012  */
1013  if (ulpq->pd_mode)
1014  return;
1015 
1016  /* If the user enabled fragment interleave socket option,
1017  * multiple associations can enter partial delivery.
1018  * Otherwise, we can only enter partial delivery if the
1019  * socket is not in partial deliver mode.
1020  */
1021  if (sp->frag_interleave || atomic_read(&sp->pd_mode) == 0) {
1022  /* Is partial delivery possible? */
1023  event = sctp_ulpq_retrieve_first(ulpq);
1024  /* Send event to the ULP. */
1025  if (event) {
1026  sctp_ulpq_tail_event(ulpq, event);
1027  sctp_ulpq_set_pd(ulpq);
1028  return;
1029  }
1030  }
1031 }
1032 
1033 /* Renege some packets to make room for an incoming chunk. */
1034 void sctp_ulpq_renege(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk,
1035  gfp_t gfp)
1036 {
1037  struct sctp_association *asoc;
1038  __u16 needed, freed;
1039 
1040  asoc = ulpq->asoc;
1041 
1042  if (chunk) {
1043  needed = ntohs(chunk->chunk_hdr->length);
1044  needed -= sizeof(sctp_data_chunk_t);
1045  } else
1046  needed = SCTP_DEFAULT_MAXWINDOW;
1047 
1048  freed = 0;
1049 
1050  if (skb_queue_empty(&asoc->base.sk->sk_receive_queue)) {
1051  freed = sctp_ulpq_renege_order(ulpq, needed);
1052  if (freed < needed) {
1053  freed += sctp_ulpq_renege_frags(ulpq, needed - freed);
1054  }
1055  }
1056  /* If able to free enough room, accept this chunk. */
1057  if (chunk && (freed >= needed)) {
1058  __u32 tsn;
1059  tsn = ntohl(chunk->subh.data_hdr->tsn);
1060  sctp_tsnmap_mark(&asoc->peer.tsn_map, tsn, chunk->transport);
1061  sctp_ulpq_tail_data(ulpq, chunk, gfp);
1062 
1063  sctp_ulpq_partial_delivery(ulpq, chunk, gfp);
1064  }
1065 
1066  sk_mem_reclaim(asoc->base.sk);
1067 }
1068 
1069 
1070 
1071 /* Notify the application if an association is aborted and in
1072  * partial delivery mode. Send up any pending received messages.
1073  */
1074 void sctp_ulpq_abort_pd(struct sctp_ulpq *ulpq, gfp_t gfp)
1075 {
1076  struct sctp_ulpevent *ev = NULL;
1077  struct sock *sk;
1078 
1079  if (!ulpq->pd_mode)
1080  return;
1081 
1082  sk = ulpq->asoc->base.sk;
1083  if (sctp_ulpevent_type_enabled(SCTP_PARTIAL_DELIVERY_EVENT,
1084  &sctp_sk(sk)->subscribe))
1085  ev = sctp_ulpevent_make_pdapi(ulpq->asoc,
1087  gfp);
1088  if (ev)
1089  __skb_queue_tail(&sk->sk_receive_queue, sctp_event2skb(ev));
1090 
1091  /* If there is data waiting, send it up the socket now. */
1092  if (sctp_ulpq_clear_pd(ulpq) || ev)
1093  sk->sk_data_ready(sk, 0);
1094 }