Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
vfp.h
Go to the documentation of this file.
1 /*
2  * linux/arch/arm/vfp/vfp.h
3  *
4  * Copyright (C) 2004 ARM Limited.
5  * Written by Deep Blue Solutions Limited.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift)
13 {
14  if (shift) {
15  if (shift < 32)
16  val = val >> shift | ((val << (32 - shift)) != 0);
17  else
18  val = val != 0;
19  }
20  return val;
21 }
22 
23 static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift)
24 {
25  if (shift) {
26  if (shift < 64)
27  val = val >> shift | ((val << (64 - shift)) != 0);
28  else
29  val = val != 0;
30  }
31  return val;
32 }
33 
34 static inline u32 vfp_hi64to32jamming(u64 val)
35 {
36  u32 v;
37 
38  asm(
39  "cmp %Q1, #1 @ vfp_hi64to32jamming\n\t"
40  "movcc %0, %R1\n\t"
41  "orrcs %0, %R1, #1"
42  : "=r" (v) : "r" (val) : "cc");
43 
44  return v;
45 }
46 
47 static inline void add128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
48 {
49  asm( "adds %Q0, %Q2, %Q4\n\t"
50  "adcs %R0, %R2, %R4\n\t"
51  "adcs %Q1, %Q3, %Q5\n\t"
52  "adc %R1, %R3, %R5"
53  : "=r" (nl), "=r" (nh)
54  : "0" (nl), "1" (nh), "r" (ml), "r" (mh)
55  : "cc");
56  *resh = nh;
57  *resl = nl;
58 }
59 
60 static inline void sub128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
61 {
62  asm( "subs %Q0, %Q2, %Q4\n\t"
63  "sbcs %R0, %R2, %R4\n\t"
64  "sbcs %Q1, %Q3, %Q5\n\t"
65  "sbc %R1, %R3, %R5\n\t"
66  : "=r" (nl), "=r" (nh)
67  : "0" (nl), "1" (nh), "r" (ml), "r" (mh)
68  : "cc");
69  *resh = nh;
70  *resl = nl;
71 }
72 
73 static inline void mul64to128(u64 *resh, u64 *resl, u64 n, u64 m)
74 {
75  u32 nh, nl, mh, ml;
76  u64 rh, rma, rmb, rl;
77 
78  nl = n;
79  ml = m;
80  rl = (u64)nl * ml;
81 
82  nh = n >> 32;
83  rma = (u64)nh * ml;
84 
85  mh = m >> 32;
86  rmb = (u64)nl * mh;
87  rma += rmb;
88 
89  rh = (u64)nh * mh;
90  rh += ((u64)(rma < rmb) << 32) + (rma >> 32);
91 
92  rma <<= 32;
93  rl += rma;
94  rh += (rl < rma);
95 
96  *resl = rl;
97  *resh = rh;
98 }
99 
100 static inline void shift64left(u64 *resh, u64 *resl, u64 n)
101 {
102  *resh = n >> 63;
103  *resl = n << 1;
104 }
105 
106 static inline u64 vfp_hi64multiply64(u64 n, u64 m)
107 {
108  u64 rh, rl;
109  mul64to128(&rh, &rl, n, m);
110  return rh | (rl != 0);
111 }
112 
113 static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m)
114 {
115  u64 mh, ml, remh, reml, termh, terml, z;
116 
117  if (nh >= m)
118  return ~0ULL;
119  mh = m >> 32;
120  if (mh << 32 <= nh) {
121  z = 0xffffffff00000000ULL;
122  } else {
123  z = nh;
124  do_div(z, mh);
125  z <<= 32;
126  }
127  mul64to128(&termh, &terml, m, z);
128  sub128(&remh, &reml, nh, nl, termh, terml);
129  ml = m << 32;
130  while ((s64)remh < 0) {
131  z -= 0x100000000ULL;
132  add128(&remh, &reml, remh, reml, mh, ml);
133  }
134  remh = (remh << 32) | (reml >> 32);
135  if (mh << 32 <= remh) {
136  z |= 0xffffffff;
137  } else {
138  do_div(remh, mh);
139  z |= remh;
140  }
141  return z;
142 }
143 
144 /*
145  * Operations on unpacked elements
146  */
147 #define vfp_sign_negate(sign) (sign ^ 0x8000)
148 
149 /*
150  * Single-precision
151  */
152 struct vfp_single {
156 };
157 
158 extern s32 vfp_get_float(unsigned int reg);
159 extern void vfp_put_float(s32 val, unsigned int reg);
160 
161 /*
162  * VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa
163  * VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent
164  * VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand
165  * which are not propagated to the float upon packing.
166  */
167 #define VFP_SINGLE_MANTISSA_BITS (23)
168 #define VFP_SINGLE_EXPONENT_BITS (8)
169 #define VFP_SINGLE_LOW_BITS (32 - VFP_SINGLE_MANTISSA_BITS - 2)
170 #define VFP_SINGLE_LOW_BITS_MASK ((1 << VFP_SINGLE_LOW_BITS) - 1)
171 
172 /*
173  * The bit in an unpacked float which indicates that it is a quiet NaN
174  */
175 #define VFP_SINGLE_SIGNIFICAND_QNAN (1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS))
176 
177 /*
178  * Operations on packed single-precision numbers
179  */
180 #define vfp_single_packed_sign(v) ((v) & 0x80000000)
181 #define vfp_single_packed_negate(v) ((v) ^ 0x80000000)
182 #define vfp_single_packed_abs(v) ((v) & ~0x80000000)
183 #define vfp_single_packed_exponent(v) (((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1))
184 #define vfp_single_packed_mantissa(v) ((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1))
185 
186 /*
187  * Unpack a single-precision float. Note that this returns the magnitude
188  * of the single-precision float mantissa with the 1. if necessary,
189  * aligned to bit 30.
190  */
191 static inline void vfp_single_unpack(struct vfp_single *s, s32 val)
192 {
194 
195  s->sign = vfp_single_packed_sign(val) >> 16,
197 
198  significand = (u32) val;
199  significand = (significand << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2;
200  if (s->exponent && s->exponent != 255)
201  significand |= 0x40000000;
203 }
204 
205 /*
206  * Re-pack a single-precision float. This assumes that the float is
207  * already normalised such that the MSB is bit 30, _not_ bit 31.
208  */
209 static inline s32 vfp_single_pack(struct vfp_single *s)
210 {
211  u32 val;
212  val = (s->sign << 16) +
215  return (s32)val;
216 }
217 
218 #define VFP_NUMBER (1<<0)
219 #define VFP_ZERO (1<<1)
220 #define VFP_DENORMAL (1<<2)
221 #define VFP_INFINITY (1<<3)
222 #define VFP_NAN (1<<4)
223 #define VFP_NAN_SIGNAL (1<<5)
224 
225 #define VFP_QNAN (VFP_NAN)
226 #define VFP_SNAN (VFP_NAN|VFP_NAN_SIGNAL)
227 
228 static inline int vfp_single_type(struct vfp_single *s)
229 {
230  int type = VFP_NUMBER;
231  if (s->exponent == 255) {
232  if (s->significand == 0)
233  type = VFP_INFINITY;
235  type = VFP_QNAN;
236  else
237  type = VFP_SNAN;
238  } else if (s->exponent == 0) {
239  if (s->significand == 0)
240  type |= VFP_ZERO;
241  else
242  type |= VFP_DENORMAL;
243  }
244  return type;
245 }
246 
247 #ifndef DEBUG
248 #define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except)
249 u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions);
250 #else
251 u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func);
252 #endif
253 
254 /*
255  * Double-precision
256  */
257 struct vfp_double {
261 };
262 
263 /*
264  * VFP_REG_ZERO is a special register number for vfp_get_double
265  * which returns (double)0.0. This is useful for the compare with
266  * zero instructions.
267  */
268 #ifdef CONFIG_VFPv3
269 #define VFP_REG_ZERO 32
270 #else
271 #define VFP_REG_ZERO 16
272 #endif
273 extern u64 vfp_get_double(unsigned int reg);
274 extern void vfp_put_double(u64 val, unsigned int reg);
275 
276 #define VFP_DOUBLE_MANTISSA_BITS (52)
277 #define VFP_DOUBLE_EXPONENT_BITS (11)
278 #define VFP_DOUBLE_LOW_BITS (64 - VFP_DOUBLE_MANTISSA_BITS - 2)
279 #define VFP_DOUBLE_LOW_BITS_MASK ((1 << VFP_DOUBLE_LOW_BITS) - 1)
280 
281 /*
282  * The bit in an unpacked double which indicates that it is a quiet NaN
283  */
284 #define VFP_DOUBLE_SIGNIFICAND_QNAN (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS))
285 
286 /*
287  * Operations on packed single-precision numbers
288  */
289 #define vfp_double_packed_sign(v) ((v) & (1ULL << 63))
290 #define vfp_double_packed_negate(v) ((v) ^ (1ULL << 63))
291 #define vfp_double_packed_abs(v) ((v) & ~(1ULL << 63))
292 #define vfp_double_packed_exponent(v) (((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1))
293 #define vfp_double_packed_mantissa(v) ((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1))
294 
295 /*
296  * Unpack a double-precision float. Note that this returns the magnitude
297  * of the double-precision float mantissa with the 1. if necessary,
298  * aligned to bit 62.
299  */
300 static inline void vfp_double_unpack(struct vfp_double *s, s64 val)
301 {
303 
304  s->sign = vfp_double_packed_sign(val) >> 48;
306 
307  significand = (u64) val;
308  significand = (significand << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2;
309  if (s->exponent && s->exponent != 2047)
310  significand |= (1ULL << 62);
312 }
313 
314 /*
315  * Re-pack a double-precision float. This assumes that the float is
316  * already normalised such that the MSB is bit 30, _not_ bit 31.
317  */
318 static inline s64 vfp_double_pack(struct vfp_double *s)
319 {
320  u64 val;
321  val = ((u64)s->sign << 48) +
324  return (s64)val;
325 }
326 
327 static inline int vfp_double_type(struct vfp_double *s)
328 {
329  int type = VFP_NUMBER;
330  if (s->exponent == 2047) {
331  if (s->significand == 0)
332  type = VFP_INFINITY;
334  type = VFP_QNAN;
335  else
336  type = VFP_SNAN;
337  } else if (s->exponent == 0) {
338  if (s->significand == 0)
339  type |= VFP_ZERO;
340  else
341  type |= VFP_DENORMAL;
342  }
343  return type;
344 }
345 
346 u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func);
347 
349 
350 /*
351  * A special flag to tell the normalisation code not to normalise.
352  */
353 #define VFP_NAN_FLAG 0x100
354 
355 /*
356  * A bit pattern used to indicate the initial (unset) value of the
357  * exception mask, in case nothing handles an instruction. This
358  * doesn't include the NAN flag, which get masked out before
359  * we check for an error.
360  */
361 #define VFP_EXCEPTION_ERROR ((u32)-1 & ~VFP_NAN_FLAG)
362 
363 /*
364  * A flag to tell vfp instruction type.
365  * OP_SCALAR - this operation always operates in scalar mode
366  * OP_SD - the instruction exceptionally writes to a single precision result.
367  * OP_DD - the instruction exceptionally writes to a double precision result.
368  * OP_SM - the instruction exceptionally reads from a single precision operand.
369  */
370 #define OP_SCALAR (1 << 0)
371 #define OP_SD (1 << 1)
372 #define OP_DD (1 << 1)
373 #define OP_SM (1 << 2)
374 
375 struct op {
376  u32 (* const fn)(int dd, int dn, int dm, u32 fpscr);
378 };
379 
380 extern void vfp_save_state(void *location, u32 fpexc);