Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
vfpmodule.c
Go to the documentation of this file.
1 /*
2  * linux/arch/arm/vfp/vfpmodule.c
3  *
4  * Copyright (C) 2004 ARM Limited.
5  * Written by Deep Blue Solutions Limited.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/types.h>
12 #include <linux/cpu.h>
13 #include <linux/cpu_pm.h>
14 #include <linux/hardirq.h>
15 #include <linux/kernel.h>
16 #include <linux/notifier.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/uaccess.h>
22 #include <linux/user.h>
23 
24 #include <asm/cp15.h>
25 #include <asm/cputype.h>
26 #include <asm/system_info.h>
27 #include <asm/thread_notify.h>
28 #include <asm/vfp.h>
29 
30 #include "vfpinstr.h"
31 #include "vfp.h"
32 
33 /*
34  * Our undef handlers (in entry.S)
35  */
36 void vfp_testing_entry(void);
37 void vfp_support_entry(void);
38 void vfp_null_entry(void);
39 
41 
42 /*
43  * Dual-use variable.
44  * Used in startup: set to non-zero if VFP checks fail
45  * After startup, holds VFP architecture
46  */
47 unsigned int VFP_arch;
48 
49 /*
50  * The pointer to the vfpstate structure of the thread which currently
51  * owns the context held in the VFP hardware, or NULL if the hardware
52  * context is invalid.
53  *
54  * For UP, this is sufficient to tell which thread owns the VFP context.
55  * However, for SMP, we also need to check the CPU number stored in the
56  * saved state too to catch migrations.
57  */
59 
60 /*
61  * Is 'thread's most up to date state stored in this CPUs hardware?
62  * Must be called from non-preemptible context.
63  */
64 static bool vfp_state_in_hw(unsigned int cpu, struct thread_info *thread)
65 {
66 #ifdef CONFIG_SMP
67  if (thread->vfpstate.hard.cpu != cpu)
68  return false;
69 #endif
70  return vfp_current_hw_state[cpu] == &thread->vfpstate;
71 }
72 
73 /*
74  * Force a reload of the VFP context from the thread structure. We do
75  * this by ensuring that access to the VFP hardware is disabled, and
76  * clear vfp_current_hw_state. Must be called from non-preemptible context.
77  */
78 static void vfp_force_reload(unsigned int cpu, struct thread_info *thread)
79 {
80  if (vfp_state_in_hw(cpu, thread)) {
82  vfp_current_hw_state[cpu] = NULL;
83  }
84 #ifdef CONFIG_SMP
85  thread->vfpstate.hard.cpu = NR_CPUS;
86 #endif
87 }
88 
89 /*
90  * Per-thread VFP initialization.
91  */
92 static void vfp_thread_flush(struct thread_info *thread)
93 {
94  union vfp_state *vfp = &thread->vfpstate;
95  unsigned int cpu;
96 
97  /*
98  * Disable VFP to ensure we initialize it first. We must ensure
99  * that the modification of vfp_current_hw_state[] and hardware
100  * disable are done for the same CPU and without preemption.
101  *
102  * Do this first to ensure that preemption won't overwrite our
103  * state saving should access to the VFP be enabled at this point.
104  */
105  cpu = get_cpu();
106  if (vfp_current_hw_state[cpu] == vfp)
107  vfp_current_hw_state[cpu] = NULL;
108  fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
109  put_cpu();
110 
111  memset(vfp, 0, sizeof(union vfp_state));
112 
113  vfp->hard.fpexc = FPEXC_EN;
114  vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
115 #ifdef CONFIG_SMP
116  vfp->hard.cpu = NR_CPUS;
117 #endif
118 }
119 
120 static void vfp_thread_exit(struct thread_info *thread)
121 {
122  /* release case: Per-thread VFP cleanup. */
123  union vfp_state *vfp = &thread->vfpstate;
124  unsigned int cpu = get_cpu();
125 
126  if (vfp_current_hw_state[cpu] == vfp)
127  vfp_current_hw_state[cpu] = NULL;
128  put_cpu();
129 }
130 
131 static void vfp_thread_copy(struct thread_info *thread)
132 {
134 
135  vfp_sync_hwstate(parent);
136  thread->vfpstate = parent->vfpstate;
137 #ifdef CONFIG_SMP
138  thread->vfpstate.hard.cpu = NR_CPUS;
139 #endif
140 }
141 
142 /*
143  * When this function is called with the following 'cmd's, the following
144  * is true while this function is being run:
145  * THREAD_NOFTIFY_SWTICH:
146  * - the previously running thread will not be scheduled onto another CPU.
147  * - the next thread to be run (v) will not be running on another CPU.
148  * - thread->cpu is the local CPU number
149  * - not preemptible as we're called in the middle of a thread switch
150  * THREAD_NOTIFY_FLUSH:
151  * - the thread (v) will be running on the local CPU, so
152  * v === current_thread_info()
153  * - thread->cpu is the local CPU number at the time it is accessed,
154  * but may change at any time.
155  * - we could be preempted if tree preempt rcu is enabled, so
156  * it is unsafe to use thread->cpu.
157  * THREAD_NOTIFY_EXIT
158  * - the thread (v) will be running on the local CPU, so
159  * v === current_thread_info()
160  * - thread->cpu is the local CPU number at the time it is accessed,
161  * but may change at any time.
162  * - we could be preempted if tree preempt rcu is enabled, so
163  * it is unsafe to use thread->cpu.
164  */
165 static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
166 {
167  struct thread_info *thread = v;
168  u32 fpexc;
169 #ifdef CONFIG_SMP
170  unsigned int cpu;
171 #endif
172 
173  switch (cmd) {
174  case THREAD_NOTIFY_SWITCH:
175  fpexc = fmrx(FPEXC);
176 
177 #ifdef CONFIG_SMP
178  cpu = thread->cpu;
179 
180  /*
181  * On SMP, if VFP is enabled, save the old state in
182  * case the thread migrates to a different CPU. The
183  * restoring is done lazily.
184  */
185  if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu])
186  vfp_save_state(vfp_current_hw_state[cpu], fpexc);
187 #endif
188 
189  /*
190  * Always disable VFP so we can lazily save/restore the
191  * old state.
192  */
193  fmxr(FPEXC, fpexc & ~FPEXC_EN);
194  break;
195 
196  case THREAD_NOTIFY_FLUSH:
197  vfp_thread_flush(thread);
198  break;
199 
200  case THREAD_NOTIFY_EXIT:
201  vfp_thread_exit(thread);
202  break;
203 
204  case THREAD_NOTIFY_COPY:
205  vfp_thread_copy(thread);
206  break;
207  }
208 
209  return NOTIFY_DONE;
210 }
211 
212 static struct notifier_block vfp_notifier_block = {
213  .notifier_call = vfp_notifier,
214 };
215 
216 /*
217  * Raise a SIGFPE for the current process.
218  * sicode describes the signal being raised.
219  */
220 static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
221 {
222  siginfo_t info;
223 
224  memset(&info, 0, sizeof(info));
225 
226  info.si_signo = SIGFPE;
227  info.si_code = sicode;
228  info.si_addr = (void __user *)(instruction_pointer(regs) - 4);
229 
230  /*
231  * This is the same as NWFPE, because it's not clear what
232  * this is used for
233  */
234  current->thread.error_code = 0;
235  current->thread.trap_no = 6;
236 
237  send_sig_info(SIGFPE, &info, current);
238 }
239 
240 static void vfp_panic(char *reason, u32 inst)
241 {
242  int i;
243 
244  pr_err("VFP: Error: %s\n", reason);
245  pr_err("VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
246  fmrx(FPEXC), fmrx(FPSCR), inst);
247  for (i = 0; i < 32; i += 2)
248  pr_err("VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
249  i, vfp_get_float(i), i+1, vfp_get_float(i+1));
250 }
251 
252 /*
253  * Process bitmask of exception conditions.
254  */
255 static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
256 {
257  int si_code = 0;
258 
259  pr_debug("VFP: raising exceptions %08x\n", exceptions);
260 
261  if (exceptions == VFP_EXCEPTION_ERROR) {
262  vfp_panic("unhandled bounce", inst);
263  vfp_raise_sigfpe(0, regs);
264  return;
265  }
266 
267  /*
268  * If any of the status flags are set, update the FPSCR.
269  * Comparison instructions always return at least one of
270  * these flags set.
271  */
272  if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
273  fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
274 
275  fpscr |= exceptions;
276 
277  fmxr(FPSCR, fpscr);
278 
279 #define RAISE(stat,en,sig) \
280  if (exceptions & stat && fpscr & en) \
281  si_code = sig;
282 
283  /*
284  * These are arranged in priority order, least to highest.
285  */
291 
292  if (si_code)
293  vfp_raise_sigfpe(si_code, regs);
294 }
295 
296 /*
297  * Emulate a VFP instruction.
298  */
299 static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
300 {
301  u32 exceptions = VFP_EXCEPTION_ERROR;
302 
303  pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
304 
305  if (INST_CPRTDO(inst)) {
306  if (!INST_CPRT(inst)) {
307  /*
308  * CPDO
309  */
310  if (vfp_single(inst)) {
311  exceptions = vfp_single_cpdo(inst, fpscr);
312  } else {
313  exceptions = vfp_double_cpdo(inst, fpscr);
314  }
315  } else {
316  /*
317  * A CPRT instruction can not appear in FPINST2, nor
318  * can it cause an exception. Therefore, we do not
319  * have to emulate it.
320  */
321  }
322  } else {
323  /*
324  * A CPDT instruction can not appear in FPINST2, nor can
325  * it cause an exception. Therefore, we do not have to
326  * emulate it.
327  */
328  }
329  return exceptions & ~VFP_NAN_FLAG;
330 }
331 
332 /*
333  * Package up a bounce condition.
334  */
335 void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
336 {
337  u32 fpscr, orig_fpscr, fpsid, exceptions;
338 
339  pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
340 
341  /*
342  * At this point, FPEXC can have the following configuration:
343  *
344  * EX DEX IXE
345  * 0 1 x - synchronous exception
346  * 1 x 0 - asynchronous exception
347  * 1 x 1 - sychronous on VFP subarch 1 and asynchronous on later
348  * 0 0 1 - synchronous on VFP9 (non-standard subarch 1
349  * implementation), undefined otherwise
350  *
351  * Clear various bits and enable access to the VFP so we can
352  * handle the bounce.
353  */
355 
356  fpsid = fmrx(FPSID);
357  orig_fpscr = fpscr = fmrx(FPSCR);
358 
359  /*
360  * Check for the special VFP subarch 1 and FPSCR.IXE bit case
361  */
362  if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
363  && (fpscr & FPSCR_IXE)) {
364  /*
365  * Synchronous exception, emulate the trigger instruction
366  */
367  goto emulate;
368  }
369 
370  if (fpexc & FPEXC_EX) {
371 #ifndef CONFIG_CPU_FEROCEON
372  /*
373  * Asynchronous exception. The instruction is read from FPINST
374  * and the interrupted instruction has to be restarted.
375  */
376  trigger = fmrx(FPINST);
377  regs->ARM_pc -= 4;
378 #endif
379  } else if (!(fpexc & FPEXC_DEX)) {
380  /*
381  * Illegal combination of bits. It can be caused by an
382  * unallocated VFP instruction but with FPSCR.IXE set and not
383  * on VFP subarch 1.
384  */
385  vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
386  goto exit;
387  }
388 
389  /*
390  * Modify fpscr to indicate the number of iterations remaining.
391  * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
392  * whether FPEXC.VECITR or FPSCR.LEN is used.
393  */
394  if (fpexc & (FPEXC_EX | FPEXC_VV)) {
395  u32 len;
396 
397  len = fpexc + (1 << FPEXC_LENGTH_BIT);
398 
399  fpscr &= ~FPSCR_LENGTH_MASK;
400  fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
401  }
402 
403  /*
404  * Handle the first FP instruction. We used to take note of the
405  * FPEXC bounce reason, but this appears to be unreliable.
406  * Emulate the bounced instruction instead.
407  */
408  exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
409  if (exceptions)
410  vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
411 
412  /*
413  * If there isn't a second FP instruction, exit now. Note that
414  * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
415  */
416  if (fpexc ^ (FPEXC_EX | FPEXC_FP2V))
417  goto exit;
418 
419  /*
420  * The barrier() here prevents fpinst2 being read
421  * before the condition above.
422  */
423  barrier();
424  trigger = fmrx(FPINST2);
425 
426  emulate:
427  exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
428  if (exceptions)
429  vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
430  exit:
431  preempt_enable();
432 }
433 
434 static void vfp_enable(void *unused)
435 {
436  u32 access;
437 
438  BUG_ON(preemptible());
439  access = get_copro_access();
440 
441  /*
442  * Enable full access to VFP (cp10 and cp11)
443  */
444  set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
445 }
446 
447 #ifdef CONFIG_CPU_PM
448 static int vfp_pm_suspend(void)
449 {
450  struct thread_info *ti = current_thread_info();
451  u32 fpexc = fmrx(FPEXC);
452 
453  /* if vfp is on, then save state for resumption */
454  if (fpexc & FPEXC_EN) {
455  pr_debug("%s: saving vfp state\n", __func__);
456  vfp_save_state(&ti->vfpstate, fpexc);
457 
458  /* disable, just in case */
459  fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
460  } else if (vfp_current_hw_state[ti->cpu]) {
461 #ifndef CONFIG_SMP
462  fmxr(FPEXC, fpexc | FPEXC_EN);
463  vfp_save_state(vfp_current_hw_state[ti->cpu], fpexc);
464  fmxr(FPEXC, fpexc);
465 #endif
466  }
467 
468  /* clear any information we had about last context state */
469  vfp_current_hw_state[ti->cpu] = NULL;
470 
471  return 0;
472 }
473 
474 static void vfp_pm_resume(void)
475 {
476  /* ensure we have access to the vfp */
477  vfp_enable(NULL);
478 
479  /* and disable it to ensure the next usage restores the state */
480  fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
481 }
482 
483 static int vfp_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd,
484  void *v)
485 {
486  switch (cmd) {
487  case CPU_PM_ENTER:
488  vfp_pm_suspend();
489  break;
490  case CPU_PM_ENTER_FAILED:
491  case CPU_PM_EXIT:
492  vfp_pm_resume();
493  break;
494  }
495  return NOTIFY_OK;
496 }
497 
498 static struct notifier_block vfp_cpu_pm_notifier_block = {
499  .notifier_call = vfp_cpu_pm_notifier,
500 };
501 
502 static void vfp_pm_init(void)
503 {
504  cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block);
505 }
506 
507 #else
508 static inline void vfp_pm_init(void) { }
509 #endif /* CONFIG_CPU_PM */
510 
511 /*
512  * Ensure that the VFP state stored in 'thread->vfpstate' is up to date
513  * with the hardware state.
514  */
515 void vfp_sync_hwstate(struct thread_info *thread)
516 {
517  unsigned int cpu = get_cpu();
518 
519  if (vfp_state_in_hw(cpu, thread)) {
520  u32 fpexc = fmrx(FPEXC);
521 
522  /*
523  * Save the last VFP state on this CPU.
524  */
525  fmxr(FPEXC, fpexc | FPEXC_EN);
526  vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
527  fmxr(FPEXC, fpexc);
528  }
529 
530  put_cpu();
531 }
532 
533 /* Ensure that the thread reloads the hardware VFP state on the next use. */
534 void vfp_flush_hwstate(struct thread_info *thread)
535 {
536  unsigned int cpu = get_cpu();
537 
538  vfp_force_reload(cpu, thread);
539 
540  put_cpu();
541 }
542 
543 /*
544  * Save the current VFP state into the provided structures and prepare
545  * for entry into a new function (signal handler).
546  */
548  struct user_vfp_exc __user *ufp_exc)
549 {
550  struct thread_info *thread = current_thread_info();
551  struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
552  int err = 0;
553 
554  /* Ensure that the saved hwstate is up-to-date. */
555  vfp_sync_hwstate(thread);
556 
557  /*
558  * Copy the floating point registers. There can be unused
559  * registers see asm/hwcap.h for details.
560  */
561  err |= __copy_to_user(&ufp->fpregs, &hwstate->fpregs,
562  sizeof(hwstate->fpregs));
563  /*
564  * Copy the status and control register.
565  */
566  __put_user_error(hwstate->fpscr, &ufp->fpscr, err);
567 
568  /*
569  * Copy the exception registers.
570  */
571  __put_user_error(hwstate->fpexc, &ufp_exc->fpexc, err);
572  __put_user_error(hwstate->fpinst, &ufp_exc->fpinst, err);
573  __put_user_error(hwstate->fpinst2, &ufp_exc->fpinst2, err);
574 
575  if (err)
576  return -EFAULT;
577 
578  /* Ensure that VFP is disabled. */
579  vfp_flush_hwstate(thread);
580 
581  /*
582  * As per the PCS, clear the length and stride bits for function
583  * entry.
584  */
585  hwstate->fpscr &= ~(FPSCR_LENGTH_MASK | FPSCR_STRIDE_MASK);
586  return 0;
587 }
588 
589 /* Sanitise and restore the current VFP state from the provided structures. */
591  struct user_vfp_exc __user *ufp_exc)
592 {
593  struct thread_info *thread = current_thread_info();
594  struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
595  unsigned long fpexc;
596  int err = 0;
597 
598  /* Disable VFP to avoid corrupting the new thread state. */
599  vfp_flush_hwstate(thread);
600 
601  /*
602  * Copy the floating point registers. There can be unused
603  * registers see asm/hwcap.h for details.
604  */
605  err |= __copy_from_user(&hwstate->fpregs, &ufp->fpregs,
606  sizeof(hwstate->fpregs));
607  /*
608  * Copy the status and control register.
609  */
610  __get_user_error(hwstate->fpscr, &ufp->fpscr, err);
611 
612  /*
613  * Sanitise and restore the exception registers.
614  */
615  __get_user_error(fpexc, &ufp_exc->fpexc, err);
616 
617  /* Ensure the VFP is enabled. */
618  fpexc |= FPEXC_EN;
619 
620  /* Ensure FPINST2 is invalid and the exception flag is cleared. */
621  fpexc &= ~(FPEXC_EX | FPEXC_FP2V);
622  hwstate->fpexc = fpexc;
623 
624  __get_user_error(hwstate->fpinst, &ufp_exc->fpinst, err);
625  __get_user_error(hwstate->fpinst2, &ufp_exc->fpinst2, err);
626 
627  return err ? -EFAULT : 0;
628 }
629 
630 /*
631  * VFP hardware can lose all context when a CPU goes offline.
632  * As we will be running in SMP mode with CPU hotplug, we will save the
633  * hardware state at every thread switch. We clear our held state when
634  * a CPU has been killed, indicating that the VFP hardware doesn't contain
635  * a threads VFP state. When a CPU starts up, we re-enable access to the
636  * VFP hardware.
637  *
638  * Both CPU_DYING and CPU_STARTING are called on the CPU which
639  * is being offlined/onlined.
640  */
641 static int vfp_hotplug(struct notifier_block *b, unsigned long action,
642  void *hcpu)
643 {
644  if (action == CPU_DYING || action == CPU_DYING_FROZEN) {
645  vfp_force_reload((long)hcpu, current_thread_info());
646  } else if (action == CPU_STARTING || action == CPU_STARTING_FROZEN)
647  vfp_enable(NULL);
648  return NOTIFY_OK;
649 }
650 
651 /*
652  * VFP support code initialisation.
653  */
654 static int __init vfp_init(void)
655 {
656  unsigned int vfpsid;
657  unsigned int cpu_arch = cpu_architecture();
658 
659  if (cpu_arch >= CPU_ARCH_ARMv6)
660  on_each_cpu(vfp_enable, NULL, 1);
661 
662  /*
663  * First check that there is a VFP that we can use.
664  * The handler is already setup to just log calls, so
665  * we just need to read the VFPSID register.
666  */
668  barrier();
669  vfpsid = fmrx(FPSID);
670  barrier();
672 
673  pr_info("VFP support v0.3: ");
674  if (VFP_arch)
675  pr_cont("not present\n");
676  else if (vfpsid & FPSID_NODOUBLE) {
677  pr_cont("no double precision support\n");
678  } else {
679  hotcpu_notifier(vfp_hotplug, 0);
680 
681  VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT; /* Extract the architecture version */
682  pr_cont("implementor %02x architecture %d part %02x variant %x rev %x\n",
684  (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT,
685  (vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
687  (vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
688 
690 
691  thread_register_notifier(&vfp_notifier_block);
692  vfp_pm_init();
693 
694  /*
695  * We detected VFP, and the support code is
696  * in place; report VFP support to userspace.
697  */
698  elf_hwcap |= HWCAP_VFP;
699 #ifdef CONFIG_VFPv3
700  if (VFP_arch >= 2) {
702 
703  /*
704  * Check for VFPv3 D16 and VFPv4 D16. CPUs in
705  * this configuration only have 16 x 64bit
706  * registers.
707  */
708  if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK)) == 1)
709  elf_hwcap |= HWCAP_VFPv3D16; /* also v4-D16 */
710  else
712  }
713 #endif
714  /*
715  * Check for the presence of the Advanced SIMD
716  * load/store instructions, integer and single
717  * precision floating point operations. Only check
718  * for NEON if the hardware has the MVFR registers.
719  */
720  if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
721 #ifdef CONFIG_NEON
722  if ((fmrx(MVFR1) & 0x000fff00) == 0x00011100)
724 #endif
725 #ifdef CONFIG_VFPv3
726  if ((fmrx(MVFR1) & 0xf0000000) == 0x10000000)
728 #endif
729  }
730  }
731  return 0;
732 }
733 
734 late_initcall(vfp_init);