Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
vfpsingle.c
Go to the documentation of this file.
1 /*
2  * linux/arch/arm/vfp/vfpsingle.c
3  *
4  * This code is derived in part from John R. Housers softfloat library, which
5  * carries the following notice:
6  *
7  * ===========================================================================
8  * This C source file is part of the SoftFloat IEC/IEEE Floating-point
9  * Arithmetic Package, Release 2.
10  *
11  * Written by John R. Hauser. This work was made possible in part by the
12  * International Computer Science Institute, located at Suite 600, 1947 Center
13  * Street, Berkeley, California 94704. Funding was partially provided by the
14  * National Science Foundation under grant MIP-9311980. The original version
15  * of this code was written as part of a project to build a fixed-point vector
16  * processor in collaboration with the University of California at Berkeley,
17  * overseen by Profs. Nelson Morgan and John Wawrzynek. More information
18  * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
19  * arithmetic/softfloat.html'.
20  *
21  * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
22  * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
23  * TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
24  * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
25  * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
26  *
27  * Derivative works are acceptable, even for commercial purposes, so long as
28  * (1) they include prominent notice that the work is derivative, and (2) they
29  * include prominent notice akin to these three paragraphs for those parts of
30  * this code that are retained.
31  * ===========================================================================
32  */
33 #include <linux/kernel.h>
34 #include <linux/bitops.h>
35 
36 #include <asm/div64.h>
37 #include <asm/vfp.h>
38 
39 #include "vfpinstr.h"
40 #include "vfp.h"
41 
42 static struct vfp_single vfp_single_default_qnan = {
43  .exponent = 255,
44  .sign = 0,
45  .significand = VFP_SINGLE_SIGNIFICAND_QNAN,
46 };
47 
48 static void vfp_single_dump(const char *str, struct vfp_single *s)
49 {
50  pr_debug("VFP: %s: sign=%d exponent=%d significand=%08x\n",
51  str, s->sign != 0, s->exponent, s->significand);
52 }
53 
54 static void vfp_single_normalise_denormal(struct vfp_single *vs)
55 {
56  int bits = 31 - fls(vs->significand);
57 
58  vfp_single_dump("normalise_denormal: in", vs);
59 
60  if (bits) {
61  vs->exponent -= bits - 1;
62  vs->significand <<= bits;
63  }
64 
65  vfp_single_dump("normalise_denormal: out", vs);
66 }
67 
68 #ifndef DEBUG
69 #define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except)
70 u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions)
71 #else
72 u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func)
73 #endif
74 {
75  u32 significand, incr, rmode;
76  int exponent, shift, underflow;
77 
78  vfp_single_dump("pack: in", vs);
79 
80  /*
81  * Infinities and NaNs are a special case.
82  */
83  if (vs->exponent == 255 && (vs->significand == 0 || exceptions))
84  goto pack;
85 
86  /*
87  * Special-case zero.
88  */
89  if (vs->significand == 0) {
90  vs->exponent = 0;
91  goto pack;
92  }
93 
94  exponent = vs->exponent;
95  significand = vs->significand;
96 
97  /*
98  * Normalise first. Note that we shift the significand up to
99  * bit 31, so we have VFP_SINGLE_LOW_BITS + 1 below the least
100  * significant bit.
101  */
102  shift = 32 - fls(significand);
103  if (shift < 32 && shift) {
104  exponent -= shift;
105  significand <<= shift;
106  }
107 
108 #ifdef DEBUG
109  vs->exponent = exponent;
110  vs->significand = significand;
111  vfp_single_dump("pack: normalised", vs);
112 #endif
113 
114  /*
115  * Tiny number?
116  */
117  underflow = exponent < 0;
118  if (underflow) {
119  significand = vfp_shiftright32jamming(significand, -exponent);
120  exponent = 0;
121 #ifdef DEBUG
122  vs->exponent = exponent;
123  vs->significand = significand;
124  vfp_single_dump("pack: tiny number", vs);
125 #endif
126  if (!(significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1)))
127  underflow = 0;
128  }
129 
130  /*
131  * Select rounding increment.
132  */
133  incr = 0;
134  rmode = fpscr & FPSCR_RMODE_MASK;
135 
136  if (rmode == FPSCR_ROUND_NEAREST) {
137  incr = 1 << VFP_SINGLE_LOW_BITS;
138  if ((significand & (1 << (VFP_SINGLE_LOW_BITS + 1))) == 0)
139  incr -= 1;
140  } else if (rmode == FPSCR_ROUND_TOZERO) {
141  incr = 0;
142  } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vs->sign != 0))
143  incr = (1 << (VFP_SINGLE_LOW_BITS + 1)) - 1;
144 
145  pr_debug("VFP: rounding increment = 0x%08x\n", incr);
146 
147  /*
148  * Is our rounding going to overflow?
149  */
150  if ((significand + incr) < significand) {
151  exponent += 1;
152  significand = (significand >> 1) | (significand & 1);
153  incr >>= 1;
154 #ifdef DEBUG
155  vs->exponent = exponent;
156  vs->significand = significand;
157  vfp_single_dump("pack: overflow", vs);
158 #endif
159  }
160 
161  /*
162  * If any of the low bits (which will be shifted out of the
163  * number) are non-zero, the result is inexact.
164  */
165  if (significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1))
166  exceptions |= FPSCR_IXC;
167 
168  /*
169  * Do our rounding.
170  */
171  significand += incr;
172 
173  /*
174  * Infinity?
175  */
176  if (exponent >= 254) {
177  exceptions |= FPSCR_OFC | FPSCR_IXC;
178  if (incr == 0) {
179  vs->exponent = 253;
180  vs->significand = 0x7fffffff;
181  } else {
182  vs->exponent = 255; /* infinity */
183  vs->significand = 0;
184  }
185  } else {
186  if (significand >> (VFP_SINGLE_LOW_BITS + 1) == 0)
187  exponent = 0;
188  if (exponent || significand > 0x80000000)
189  underflow = 0;
190  if (underflow)
191  exceptions |= FPSCR_UFC;
192  vs->exponent = exponent;
193  vs->significand = significand >> 1;
194  }
195 
196  pack:
197  vfp_single_dump("pack: final", vs);
198  {
199  s32 d = vfp_single_pack(vs);
200 #ifdef DEBUG
201  pr_debug("VFP: %s: d(s%d)=%08x exceptions=%08x\n", func,
202  sd, d, exceptions);
203 #endif
204  vfp_put_float(d, sd);
205  }
206 
207  return exceptions;
208 }
209 
210 /*
211  * Propagate the NaN, setting exceptions if it is signalling.
212  * 'n' is always a NaN. 'm' may be a number, NaN or infinity.
213  */
214 static u32
215 vfp_propagate_nan(struct vfp_single *vsd, struct vfp_single *vsn,
216  struct vfp_single *vsm, u32 fpscr)
217 {
218  struct vfp_single *nan;
219  int tn, tm = 0;
220 
221  tn = vfp_single_type(vsn);
222 
223  if (vsm)
224  tm = vfp_single_type(vsm);
225 
226  if (fpscr & FPSCR_DEFAULT_NAN)
227  /*
228  * Default NaN mode - always returns a quiet NaN
229  */
230  nan = &vfp_single_default_qnan;
231  else {
232  /*
233  * Contemporary mode - select the first signalling
234  * NAN, or if neither are signalling, the first
235  * quiet NAN.
236  */
237  if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN))
238  nan = vsn;
239  else
240  nan = vsm;
241  /*
242  * Make the NaN quiet.
243  */
245  }
246 
247  *vsd = *nan;
248 
249  /*
250  * If one was a signalling NAN, raise invalid operation.
251  */
252  return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG;
253 }
254 
255 
256 /*
257  * Extended operations
258  */
259 static u32 vfp_single_fabs(int sd, int unused, s32 m, u32 fpscr)
260 {
262  return 0;
263 }
264 
265 static u32 vfp_single_fcpy(int sd, int unused, s32 m, u32 fpscr)
266 {
267  vfp_put_float(m, sd);
268  return 0;
269 }
270 
271 static u32 vfp_single_fneg(int sd, int unused, s32 m, u32 fpscr)
272 {
274  return 0;
275 }
276 
277 static const u16 sqrt_oddadjust[] = {
278  0x0004, 0x0022, 0x005d, 0x00b1, 0x011d, 0x019f, 0x0236, 0x02e0,
279  0x039c, 0x0468, 0x0545, 0x0631, 0x072b, 0x0832, 0x0946, 0x0a67
280 };
281 
282 static const u16 sqrt_evenadjust[] = {
283  0x0a2d, 0x08af, 0x075a, 0x0629, 0x051a, 0x0429, 0x0356, 0x029e,
284  0x0200, 0x0179, 0x0109, 0x00af, 0x0068, 0x0034, 0x0012, 0x0002
285 };
286 
288 {
289  int index;
290  u32 z, a;
291 
292  if ((significand & 0xc0000000) != 0x40000000) {
293  printk(KERN_WARNING "VFP: estimate_sqrt: invalid significand\n");
294  }
295 
296  a = significand << 1;
297  index = (a >> 27) & 15;
298  if (exponent & 1) {
299  z = 0x4000 + (a >> 17) - sqrt_oddadjust[index];
300  z = ((a / z) << 14) + (z << 15);
301  a >>= 1;
302  } else {
303  z = 0x8000 + (a >> 17) - sqrt_evenadjust[index];
304  z = a / z + z;
305  z = (z >= 0x20000) ? 0xffff8000 : (z << 15);
306  if (z <= a)
307  return (s32)a >> 1;
308  }
309  {
310  u64 v = (u64)a << 31;
311  do_div(v, z);
312  return v + (z >> 1);
313  }
314 }
315 
316 static u32 vfp_single_fsqrt(int sd, int unused, s32 m, u32 fpscr)
317 {
318  struct vfp_single vsm, vsd;
319  int ret, tm;
320 
321  vfp_single_unpack(&vsm, m);
322  tm = vfp_single_type(&vsm);
323  if (tm & (VFP_NAN|VFP_INFINITY)) {
324  struct vfp_single *vsp = &vsd;
325 
326  if (tm & VFP_NAN)
327  ret = vfp_propagate_nan(vsp, &vsm, NULL, fpscr);
328  else if (vsm.sign == 0) {
329  sqrt_copy:
330  vsp = &vsm;
331  ret = 0;
332  } else {
333  sqrt_invalid:
334  vsp = &vfp_single_default_qnan;
335  ret = FPSCR_IOC;
336  }
337  vfp_put_float(vfp_single_pack(vsp), sd);
338  return ret;
339  }
340 
341  /*
342  * sqrt(+/- 0) == +/- 0
343  */
344  if (tm & VFP_ZERO)
345  goto sqrt_copy;
346 
347  /*
348  * Normalise a denormalised number
349  */
350  if (tm & VFP_DENORMAL)
351  vfp_single_normalise_denormal(&vsm);
352 
353  /*
354  * sqrt(<0) = invalid
355  */
356  if (vsm.sign)
357  goto sqrt_invalid;
358 
359  vfp_single_dump("sqrt", &vsm);
360 
361  /*
362  * Estimate the square root.
363  */
364  vsd.sign = 0;
365  vsd.exponent = ((vsm.exponent - 127) >> 1) + 127;
367 
368  vfp_single_dump("sqrt estimate", &vsd);
369 
370  /*
371  * And now adjust.
372  */
373  if ((vsd.significand & VFP_SINGLE_LOW_BITS_MASK) <= 5) {
374  if (vsd.significand < 2) {
375  vsd.significand = 0xffffffff;
376  } else {
377  u64 term;
378  s64 rem;
379  vsm.significand <<= !(vsm.exponent & 1);
380  term = (u64)vsd.significand * vsd.significand;
381  rem = ((u64)vsm.significand << 32) - term;
382 
383  pr_debug("VFP: term=%016llx rem=%016llx\n", term, rem);
384 
385  while (rem < 0) {
386  vsd.significand -= 1;
387  rem += ((u64)vsd.significand << 1) | 1;
388  }
389  vsd.significand |= rem != 0;
390  }
391  }
392  vsd.significand = vfp_shiftright32jamming(vsd.significand, 1);
393 
394  return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fsqrt");
395 }
396 
397 /*
398  * Equal := ZC
399  * Less than := N
400  * Greater than := C
401  * Unordered := CV
402  */
403 static u32 vfp_compare(int sd, int signal_on_qnan, s32 m, u32 fpscr)
404 {
405  s32 d;
406  u32 ret = 0;
407 
408  d = vfp_get_float(sd);
410  ret |= FPSCR_C | FPSCR_V;
411  if (signal_on_qnan || !(vfp_single_packed_mantissa(m) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
412  /*
413  * Signalling NaN, or signalling on quiet NaN
414  */
415  ret |= FPSCR_IOC;
416  }
417 
419  ret |= FPSCR_C | FPSCR_V;
420  if (signal_on_qnan || !(vfp_single_packed_mantissa(d) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
421  /*
422  * Signalling NaN, or signalling on quiet NaN
423  */
424  ret |= FPSCR_IOC;
425  }
426 
427  if (ret == 0) {
428  if (d == m || vfp_single_packed_abs(d | m) == 0) {
429  /*
430  * equal
431  */
432  ret |= FPSCR_Z | FPSCR_C;
433  } else if (vfp_single_packed_sign(d ^ m)) {
434  /*
435  * different signs
436  */
437  if (vfp_single_packed_sign(d))
438  /*
439  * d is negative, so d < m
440  */
441  ret |= FPSCR_N;
442  else
443  /*
444  * d is positive, so d > m
445  */
446  ret |= FPSCR_C;
447  } else if ((vfp_single_packed_sign(d) != 0) ^ (d < m)) {
448  /*
449  * d < m
450  */
451  ret |= FPSCR_N;
452  } else if ((vfp_single_packed_sign(d) != 0) ^ (d > m)) {
453  /*
454  * d > m
455  */
456  ret |= FPSCR_C;
457  }
458  }
459  return ret;
460 }
461 
462 static u32 vfp_single_fcmp(int sd, int unused, s32 m, u32 fpscr)
463 {
464  return vfp_compare(sd, 0, m, fpscr);
465 }
466 
467 static u32 vfp_single_fcmpe(int sd, int unused, s32 m, u32 fpscr)
468 {
469  return vfp_compare(sd, 1, m, fpscr);
470 }
471 
472 static u32 vfp_single_fcmpz(int sd, int unused, s32 m, u32 fpscr)
473 {
474  return vfp_compare(sd, 0, 0, fpscr);
475 }
476 
477 static u32 vfp_single_fcmpez(int sd, int unused, s32 m, u32 fpscr)
478 {
479  return vfp_compare(sd, 1, 0, fpscr);
480 }
481 
482 static u32 vfp_single_fcvtd(int dd, int unused, s32 m, u32 fpscr)
483 {
484  struct vfp_single vsm;
485  struct vfp_double vdd;
486  int tm;
487  u32 exceptions = 0;
488 
489  vfp_single_unpack(&vsm, m);
490 
491  tm = vfp_single_type(&vsm);
492 
493  /*
494  * If we have a signalling NaN, signal invalid operation.
495  */
496  if (tm == VFP_SNAN)
497  exceptions = FPSCR_IOC;
498 
499  if (tm & VFP_DENORMAL)
500  vfp_single_normalise_denormal(&vsm);
501 
502  vdd.sign = vsm.sign;
503  vdd.significand = (u64)vsm.significand << 32;
504 
505  /*
506  * If we have an infinity or NaN, the exponent must be 2047.
507  */
508  if (tm & (VFP_INFINITY|VFP_NAN)) {
509  vdd.exponent = 2047;
510  if (tm == VFP_QNAN)
511  vdd.significand |= VFP_DOUBLE_SIGNIFICAND_QNAN;
512  goto pack_nan;
513  } else if (tm & VFP_ZERO)
514  vdd.exponent = 0;
515  else
516  vdd.exponent = vsm.exponent + (1023 - 127);
517 
518  return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fcvtd");
519 
520  pack_nan:
521  vfp_put_double(vfp_double_pack(&vdd), dd);
522  return exceptions;
523 }
524 
525 static u32 vfp_single_fuito(int sd, int unused, s32 m, u32 fpscr)
526 {
527  struct vfp_single vs;
528 
529  vs.sign = 0;
530  vs.exponent = 127 + 31 - 1;
531  vs.significand = (u32)m;
532 
533  return vfp_single_normaliseround(sd, &vs, fpscr, 0, "fuito");
534 }
535 
536 static u32 vfp_single_fsito(int sd, int unused, s32 m, u32 fpscr)
537 {
538  struct vfp_single vs;
539 
540  vs.sign = (m & 0x80000000) >> 16;
541  vs.exponent = 127 + 31 - 1;
542  vs.significand = vs.sign ? -m : m;
543 
544  return vfp_single_normaliseround(sd, &vs, fpscr, 0, "fsito");
545 }
546 
547 static u32 vfp_single_ftoui(int sd, int unused, s32 m, u32 fpscr)
548 {
549  struct vfp_single vsm;
550  u32 d, exceptions = 0;
551  int rmode = fpscr & FPSCR_RMODE_MASK;
552  int tm;
553 
554  vfp_single_unpack(&vsm, m);
555  vfp_single_dump("VSM", &vsm);
556 
557  /*
558  * Do we have a denormalised number?
559  */
560  tm = vfp_single_type(&vsm);
561  if (tm & VFP_DENORMAL)
562  exceptions |= FPSCR_IDC;
563 
564  if (tm & VFP_NAN)
565  vsm.sign = 0;
566 
567  if (vsm.exponent >= 127 + 32) {
568  d = vsm.sign ? 0 : 0xffffffff;
569  exceptions = FPSCR_IOC;
570  } else if (vsm.exponent >= 127 - 1) {
571  int shift = 127 + 31 - vsm.exponent;
572  u32 rem, incr = 0;
573 
574  /*
575  * 2^0 <= m < 2^32-2^8
576  */
577  d = (vsm.significand << 1) >> shift;
578  rem = vsm.significand << (33 - shift);
579 
580  if (rmode == FPSCR_ROUND_NEAREST) {
581  incr = 0x80000000;
582  if ((d & 1) == 0)
583  incr -= 1;
584  } else if (rmode == FPSCR_ROUND_TOZERO) {
585  incr = 0;
586  } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) {
587  incr = ~0;
588  }
589 
590  if ((rem + incr) < rem) {
591  if (d < 0xffffffff)
592  d += 1;
593  else
594  exceptions |= FPSCR_IOC;
595  }
596 
597  if (d && vsm.sign) {
598  d = 0;
599  exceptions |= FPSCR_IOC;
600  } else if (rem)
601  exceptions |= FPSCR_IXC;
602  } else {
603  d = 0;
604  if (vsm.exponent | vsm.significand) {
605  exceptions |= FPSCR_IXC;
606  if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0)
607  d = 1;
608  else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign) {
609  d = 0;
610  exceptions |= FPSCR_IOC;
611  }
612  }
613  }
614 
615  pr_debug("VFP: ftoui: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
616 
617  vfp_put_float(d, sd);
618 
619  return exceptions;
620 }
621 
622 static u32 vfp_single_ftouiz(int sd, int unused, s32 m, u32 fpscr)
623 {
624  return vfp_single_ftoui(sd, unused, m, FPSCR_ROUND_TOZERO);
625 }
626 
627 static u32 vfp_single_ftosi(int sd, int unused, s32 m, u32 fpscr)
628 {
629  struct vfp_single vsm;
630  u32 d, exceptions = 0;
631  int rmode = fpscr & FPSCR_RMODE_MASK;
632  int tm;
633 
634  vfp_single_unpack(&vsm, m);
635  vfp_single_dump("VSM", &vsm);
636 
637  /*
638  * Do we have a denormalised number?
639  */
640  tm = vfp_single_type(&vsm);
641  if (vfp_single_type(&vsm) & VFP_DENORMAL)
642  exceptions |= FPSCR_IDC;
643 
644  if (tm & VFP_NAN) {
645  d = 0;
646  exceptions |= FPSCR_IOC;
647  } else if (vsm.exponent >= 127 + 32) {
648  /*
649  * m >= 2^31-2^7: invalid
650  */
651  d = 0x7fffffff;
652  if (vsm.sign)
653  d = ~d;
654  exceptions |= FPSCR_IOC;
655  } else if (vsm.exponent >= 127 - 1) {
656  int shift = 127 + 31 - vsm.exponent;
657  u32 rem, incr = 0;
658 
659  /* 2^0 <= m <= 2^31-2^7 */
660  d = (vsm.significand << 1) >> shift;
661  rem = vsm.significand << (33 - shift);
662 
663  if (rmode == FPSCR_ROUND_NEAREST) {
664  incr = 0x80000000;
665  if ((d & 1) == 0)
666  incr -= 1;
667  } else if (rmode == FPSCR_ROUND_TOZERO) {
668  incr = 0;
669  } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) {
670  incr = ~0;
671  }
672 
673  if ((rem + incr) < rem && d < 0xffffffff)
674  d += 1;
675  if (d > 0x7fffffff + (vsm.sign != 0)) {
676  d = 0x7fffffff + (vsm.sign != 0);
677  exceptions |= FPSCR_IOC;
678  } else if (rem)
679  exceptions |= FPSCR_IXC;
680 
681  if (vsm.sign)
682  d = -d;
683  } else {
684  d = 0;
685  if (vsm.exponent | vsm.significand) {
686  exceptions |= FPSCR_IXC;
687  if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0)
688  d = 1;
689  else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign)
690  d = -1;
691  }
692  }
693 
694  pr_debug("VFP: ftosi: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
695 
696  vfp_put_float((s32)d, sd);
697 
698  return exceptions;
699 }
700 
701 static u32 vfp_single_ftosiz(int sd, int unused, s32 m, u32 fpscr)
702 {
703  return vfp_single_ftosi(sd, unused, m, FPSCR_ROUND_TOZERO);
704 }
705 
706 static struct op fops_ext[32] = {
707  [FEXT_TO_IDX(FEXT_FCPY)] = { vfp_single_fcpy, 0 },
708  [FEXT_TO_IDX(FEXT_FABS)] = { vfp_single_fabs, 0 },
709  [FEXT_TO_IDX(FEXT_FNEG)] = { vfp_single_fneg, 0 },
710  [FEXT_TO_IDX(FEXT_FSQRT)] = { vfp_single_fsqrt, 0 },
711  [FEXT_TO_IDX(FEXT_FCMP)] = { vfp_single_fcmp, OP_SCALAR },
712  [FEXT_TO_IDX(FEXT_FCMPE)] = { vfp_single_fcmpe, OP_SCALAR },
713  [FEXT_TO_IDX(FEXT_FCMPZ)] = { vfp_single_fcmpz, OP_SCALAR },
714  [FEXT_TO_IDX(FEXT_FCMPEZ)] = { vfp_single_fcmpez, OP_SCALAR },
715  [FEXT_TO_IDX(FEXT_FCVT)] = { vfp_single_fcvtd, OP_SCALAR|OP_DD },
716  [FEXT_TO_IDX(FEXT_FUITO)] = { vfp_single_fuito, OP_SCALAR },
717  [FEXT_TO_IDX(FEXT_FSITO)] = { vfp_single_fsito, OP_SCALAR },
718  [FEXT_TO_IDX(FEXT_FTOUI)] = { vfp_single_ftoui, OP_SCALAR },
719  [FEXT_TO_IDX(FEXT_FTOUIZ)] = { vfp_single_ftouiz, OP_SCALAR },
720  [FEXT_TO_IDX(FEXT_FTOSI)] = { vfp_single_ftosi, OP_SCALAR },
721  [FEXT_TO_IDX(FEXT_FTOSIZ)] = { vfp_single_ftosiz, OP_SCALAR },
722 };
723 
724 
725 
726 
727 
728 static u32
729 vfp_single_fadd_nonnumber(struct vfp_single *vsd, struct vfp_single *vsn,
730  struct vfp_single *vsm, u32 fpscr)
731 {
732  struct vfp_single *vsp;
733  u32 exceptions = 0;
734  int tn, tm;
735 
736  tn = vfp_single_type(vsn);
737  tm = vfp_single_type(vsm);
738 
739  if (tn & tm & VFP_INFINITY) {
740  /*
741  * Two infinities. Are they different signs?
742  */
743  if (vsn->sign ^ vsm->sign) {
744  /*
745  * different signs -> invalid
746  */
747  exceptions = FPSCR_IOC;
748  vsp = &vfp_single_default_qnan;
749  } else {
750  /*
751  * same signs -> valid
752  */
753  vsp = vsn;
754  }
755  } else if (tn & VFP_INFINITY && tm & VFP_NUMBER) {
756  /*
757  * One infinity and one number -> infinity
758  */
759  vsp = vsn;
760  } else {
761  /*
762  * 'n' is a NaN of some type
763  */
764  return vfp_propagate_nan(vsd, vsn, vsm, fpscr);
765  }
766  *vsd = *vsp;
767  return exceptions;
768 }
769 
770 static u32
771 vfp_single_add(struct vfp_single *vsd, struct vfp_single *vsn,
772  struct vfp_single *vsm, u32 fpscr)
773 {
774  u32 exp_diff, m_sig;
775 
776  if (vsn->significand & 0x80000000 ||
777  vsm->significand & 0x80000000) {
778  pr_info("VFP: bad FP values in %s\n", __func__);
779  vfp_single_dump("VSN", vsn);
780  vfp_single_dump("VSM", vsm);
781  }
782 
783  /*
784  * Ensure that 'n' is the largest magnitude number. Note that
785  * if 'n' and 'm' have equal exponents, we do not swap them.
786  * This ensures that NaN propagation works correctly.
787  */
788  if (vsn->exponent < vsm->exponent) {
789  struct vfp_single *t = vsn;
790  vsn = vsm;
791  vsm = t;
792  }
793 
794  /*
795  * Is 'n' an infinity or a NaN? Note that 'm' may be a number,
796  * infinity or a NaN here.
797  */
798  if (vsn->exponent == 255)
799  return vfp_single_fadd_nonnumber(vsd, vsn, vsm, fpscr);
800 
801  /*
802  * We have two proper numbers, where 'vsn' is the larger magnitude.
803  *
804  * Copy 'n' to 'd' before doing the arithmetic.
805  */
806  *vsd = *vsn;
807 
808  /*
809  * Align both numbers.
810  */
811  exp_diff = vsn->exponent - vsm->exponent;
812  m_sig = vfp_shiftright32jamming(vsm->significand, exp_diff);
813 
814  /*
815  * If the signs are different, we are really subtracting.
816  */
817  if (vsn->sign ^ vsm->sign) {
818  m_sig = vsn->significand - m_sig;
819  if ((s32)m_sig < 0) {
820  vsd->sign = vfp_sign_negate(vsd->sign);
821  m_sig = -m_sig;
822  } else if (m_sig == 0) {
823  vsd->sign = (fpscr & FPSCR_RMODE_MASK) ==
824  FPSCR_ROUND_MINUSINF ? 0x8000 : 0;
825  }
826  } else {
827  m_sig = vsn->significand + m_sig;
828  }
829  vsd->significand = m_sig;
830 
831  return 0;
832 }
833 
834 static u32
835 vfp_single_multiply(struct vfp_single *vsd, struct vfp_single *vsn, struct vfp_single *vsm, u32 fpscr)
836 {
837  vfp_single_dump("VSN", vsn);
838  vfp_single_dump("VSM", vsm);
839 
840  /*
841  * Ensure that 'n' is the largest magnitude number. Note that
842  * if 'n' and 'm' have equal exponents, we do not swap them.
843  * This ensures that NaN propagation works correctly.
844  */
845  if (vsn->exponent < vsm->exponent) {
846  struct vfp_single *t = vsn;
847  vsn = vsm;
848  vsm = t;
849  pr_debug("VFP: swapping M <-> N\n");
850  }
851 
852  vsd->sign = vsn->sign ^ vsm->sign;
853 
854  /*
855  * If 'n' is an infinity or NaN, handle it. 'm' may be anything.
856  */
857  if (vsn->exponent == 255) {
858  if (vsn->significand || (vsm->exponent == 255 && vsm->significand))
859  return vfp_propagate_nan(vsd, vsn, vsm, fpscr);
860  if ((vsm->exponent | vsm->significand) == 0) {
861  *vsd = vfp_single_default_qnan;
862  return FPSCR_IOC;
863  }
864  vsd->exponent = vsn->exponent;
865  vsd->significand = 0;
866  return 0;
867  }
868 
869  /*
870  * If 'm' is zero, the result is always zero. In this case,
871  * 'n' may be zero or a number, but it doesn't matter which.
872  */
873  if ((vsm->exponent | vsm->significand) == 0) {
874  vsd->exponent = 0;
875  vsd->significand = 0;
876  return 0;
877  }
878 
879  /*
880  * We add 2 to the destination exponent for the same reason as
881  * the addition case - though this time we have +1 from each
882  * input operand.
883  */
884  vsd->exponent = vsn->exponent + vsm->exponent - 127 + 2;
885  vsd->significand = vfp_hi64to32jamming((u64)vsn->significand * vsm->significand);
886 
887  vfp_single_dump("VSD", vsd);
888  return 0;
889 }
890 
891 #define NEG_MULTIPLY (1 << 0)
892 #define NEG_SUBTRACT (1 << 1)
893 
894 static u32
895 vfp_single_multiply_accumulate(int sd, int sn, s32 m, u32 fpscr, u32 negate, char *func)
896 {
897  struct vfp_single vsd, vsp, vsn, vsm;
898  u32 exceptions;
899  s32 v;
900 
901  v = vfp_get_float(sn);
902  pr_debug("VFP: s%u = %08x\n", sn, v);
903  vfp_single_unpack(&vsn, v);
904  if (vsn.exponent == 0 && vsn.significand)
905  vfp_single_normalise_denormal(&vsn);
906 
907  vfp_single_unpack(&vsm, m);
908  if (vsm.exponent == 0 && vsm.significand)
909  vfp_single_normalise_denormal(&vsm);
910 
911  exceptions = vfp_single_multiply(&vsp, &vsn, &vsm, fpscr);
912  if (negate & NEG_MULTIPLY)
913  vsp.sign = vfp_sign_negate(vsp.sign);
914 
915  v = vfp_get_float(sd);
916  pr_debug("VFP: s%u = %08x\n", sd, v);
917  vfp_single_unpack(&vsn, v);
918  if (negate & NEG_SUBTRACT)
919  vsn.sign = vfp_sign_negate(vsn.sign);
920 
921  exceptions |= vfp_single_add(&vsd, &vsn, &vsp, fpscr);
922 
923  return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, func);
924 }
925 
926 /*
927  * Standard operations
928  */
929 
930 /*
931  * sd = sd + (sn * sm)
932  */
933 static u32 vfp_single_fmac(int sd, int sn, s32 m, u32 fpscr)
934 {
935  return vfp_single_multiply_accumulate(sd, sn, m, fpscr, 0, "fmac");
936 }
937 
938 /*
939  * sd = sd - (sn * sm)
940  */
941 static u32 vfp_single_fnmac(int sd, int sn, s32 m, u32 fpscr)
942 {
943  return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_MULTIPLY, "fnmac");
944 }
945 
946 /*
947  * sd = -sd + (sn * sm)
948  */
949 static u32 vfp_single_fmsc(int sd, int sn, s32 m, u32 fpscr)
950 {
951  return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT, "fmsc");
952 }
953 
954 /*
955  * sd = -sd - (sn * sm)
956  */
957 static u32 vfp_single_fnmsc(int sd, int sn, s32 m, u32 fpscr)
958 {
959  return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, "fnmsc");
960 }
961 
962 /*
963  * sd = sn * sm
964  */
965 static u32 vfp_single_fmul(int sd, int sn, s32 m, u32 fpscr)
966 {
967  struct vfp_single vsd, vsn, vsm;
968  u32 exceptions;
969  s32 n = vfp_get_float(sn);
970 
971  pr_debug("VFP: s%u = %08x\n", sn, n);
972 
973  vfp_single_unpack(&vsn, n);
974  if (vsn.exponent == 0 && vsn.significand)
975  vfp_single_normalise_denormal(&vsn);
976 
977  vfp_single_unpack(&vsm, m);
978  if (vsm.exponent == 0 && vsm.significand)
979  vfp_single_normalise_denormal(&vsm);
980 
981  exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr);
982  return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fmul");
983 }
984 
985 /*
986  * sd = -(sn * sm)
987  */
988 static u32 vfp_single_fnmul(int sd, int sn, s32 m, u32 fpscr)
989 {
990  struct vfp_single vsd, vsn, vsm;
991  u32 exceptions;
992  s32 n = vfp_get_float(sn);
993 
994  pr_debug("VFP: s%u = %08x\n", sn, n);
995 
996  vfp_single_unpack(&vsn, n);
997  if (vsn.exponent == 0 && vsn.significand)
998  vfp_single_normalise_denormal(&vsn);
999 
1000  vfp_single_unpack(&vsm, m);
1001  if (vsm.exponent == 0 && vsm.significand)
1002  vfp_single_normalise_denormal(&vsm);
1003 
1004  exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr);
1005  vsd.sign = vfp_sign_negate(vsd.sign);
1006  return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fnmul");
1007 }
1008 
1009 /*
1010  * sd = sn + sm
1011  */
1012 static u32 vfp_single_fadd(int sd, int sn, s32 m, u32 fpscr)
1013 {
1014  struct vfp_single vsd, vsn, vsm;
1015  u32 exceptions;
1016  s32 n = vfp_get_float(sn);
1017 
1018  pr_debug("VFP: s%u = %08x\n", sn, n);
1019 
1020  /*
1021  * Unpack and normalise denormals.
1022  */
1023  vfp_single_unpack(&vsn, n);
1024  if (vsn.exponent == 0 && vsn.significand)
1025  vfp_single_normalise_denormal(&vsn);
1026 
1027  vfp_single_unpack(&vsm, m);
1028  if (vsm.exponent == 0 && vsm.significand)
1029  vfp_single_normalise_denormal(&vsm);
1030 
1031  exceptions = vfp_single_add(&vsd, &vsn, &vsm, fpscr);
1032 
1033  return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fadd");
1034 }
1035 
1036 /*
1037  * sd = sn - sm
1038  */
1039 static u32 vfp_single_fsub(int sd, int sn, s32 m, u32 fpscr)
1040 {
1041  /*
1042  * Subtraction is addition with one sign inverted.
1043  */
1044  return vfp_single_fadd(sd, sn, vfp_single_packed_negate(m), fpscr);
1045 }
1046 
1047 /*
1048  * sd = sn / sm
1049  */
1050 static u32 vfp_single_fdiv(int sd, int sn, s32 m, u32 fpscr)
1051 {
1052  struct vfp_single vsd, vsn, vsm;
1053  u32 exceptions = 0;
1054  s32 n = vfp_get_float(sn);
1055  int tm, tn;
1056 
1057  pr_debug("VFP: s%u = %08x\n", sn, n);
1058 
1059  vfp_single_unpack(&vsn, n);
1060  vfp_single_unpack(&vsm, m);
1061 
1062  vsd.sign = vsn.sign ^ vsm.sign;
1063 
1064  tn = vfp_single_type(&vsn);
1065  tm = vfp_single_type(&vsm);
1066 
1067  /*
1068  * Is n a NAN?
1069  */
1070  if (tn & VFP_NAN)
1071  goto vsn_nan;
1072 
1073  /*
1074  * Is m a NAN?
1075  */
1076  if (tm & VFP_NAN)
1077  goto vsm_nan;
1078 
1079  /*
1080  * If n and m are infinity, the result is invalid
1081  * If n and m are zero, the result is invalid
1082  */
1083  if (tm & tn & (VFP_INFINITY|VFP_ZERO))
1084  goto invalid;
1085 
1086  /*
1087  * If n is infinity, the result is infinity
1088  */
1089  if (tn & VFP_INFINITY)
1090  goto infinity;
1091 
1092  /*
1093  * If m is zero, raise div0 exception
1094  */
1095  if (tm & VFP_ZERO)
1096  goto divzero;
1097 
1098  /*
1099  * If m is infinity, or n is zero, the result is zero
1100  */
1101  if (tm & VFP_INFINITY || tn & VFP_ZERO)
1102  goto zero;
1103 
1104  if (tn & VFP_DENORMAL)
1105  vfp_single_normalise_denormal(&vsn);
1106  if (tm & VFP_DENORMAL)
1107  vfp_single_normalise_denormal(&vsm);
1108 
1109  /*
1110  * Ok, we have two numbers, we can perform division.
1111  */
1112  vsd.exponent = vsn.exponent - vsm.exponent + 127 - 1;
1113  vsm.significand <<= 1;
1114  if (vsm.significand <= (2 * vsn.significand)) {
1115  vsn.significand >>= 1;
1116  vsd.exponent++;
1117  }
1118  {
1119  u64 significand = (u64)vsn.significand << 32;
1120  do_div(significand, vsm.significand);
1121  vsd.significand = significand;
1122  }
1123  if ((vsd.significand & 0x3f) == 0)
1124  vsd.significand |= ((u64)vsm.significand * vsd.significand != (u64)vsn.significand << 32);
1125 
1126  return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fdiv");
1127 
1128  vsn_nan:
1129  exceptions = vfp_propagate_nan(&vsd, &vsn, &vsm, fpscr);
1130  pack:
1131  vfp_put_float(vfp_single_pack(&vsd), sd);
1132  return exceptions;
1133 
1134  vsm_nan:
1135  exceptions = vfp_propagate_nan(&vsd, &vsm, &vsn, fpscr);
1136  goto pack;
1137 
1138  zero:
1139  vsd.exponent = 0;
1140  vsd.significand = 0;
1141  goto pack;
1142 
1143  divzero:
1144  exceptions = FPSCR_DZC;
1145  infinity:
1146  vsd.exponent = 255;
1147  vsd.significand = 0;
1148  goto pack;
1149 
1150  invalid:
1151  vfp_put_float(vfp_single_pack(&vfp_single_default_qnan), sd);
1152  return FPSCR_IOC;
1153 }
1154 
1155 static struct op fops[16] = {
1156  [FOP_TO_IDX(FOP_FMAC)] = { vfp_single_fmac, 0 },
1157  [FOP_TO_IDX(FOP_FNMAC)] = { vfp_single_fnmac, 0 },
1158  [FOP_TO_IDX(FOP_FMSC)] = { vfp_single_fmsc, 0 },
1159  [FOP_TO_IDX(FOP_FNMSC)] = { vfp_single_fnmsc, 0 },
1160  [FOP_TO_IDX(FOP_FMUL)] = { vfp_single_fmul, 0 },
1161  [FOP_TO_IDX(FOP_FNMUL)] = { vfp_single_fnmul, 0 },
1162  [FOP_TO_IDX(FOP_FADD)] = { vfp_single_fadd, 0 },
1163  [FOP_TO_IDX(FOP_FSUB)] = { vfp_single_fsub, 0 },
1164  [FOP_TO_IDX(FOP_FDIV)] = { vfp_single_fdiv, 0 },
1165 };
1166 
1167 #define FREG_BANK(x) ((x) & 0x18)
1168 #define FREG_IDX(x) ((x) & 7)
1169 
1171 {
1172  u32 op = inst & FOP_MASK;
1173  u32 exceptions = 0;
1174  unsigned int dest;
1175  unsigned int sn = vfp_get_sn(inst);
1176  unsigned int sm = vfp_get_sm(inst);
1177  unsigned int vecitr, veclen, vecstride;
1178  struct op *fop;
1179 
1180  vecstride = 1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK);
1181 
1182  fop = (op == FOP_EXT) ? &fops_ext[FEXT_TO_IDX(inst)] : &fops[FOP_TO_IDX(op)];
1183 
1184  /*
1185  * fcvtsd takes a dN register number as destination, not sN.
1186  * Technically, if bit 0 of dd is set, this is an invalid
1187  * instruction. However, we ignore this for efficiency.
1188  * It also only operates on scalars.
1189  */
1190  if (fop->flags & OP_DD)
1191  dest = vfp_get_dd(inst);
1192  else
1193  dest = vfp_get_sd(inst);
1194 
1195  /*
1196  * If destination bank is zero, vector length is always '1'.
1197  * ARM DDI0100F C5.1.3, C5.3.2.
1198  */
1199  if ((fop->flags & OP_SCALAR) || FREG_BANK(dest) == 0)
1200  veclen = 0;
1201  else
1202  veclen = fpscr & FPSCR_LENGTH_MASK;
1203 
1204  pr_debug("VFP: vecstride=%u veclen=%u\n", vecstride,
1205  (veclen >> FPSCR_LENGTH_BIT) + 1);
1206 
1207  if (!fop->fn)
1208  goto invalid;
1209 
1210  for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) {
1211  s32 m = vfp_get_float(sm);
1212  u32 except;
1213  char type;
1214 
1215  type = fop->flags & OP_DD ? 'd' : 's';
1216  if (op == FOP_EXT)
1217  pr_debug("VFP: itr%d (%c%u) = op[%u] (s%u=%08x)\n",
1218  vecitr >> FPSCR_LENGTH_BIT, type, dest, sn,
1219  sm, m);
1220  else
1221  pr_debug("VFP: itr%d (%c%u) = (s%u) op[%u] (s%u=%08x)\n",
1222  vecitr >> FPSCR_LENGTH_BIT, type, dest, sn,
1223  FOP_TO_IDX(op), sm, m);
1224 
1225  except = fop->fn(dest, sn, m, fpscr);
1226  pr_debug("VFP: itr%d: exceptions=%08x\n",
1227  vecitr >> FPSCR_LENGTH_BIT, except);
1228 
1229  exceptions |= except;
1230 
1231  /*
1232  * CHECK: It appears to be undefined whether we stop when
1233  * we encounter an exception. We continue.
1234  */
1235  dest = FREG_BANK(dest) + ((FREG_IDX(dest) + vecstride) & 7);
1236  sn = FREG_BANK(sn) + ((FREG_IDX(sn) + vecstride) & 7);
1237  if (FREG_BANK(sm) != 0)
1238  sm = FREG_BANK(sm) + ((FREG_IDX(sm) + vecstride) & 7);
1239  }
1240  return exceptions;
1241 
1242  invalid:
1243  return (u32)-1;
1244 }