Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
vlsi_ir.h
Go to the documentation of this file.
1 
2 /*********************************************************************
3  *
4  * vlsi_ir.h: VLSI82C147 PCI IrDA controller driver for Linux
5  *
6  * Version: 0.5
7  *
8  * Copyright (c) 2001-2003 Martin Diehl
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of
13  * the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
23  * MA 02111-1307 USA
24  *
25  ********************************************************************/
26 
27 #ifndef IRDA_VLSI_FIR_H
28 #define IRDA_VLSI_FIR_H
29 
30 /* ================================================================
31  * compatibility stuff
32  */
33 
34 /* definitions not present in pci_ids.h */
35 
36 #ifndef PCI_CLASS_WIRELESS_IRDA
37 #define PCI_CLASS_WIRELESS_IRDA 0x0d00
38 #endif
39 
40 #ifndef PCI_CLASS_SUBCLASS_MASK
41 #define PCI_CLASS_SUBCLASS_MASK 0xffff
42 #endif
43 
44 /* ================================================================ */
45 
46 /* non-standard PCI registers */
47 
49  VLSI_PCI_CLKCTL = 0x40, /* chip clock input control */
50  VLSI_PCI_MSTRPAGE = 0x41, /* addr [31:24] for all busmaster cycles */
51  VLSI_PCI_IRMISC = 0x42 /* mainly legacy UART related */
52 };
53 
54 /* ------------------------------------------ */
55 
56 /* VLSI_PCI_CLKCTL: Clock Control Register (u8, rw) */
57 
58 /* Three possible clock sources: either on-chip 48MHz PLL or
59  * external clock applied to EXTCLK pin. External clock may
60  * be either 48MHz or 40MHz, which is indicated by XCKSEL.
61  * CLKSTP controls whether the selected clock source gets
62  * connected to the IrDA block.
63  *
64  * On my HP OB-800 the BIOS sets external 40MHz clock as source
65  * when IrDA enabled and I've never detected any PLL lock success.
66  * Apparently the 14.3...MHz OSC input required for the PLL to work
67  * is not connected and the 40MHz EXTCLK is provided externally.
68  * At least this is what makes the driver working for me.
69  */
70 
72 
73  /* PLL control */
74 
75  CLKCTL_PD_INV = 0x04, /* PD#: inverted power down signal,
76  * i.e. PLL is powered, if PD_INV set */
77  CLKCTL_LOCK = 0x40, /* (ro) set, if PLL is locked */
78 
79  /* clock source selection */
80 
81  CLKCTL_EXTCLK = 0x20, /* set to select external clock input, not PLL */
82  CLKCTL_XCKSEL = 0x10, /* set to indicate EXTCLK is 40MHz, not 48MHz */
83 
84  /* IrDA block control */
85 
86  CLKCTL_CLKSTP = 0x80, /* set to disconnect from selected clock source */
87  CLKCTL_WAKE = 0x08 /* set to enable wakeup feature: whenever IR activity
88  * is detected, PD_INV gets set(?) and CLKSTP cleared */
89 };
90 
91 /* ------------------------------------------ */
92 
93 /* VLSI_PCI_MSTRPAGE: Master Page Register (u8, rw) and busmastering stuff */
94 
95 #define DMA_MASK_USED_BY_HW 0xffffffff
96 #define DMA_MASK_MSTRPAGE 0x00ffffff
97 #define MSTRPAGE_VALUE (DMA_MASK_MSTRPAGE >> 24)
98 
99  /* PCI busmastering is somewhat special for this guy - in short:
100  *
101  * We select to operate using fixed MSTRPAGE=0, use ISA DMA
102  * address restrictions to make the PCI BM api aware of this,
103  * but ensure the hardware is dealing with real 32bit access.
104  *
105  * In detail:
106  * The chip executes normal 32bit busmaster cycles, i.e.
107  * drives all 32 address lines. These addresses however are
108  * composed of [0:23] taken from various busaddr-pointers
109  * and [24:31] taken from the MSTRPAGE register in the VLSI82C147
110  * config space. Therefore _all_ busmastering must be
111  * targeted to/from one single 16MB (busaddr-) superpage!
112  * The point is to make sure all the allocations for memory
113  * locations with busmaster access (ring descriptors, buffers)
114  * are indeed bus-mappable to the same 16MB range (for x86 this
115  * means they must reside in the same 16MB physical memory address
116  * range). The only constraint we have which supports "several objects
117  * mappable to common 16MB range" paradigma, is the old ISA DMA
118  * restriction to the first 16MB of physical address range.
119  * Hence the approach here is to enable PCI busmaster support using
120  * the correct 32bit dma-mask used by the chip. Afterwards the device's
121  * dma-mask gets restricted to 24bit, which must be honoured somehow by
122  * all allocations for memory areas to be exposed to the chip ...
123  *
124  * Note:
125  * Don't be surprised to get "Setting latency timer..." messages every
126  * time when PCI busmastering is enabled for the chip.
127  * The chip has its PCI latency timer RO fixed at 0 - which is not a
128  * problem here, because it is never requesting _burst_ transactions.
129  */
130 
131 /* ------------------------------------------ */
132 
133 /* VLSI_PCIIRMISC: IR Miscellaneous Register (u8, rw) */
134 
135 /* legacy UART emulation - not used by this driver - would require:
136  * (see below for some register-value definitions)
137  *
138  * - IRMISC_UARTEN must be set to enable UART address decoding
139  * - IRMISC_UARTSEL configured
140  * - IRCFG_MASTER must be cleared
141  * - IRCFG_SIR must be set
142  * - IRENABLE_PHYANDCLOCK must be asserted 0->1 (and hence IRENABLE_SIR_ON)
143  */
144 
146 
147  /* IR transceiver control */
148 
149  IRMISC_IRRAIL = 0x40, /* (ro?) IR rail power indication (and control?)
150  * 0=3.3V / 1=5V. Probably set during power-on?
151  * unclear - not touched by driver */
152  IRMISC_IRPD = 0x08, /* transceiver power down, if set */
153 
154  /* legacy UART control */
155 
156  IRMISC_UARTTST = 0x80, /* UART test mode - "always write 0" */
157  IRMISC_UARTEN = 0x04, /* enable UART address decoding */
158 
159  /* bits [1:0] IRMISC_UARTSEL to select legacy UART address */
160 
165 };
166 
167 /* ================================================================ */
168 
169 /* registers mapped to 32 byte PCI IO space */
170 
171 /* note: better access all registers at the indicated u8/u16 size
172  * although some of them contain only 1 byte of information.
173  * some of them (particaluarly PROMPT and IRCFG) ignore
174  * access when using the wrong addressing mode!
175  */
176 
178  VLSI_PIO_IRINTR = 0x00, /* interrupt enable/request (u8, rw) */
179  VLSI_PIO_RINGPTR = 0x02, /* rx/tx ring pointer (u16, ro) */
180  VLSI_PIO_RINGBASE = 0x04, /* [23:10] of ring address (u16, rw) */
181  VLSI_PIO_RINGSIZE = 0x06, /* rx/tx ring size (u16, rw) */
182  VLSI_PIO_PROMPT = 0x08, /* triggers ring processing (u16, wo) */
183  /* 0x0a-0x0f: reserved / duplicated UART regs */
184  VLSI_PIO_IRCFG = 0x10, /* configuration select (u16, rw) */
185  VLSI_PIO_SIRFLAG = 0x12, /* BOF/EOF for filtered SIR (u16, ro) */
186  VLSI_PIO_IRENABLE = 0x14, /* enable and status register (u16, rw/ro) */
187  VLSI_PIO_PHYCTL = 0x16, /* physical layer current status (u16, ro) */
188  VLSI_PIO_NPHYCTL = 0x18, /* next physical layer select (u16, rw) */
189  VLSI_PIO_MAXPKT = 0x1a, /* [11:0] max len for packet receive (u16, rw) */
190  VLSI_PIO_RCVBCNT = 0x1c /* current receive-FIFO byte count (u16, ro) */
191  /* 0x1e-0x1f: reserved / duplicated UART regs */
192 };
193 
194 /* ------------------------------------------ */
195 
196 /* VLSI_PIO_IRINTR: Interrupt Register (u8, rw) */
197 
198 /* enable-bits:
199  * 1 = enable / 0 = disable
200  * interrupt condition bits:
201  * set according to corresponding interrupt source
202  * (regardless of the state of the enable bits)
203  * enable bit status indicates whether interrupt gets raised
204  * write-to-clear
205  * note: RPKTINT and TPKTINT behave different in legacy UART mode (which we don't use :-)
206  */
207 
209  IRINTR_ACTEN = 0x80, /* activity interrupt enable */
210  IRINTR_ACTIVITY = 0x40, /* activity monitor (traffic detected) */
211  IRINTR_RPKTEN = 0x20, /* receive packet interrupt enable*/
212  IRINTR_RPKTINT = 0x10, /* rx-packet transferred from fifo to memory finished */
213  IRINTR_TPKTEN = 0x08, /* transmit packet interrupt enable */
214  IRINTR_TPKTINT = 0x04, /* last bit of tx-packet+crc shifted to ir-pulser */
215  IRINTR_OE_EN = 0x02, /* UART rx fifo overrun error interrupt enable */
216  IRINTR_OE_INT = 0x01 /* UART rx fifo overrun error (read LSR to clear) */
217 };
218 
219 /* we use this mask to check whether the (shared PCI) interrupt is ours */
220 
221 #define IRINTR_INT_MASK (IRINTR_ACTIVITY|IRINTR_RPKTINT|IRINTR_TPKTINT)
222 
223 /* ------------------------------------------ */
224 
225 /* VLSI_PIO_RINGPTR: Ring Pointer Read-Back Register (u16, ro) */
226 
227 /* _both_ ring pointers are indices relative to the _entire_ rx,tx-ring!
228  * i.e. the referenced descriptor is located
229  * at RINGBASE + PTR * sizeof(descr) for rx and tx
230  * therefore, the tx-pointer has offset MAX_RING_DESCR
231  */
232 
233 #define MAX_RING_DESCR 64 /* tx, rx rings may contain up to 64 descr each */
234 
235 #define RINGPTR_RX_MASK (MAX_RING_DESCR-1)
236 #define RINGPTR_TX_MASK ((MAX_RING_DESCR-1)<<8)
237 
238 #define RINGPTR_GET_RX(p) ((p)&RINGPTR_RX_MASK)
239 #define RINGPTR_GET_TX(p) (((p)&RINGPTR_TX_MASK)>>8)
240 
241 /* ------------------------------------------ */
242 
243 /* VLSI_PIO_RINGBASE: Ring Pointer Base Address Register (u16, ro) */
244 
245 /* Contains [23:10] part of the ring base (bus-) address
246  * which must be 1k-alinged. [31:24] is taken from
247  * VLSI_PCI_MSTRPAGE above.
248  * The controller initiates non-burst PCI BM cycles to
249  * fetch and update the descriptors in the ring.
250  * Once fetched, the descriptor remains cached onchip
251  * until it gets closed and updated due to the ring
252  * processing state machine.
253  * The entire ring area is split in rx and tx areas with each
254  * area consisting of 64 descriptors of 8 bytes each.
255  * The rx(tx) ring is located at ringbase+0 (ringbase+64*8).
256  */
257 
258 #define BUS_TO_RINGBASE(p) (((p)>>10)&0x3fff)
259 
260 /* ------------------------------------------ */
261 
262 /* VLSI_PIO_RINGSIZE: Ring Size Register (u16, rw) */
263 
264 /* bit mask to indicate the ring size to be used for rx and tx.
265  * possible values encoded bits
266  * 4 0000
267  * 8 0001
268  * 16 0011
269  * 32 0111
270  * 64 1111
271  * located at [15:12] for tx and [11:8] for rx ([7:0] unused)
272  *
273  * note: probably a good idea to have IRCFG_MSTR cleared when writing
274  * this so the state machines are stopped and the RINGPTR is reset!
275  */
276 
277 #define SIZE_TO_BITS(num) ((((num)-1)>>2)&0x0f)
278 #define TX_RX_TO_RINGSIZE(tx,rx) ((SIZE_TO_BITS(tx)<<12)|(SIZE_TO_BITS(rx)<<8))
279 #define RINGSIZE_TO_RXSIZE(rs) ((((rs)&0x0f00)>>6)+4)
280 #define RINGSIZE_TO_TXSIZE(rs) ((((rs)&0xf000)>>10)+4)
281 
282 
283 /* ------------------------------------------ */
284 
285 /* VLSI_PIO_PROMPT: Ring Prompting Register (u16, write-to-start) */
286 
287 /* writing any value kicks the ring processing state machines
288  * for both tx, rx rings as follows:
289  * - active rings (currently owning an active descriptor)
290  * ignore the prompt and continue
291  * - idle rings fetch the next descr from the ring and start
292  * their processing
293  */
294 
295 /* ------------------------------------------ */
296 
297 /* VLSI_PIO_IRCFG: IR Config Register (u16, rw) */
298 
299 /* notes:
300  * - not more than one SIR/MIR/FIR bit must be set at any time
301  * - SIR, MIR, FIR and CRC16 select the configuration which will
302  * be applied on next 0->1 transition of IRENABLE_PHYANDCLOCK (see below).
303  * - besides allowing the PCI interface to execute busmaster cycles
304  * and therefore the ring SM to operate, the MSTR bit has side-effects:
305  * when MSTR is cleared, the RINGPTR's get reset and the legacy UART mode
306  * (in contrast to busmaster access mode) gets enabled.
307  * - clearing ENRX or setting ENTX while data is received may stall the
308  * receive fifo until ENRX reenabled _and_ another packet arrives
309  * - SIRFILT means the chip performs the required unwrapping of hardware
310  * headers (XBOF's, BOF/EOF) and un-escaping in the _receive_ direction.
311  * Only the resulting IrLAP payload is copied to the receive buffers -
312  * but with the 16bit FCS still encluded. Question remains, whether it
313  * was already checked or we should do it before passing the packet to IrLAP?
314  */
315 
317  IRCFG_LOOP = 0x4000, /* enable loopback test mode */
318  IRCFG_ENTX = 0x1000, /* transmit enable */
319  IRCFG_ENRX = 0x0800, /* receive enable */
320  IRCFG_MSTR = 0x0400, /* master enable */
321  IRCFG_RXANY = 0x0200, /* receive any packet */
322  IRCFG_CRC16 = 0x0080, /* 16bit (not 32bit) CRC select for MIR/FIR */
323  IRCFG_FIR = 0x0040, /* FIR 4PPM encoding mode enable */
324  IRCFG_MIR = 0x0020, /* MIR HDLC encoding mode enable */
325  IRCFG_SIR = 0x0010, /* SIR encoding mode enable */
326  IRCFG_SIRFILT = 0x0008, /* enable SIR decode filter (receiver unwrapping) */
327  IRCFG_SIRTEST = 0x0004, /* allow SIR decode filter when not in SIR mode */
328  IRCFG_TXPOL = 0x0002, /* invert tx polarity when set */
329  IRCFG_RXPOL = 0x0001 /* invert rx polarity when set */
330 };
331 
332 /* ------------------------------------------ */
333 
334 /* VLSI_PIO_SIRFLAG: SIR Flag Register (u16, ro) */
335 
336 /* register contains hardcoded BOF=0xc0 at [7:0] and EOF=0xc1 at [15:8]
337  * which is used for unwrapping received frames in SIR decode-filter mode
338  */
339 
340 /* ------------------------------------------ */
341 
342 /* VLSI_PIO_IRENABLE: IR Enable Register (u16, rw/ro) */
343 
344 /* notes:
345  * - IREN acts as gate for latching the configured IR mode information
346  * from IRCFG and IRPHYCTL when IREN=reset and applying them when
347  * IREN gets set afterwards.
348  * - ENTXST reflects IRCFG_ENTX
349  * - ENRXST = IRCFG_ENRX && (!IRCFG_ENTX || IRCFG_LOOP)
350  */
351 
353  IRENABLE_PHYANDCLOCK = 0x8000, /* enable IR phy and gate the mode config (rw) */
354  IRENABLE_CFGER = 0x4000, /* mode configuration error (ro) */
355  IRENABLE_FIR_ON = 0x2000, /* FIR on status (ro) */
356  IRENABLE_MIR_ON = 0x1000, /* MIR on status (ro) */
357  IRENABLE_SIR_ON = 0x0800, /* SIR on status (ro) */
358  IRENABLE_ENTXST = 0x0400, /* transmit enable status (ro) */
359  IRENABLE_ENRXST = 0x0200, /* Receive enable status (ro) */
360  IRENABLE_CRC16_ON = 0x0100 /* 16bit (not 32bit) CRC enabled status (ro) */
361 };
362 
363 #define IRENABLE_MASK 0xff00 /* Read mask */
364 
365 /* ------------------------------------------ */
366 
367 /* VLSI_PIO_PHYCTL: IR Physical Layer Current Control Register (u16, ro) */
368 
369 /* read-back of the currently applied physical layer status.
370  * applied from VLSI_PIO_NPHYCTL at rising edge of IRENABLE_PHYANDCLOCK
371  * contents identical to VLSI_PIO_NPHYCTL (see below)
372  */
373 
374 /* ------------------------------------------ */
375 
376 /* VLSI_PIO_NPHYCTL: IR Physical Layer Next Control Register (u16, rw) */
377 
378 /* latched during IRENABLE_PHYANDCLOCK=0 and applied at 0-1 transition
379  *
380  * consists of BAUD[15:10], PLSWID[9:5] and PREAMB[4:0] bits defined as follows:
381  *
382  * SIR-mode: BAUD = (115.2kHz / baudrate) - 1
383  * PLSWID = (pulsetime * freq / (BAUD+1)) - 1
384  * where pulsetime is the requested IrPHY pulse width
385  * and freq is 8(16)MHz for 40(48)MHz primary input clock
386  * PREAMB: don't care for SIR
387  *
388  * The nominal SIR pulse width is 3/16 bit time so we have PLSWID=12
389  * fixed for all SIR speeds at 40MHz input clock (PLSWID=24 at 48MHz).
390  * IrPHY also allows shorter pulses down to the nominal pulse duration
391  * at 115.2kbaud (minus some tolerance) which is 1.41 usec.
392  * Using the expression PLSWID = 12/(BAUD+1)-1 (multiplied by two for 48MHz)
393  * we get the minimum acceptable PLSWID values according to the VLSI
394  * specification, which provides 1.5 usec pulse width for all speeds (except
395  * for 2.4kbaud getting 6usec). This is fine with IrPHY v1.3 specs and
396  * reduces the transceiver power which drains the battery. At 9.6kbaud for
397  * example this amounts to more than 90% battery power saving!
398  *
399  * MIR-mode: BAUD = 0
400  * PLSWID = 9(10) for 40(48) MHz input clock
401  * to get nominal MIR pulse width
402  * PREAMB = 1
403  *
404  * FIR-mode: BAUD = 0
405  * PLSWID: don't care
406  * PREAMB = 15
407  */
408 
409 #define PHYCTL_BAUD_SHIFT 10
410 #define PHYCTL_BAUD_MASK 0xfc00
411 #define PHYCTL_PLSWID_SHIFT 5
412 #define PHYCTL_PLSWID_MASK 0x03e0
413 #define PHYCTL_PREAMB_SHIFT 0
414 #define PHYCTL_PREAMB_MASK 0x001f
415 
416 #define PHYCTL_TO_BAUD(bwp) (((bwp)&PHYCTL_BAUD_MASK)>>PHYCTL_BAUD_SHIFT)
417 #define PHYCTL_TO_PLSWID(bwp) (((bwp)&PHYCTL_PLSWID_MASK)>>PHYCTL_PLSWID_SHIFT)
418 #define PHYCTL_TO_PREAMB(bwp) (((bwp)&PHYCTL_PREAMB_MASK)>>PHYCTL_PREAMB_SHIFT)
419 
420 #define BWP_TO_PHYCTL(b,w,p) ((((b)<<PHYCTL_BAUD_SHIFT)&PHYCTL_BAUD_MASK) \
421  | (((w)<<PHYCTL_PLSWID_SHIFT)&PHYCTL_PLSWID_MASK) \
422  | (((p)<<PHYCTL_PREAMB_SHIFT)&PHYCTL_PREAMB_MASK))
423 
424 #define BAUD_BITS(br) ((115200/(br))-1)
425 
426 static inline unsigned
427 calc_width_bits(unsigned baudrate, unsigned widthselect, unsigned clockselect)
428 {
429  unsigned tmp;
430 
431  if (widthselect) /* nominal 3/16 puls width */
432  return (clockselect) ? 12 : 24;
433 
434  tmp = ((clockselect) ? 12 : 24) / (BAUD_BITS(baudrate)+1);
435 
436  /* intermediate result of integer division needed here */
437 
438  return (tmp>0) ? (tmp-1) : 0;
439 }
440 
441 #define PHYCTL_SIR(br,ws,cs) BWP_TO_PHYCTL(BAUD_BITS(br),calc_width_bits((br),(ws),(cs)),0)
442 #define PHYCTL_MIR(cs) BWP_TO_PHYCTL(0,((cs)?9:10),1)
443 #define PHYCTL_FIR BWP_TO_PHYCTL(0,0,15)
444 
445 /* quite ugly, I know. But implementing these calculations here avoids
446  * having magic numbers in the code and allows some playing with pulsewidths
447  * without risk to violate the standards.
448  * FWIW, here is the table for reference:
449  *
450  * baudrate BAUD min-PLSWID nom-PLSWID PREAMB
451  * 2400 47 0(0) 12(24) 0
452  * 9600 11 0(0) 12(24) 0
453  * 19200 5 1(2) 12(24) 0
454  * 38400 2 3(6) 12(24) 0
455  * 57600 1 5(10) 12(24) 0
456  * 115200 0 11(22) 12(24) 0
457  * MIR 0 - 9(10) 1
458  * FIR 0 - 0 15
459  *
460  * note: x(y) means x-value for 40MHz / y-value for 48MHz primary input clock
461  */
462 
463 /* ------------------------------------------ */
464 
465 
466 /* VLSI_PIO_MAXPKT: Maximum Packet Length register (u16, rw) */
467 
468 /* maximum acceptable length for received packets */
469 
470 /* hw imposed limitation - register uses only [11:0] */
471 #define MAX_PACKET_LENGTH 0x0fff
472 
473 /* IrLAP I-field (apparently not defined elsewhere) */
474 #define IRDA_MTU 2048
475 
476 /* complete packet consists of A(1)+C(1)+I(<=IRDA_MTU) */
477 #define IRLAP_SKB_ALLOCSIZE (1+1+IRDA_MTU)
478 
479 /* the buffers we use to exchange frames with the hardware need to be
480  * larger than IRLAP_SKB_ALLOCSIZE because we may have up to 4 bytes FCS
481  * appended and, in SIR mode, a lot of frame wrapping bytes. The worst
482  * case appears to be a SIR packet with I-size==IRDA_MTU and all bytes
483  * requiring to be escaped to provide transparency. Furthermore, the peer
484  * might ask for quite a number of additional XBOFs:
485  * up to 115+48 XBOFS 163
486  * regular BOF 1
487  * A-field 1
488  * C-field 1
489  * I-field, IRDA_MTU, all escaped 4096
490  * FCS (16 bit at SIR, escaped) 4
491  * EOF 1
492  * AFAICS nothing in IrLAP guarantees A/C field not to need escaping
493  * (f.e. 0xc0/0xc1 - i.e. BOF/EOF - are legal values there) so in the
494  * worst case we have 4269 bytes total frame size.
495  * However, the VLSI uses 12 bits only for all buffer length values,
496  * which limits the maximum useable buffer size <= 4095.
497  * Note this is not a limitation in the receive case because we use
498  * the SIR filtering mode where the hw unwraps the frame and only the
499  * bare packet+fcs is stored into the buffer - in contrast to the SIR
500  * tx case where we have to pass frame-wrapped packets to the hw.
501  * If this would ever become an issue in real life, the only workaround
502  * I see would be using the legacy UART emulation in SIR mode.
503  */
504 
505 #define XFER_BUF_SIZE MAX_PACKET_LENGTH
506 
507 /* ------------------------------------------ */
508 
509 /* VLSI_PIO_RCVBCNT: Receive Byte Count Register (u16, ro) */
510 
511 /* receive packet counter gets incremented on every non-filtered
512  * byte which was put in the receive fifo and reset for each
513  * new packet. Used to decide whether we are just in the middle
514  * of receiving
515  */
516 
517 /* better apply the [11:0] mask when reading, as some docs say the
518  * reserved [15:12] would return 1 when reading - which is wrong AFAICS
519  */
520 #define RCVBCNT_MASK 0x0fff
521 
522 /******************************************************************/
523 
524 /* descriptors for rx/tx ring
525  *
526  * accessed by hardware - don't change!
527  *
528  * the descriptor is owned by hardware, when the ACTIVE status bit
529  * is set and nothing (besides reading status to test the bit)
530  * shall be done. The bit gets cleared by hw, when the descriptor
531  * gets closed. Premature reaping of descriptors owned be the chip
532  * can be achieved by disabling IRCFG_MSTR
533  *
534  * Attention: Writing addr overwrites status!
535  *
536  * ### FIXME: depends on endianess (but there ain't no non-i586 ob800 ;-)
537  */
538 
540  volatile __le16 rd_count; /* tx/rx count [11:0] */
542  union {
543  __le32 addr; /* [23:0] of the buffer's busaddress */
544  struct {
546  volatile u8 status; /* descriptor status */
547  } __packed rd_s;
548  } __packed rd_u;
549 } __packed;
550 
551 #define rd_addr rd_u.addr
552 #define rd_status rd_u.rd_s.status
553 
554 /* ring descriptor status bits */
555 
556 #define RD_ACTIVE 0x80 /* descriptor owned by hw (both TX,RX) */
557 
558 /* TX ring descriptor status */
559 
560 #define RD_TX_DISCRC 0x40 /* do not send CRC (for SIR) */
561 #define RD_TX_BADCRC 0x20 /* force a bad CRC */
562 #define RD_TX_PULSE 0x10 /* send indication pulse after this frame (MIR/FIR) */
563 #define RD_TX_FRCEUND 0x08 /* force underrun */
564 #define RD_TX_CLRENTX 0x04 /* clear ENTX after this frame */
565 #define RD_TX_UNDRN 0x01 /* TX fifo underrun (probably PCI problem) */
566 
567 /* RX ring descriptor status */
568 
569 #define RD_RX_PHYERR 0x40 /* physical encoding error */
570 #define RD_RX_CRCERR 0x20 /* CRC error (MIR/FIR) */
571 #define RD_RX_LENGTH 0x10 /* frame exceeds buffer length */
572 #define RD_RX_OVER 0x08 /* RX fifo overrun (probably PCI problem) */
573 #define RD_RX_SIRBAD 0x04 /* EOF missing: BOF follows BOF (SIR, filtered) */
574 
575 #define RD_RX_ERROR 0x7c /* any error in received frame */
576 
577 /* the memory required to hold the 2 descriptor rings */
578 #define HW_RING_AREA_SIZE (2 * MAX_RING_DESCR * sizeof(struct ring_descr_hw))
579 
580 /******************************************************************/
581 
582 /* sw-ring descriptors consists of a bus-mapped transfer buffer with
583  * associated skb and a pointer to the hw entry descriptor
584  */
585 
586 struct ring_descr {
587  struct ring_descr_hw *hw;
588  struct sk_buff *skb;
589  void *buf;
590 };
591 
592 /* wrappers for operations on hw-exposed ring descriptors
593  * access to the hw-part of the descriptors must use these.
594  */
595 
596 static inline int rd_is_active(struct ring_descr *rd)
597 {
598  return (rd->hw->rd_status & RD_ACTIVE) != 0;
599 }
600 
601 static inline void rd_activate(struct ring_descr *rd)
602 {
603  rd->hw->rd_status |= RD_ACTIVE;
604 }
605 
606 static inline void rd_set_status(struct ring_descr *rd, u8 s)
607 {
608  rd->hw->rd_status = s; /* may pass ownership to the hardware */
609 }
610 
611 static inline void rd_set_addr_status(struct ring_descr *rd, dma_addr_t a, u8 s)
612 {
613  /* order is important for two reasons:
614  * - overlayed: writing addr overwrites status
615  * - we want to write status last so we have valid address in
616  * case status has RD_ACTIVE set
617  */
618 
619  if ((a & ~DMA_MASK_MSTRPAGE)>>24 != MSTRPAGE_VALUE) {
620  IRDA_ERROR("%s: pci busaddr inconsistency!\n", __func__);
621  dump_stack();
622  return;
623  }
624 
625  a &= DMA_MASK_MSTRPAGE; /* clear highbyte to make sure we won't write
626  * to status - just in case MSTRPAGE_VALUE!=0
627  */
628  rd->hw->rd_addr = cpu_to_le32(a);
629  wmb();
630  rd_set_status(rd, s); /* may pass ownership to the hardware */
631 }
632 
633 static inline void rd_set_count(struct ring_descr *rd, u16 c)
634 {
635  rd->hw->rd_count = cpu_to_le16(c);
636 }
637 
638 static inline u8 rd_get_status(struct ring_descr *rd)
639 {
640  return rd->hw->rd_status;
641 }
642 
643 static inline dma_addr_t rd_get_addr(struct ring_descr *rd)
644 {
645  dma_addr_t a;
646 
647  a = le32_to_cpu(rd->hw->rd_addr);
648  return (a & DMA_MASK_MSTRPAGE) | (MSTRPAGE_VALUE << 24);
649 }
650 
651 static inline u16 rd_get_count(struct ring_descr *rd)
652 {
653  return le16_to_cpu(rd->hw->rd_count);
654 }
655 
656 /******************************************************************/
657 
658 /* sw descriptor rings for rx, tx:
659  *
660  * operations follow producer-consumer paradigm, with the hw
661  * in the middle doing the processing.
662  * ring size must be power of two.
663  *
664  * producer advances r->tail after inserting for processing
665  * consumer advances r->head after removing processed rd
666  * ring is empty if head==tail / full if (tail+1)==head
667  */
668 
669 struct vlsi_ring {
670  struct pci_dev *pdev;
671  int dir;
672  unsigned len;
673  unsigned size;
674  unsigned mask;
676  struct ring_descr *rd;
677 };
678 
679 /* ring processing helpers */
680 
681 static inline struct ring_descr *ring_last(struct vlsi_ring *r)
682 {
683  int t;
684 
685  t = atomic_read(&r->tail) & r->mask;
686  return (((t+1) & r->mask) == (atomic_read(&r->head) & r->mask)) ? NULL : &r->rd[t];
687 }
688 
689 static inline struct ring_descr *ring_put(struct vlsi_ring *r)
690 {
691  atomic_inc(&r->tail);
692  return ring_last(r);
693 }
694 
695 static inline struct ring_descr *ring_first(struct vlsi_ring *r)
696 {
697  int h;
698 
699  h = atomic_read(&r->head) & r->mask;
700  return (h == (atomic_read(&r->tail) & r->mask)) ? NULL : &r->rd[h];
701 }
702 
703 static inline struct ring_descr *ring_get(struct vlsi_ring *r)
704 {
705  atomic_inc(&r->head);
706  return ring_first(r);
707 }
708 
709 /******************************************************************/
710 
711 /* our private compound VLSI-PCI-IRDA device information */
712 
713 typedef struct vlsi_irda_dev {
714  struct pci_dev *pdev;
715 
716  struct irlap_cb *irlap;
717 
718  struct qos_info qos;
719 
720  unsigned mode;
722 
724  void *virtaddr;
726 
727  struct timeval last_rx;
728 
730  struct mutex mtx;
731 
734 
736 
737 /********************************************************/
738 
739 /* the remapped error flags we use for returning from frame
740  * post-processing in vlsi_process_tx/rx() after it was completed
741  * by the hardware. These functions either return the >=0 number
742  * of transferred bytes in case of success or the negative (-)
743  * of the or'ed error flags.
744  */
745 
746 #define VLSI_TX_DROP 0x0001
747 #define VLSI_TX_FIFO 0x0002
748 
749 #define VLSI_RX_DROP 0x0100
750 #define VLSI_RX_OVER 0x0200
751 #define VLSI_RX_LENGTH 0x0400
752 #define VLSI_RX_FRAME 0x0800
753 #define VLSI_RX_CRC 0x1000
754 
755 /********************************************************/
756 
757 #endif /* IRDA_VLSI_FIR_H */
758