Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
wait.c
Go to the documentation of this file.
1 /*
2  * Generic waiting primitives.
3  *
4  * (C) 2004 William Irwin, Oracle
5  */
6 #include <linux/init.h>
7 #include <linux/export.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/wait.h>
11 #include <linux/hash.h>
12 
14 {
15  spin_lock_init(&q->lock);
16  lockdep_set_class_and_name(&q->lock, key, name);
17  INIT_LIST_HEAD(&q->task_list);
18 }
19 
21 
23 {
24  unsigned long flags;
25 
26  wait->flags &= ~WQ_FLAG_EXCLUSIVE;
27  spin_lock_irqsave(&q->lock, flags);
28  __add_wait_queue(q, wait);
29  spin_unlock_irqrestore(&q->lock, flags);
30 }
32 
34 {
35  unsigned long flags;
36 
37  wait->flags |= WQ_FLAG_EXCLUSIVE;
38  spin_lock_irqsave(&q->lock, flags);
39  __add_wait_queue_tail(q, wait);
40  spin_unlock_irqrestore(&q->lock, flags);
41 }
43 
45 {
46  unsigned long flags;
47 
48  spin_lock_irqsave(&q->lock, flags);
49  __remove_wait_queue(q, wait);
50  spin_unlock_irqrestore(&q->lock, flags);
51 }
53 
54 
55 /*
56  * Note: we use "set_current_state()" _after_ the wait-queue add,
57  * because we need a memory barrier there on SMP, so that any
58  * wake-function that tests for the wait-queue being active
59  * will be guaranteed to see waitqueue addition _or_ subsequent
60  * tests in this thread will see the wakeup having taken place.
61  *
62  * The spin_unlock() itself is semi-permeable and only protects
63  * one way (it only protects stuff inside the critical region and
64  * stops them from bleeding out - it would still allow subsequent
65  * loads to move into the critical region).
66  */
67 void
69 {
70  unsigned long flags;
71 
72  wait->flags &= ~WQ_FLAG_EXCLUSIVE;
73  spin_lock_irqsave(&q->lock, flags);
74  if (list_empty(&wait->task_list))
75  __add_wait_queue(q, wait);
76  set_current_state(state);
77  spin_unlock_irqrestore(&q->lock, flags);
78 }
80 
81 void
83 {
84  unsigned long flags;
85 
86  wait->flags |= WQ_FLAG_EXCLUSIVE;
87  spin_lock_irqsave(&q->lock, flags);
88  if (list_empty(&wait->task_list))
89  __add_wait_queue_tail(q, wait);
90  set_current_state(state);
91  spin_unlock_irqrestore(&q->lock, flags);
92 }
94 
105 {
106  unsigned long flags;
107 
109  /*
110  * We can check for list emptiness outside the lock
111  * IFF:
112  * - we use the "careful" check that verifies both
113  * the next and prev pointers, so that there cannot
114  * be any half-pending updates in progress on other
115  * CPU's that we haven't seen yet (and that might
116  * still change the stack area.
117  * and
118  * - all other users take the lock (ie we can only
119  * have _one_ other CPU that looks at or modifies
120  * the list).
121  */
122  if (!list_empty_careful(&wait->task_list)) {
123  spin_lock_irqsave(&q->lock, flags);
124  list_del_init(&wait->task_list);
125  spin_unlock_irqrestore(&q->lock, flags);
126  }
127 }
129 
149  unsigned int mode, void *key)
150 {
151  unsigned long flags;
152 
154  spin_lock_irqsave(&q->lock, flags);
155  if (!list_empty(&wait->task_list))
156  list_del_init(&wait->task_list);
157  else if (waitqueue_active(q))
158  __wake_up_locked_key(q, mode, key);
159  spin_unlock_irqrestore(&q->lock, flags);
160 }
162 
164 {
165  int ret = default_wake_function(wait, mode, sync, key);
166 
167  if (ret)
168  list_del_init(&wait->task_list);
169  return ret;
170 }
172 
173 int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
174 {
175  struct wait_bit_key *key = arg;
176  struct wait_bit_queue *wait_bit
177  = container_of(wait, struct wait_bit_queue, wait);
178 
179  if (wait_bit->key.flags != key->flags ||
180  wait_bit->key.bit_nr != key->bit_nr ||
181  test_bit(key->bit_nr, key->flags))
182  return 0;
183  else
184  return autoremove_wake_function(wait, mode, sync, key);
185 }
187 
188 /*
189  * To allow interruptible waiting and asynchronous (i.e. nonblocking)
190  * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are
191  * permitted return codes. Nonzero return codes halt waiting and return.
192  */
193 int __sched
195  int (*action)(void *), unsigned mode)
196 {
197  int ret = 0;
198 
199  do {
200  prepare_to_wait(wq, &q->wait, mode);
201  if (test_bit(q->key.bit_nr, q->key.flags))
202  ret = (*action)(q->key.flags);
203  } while (test_bit(q->key.bit_nr, q->key.flags) && !ret);
204  finish_wait(wq, &q->wait);
205  return ret;
206 }
208 
210  int (*action)(void *), unsigned mode)
211 {
212  wait_queue_head_t *wq = bit_waitqueue(word, bit);
213  DEFINE_WAIT_BIT(wait, word, bit);
214 
215  return __wait_on_bit(wq, &wait, action, mode);
216 }
218 
219 int __sched
221  int (*action)(void *), unsigned mode)
222 {
223  do {
224  int ret;
225 
226  prepare_to_wait_exclusive(wq, &q->wait, mode);
227  if (!test_bit(q->key.bit_nr, q->key.flags))
228  continue;
229  ret = action(q->key.flags);
230  if (!ret)
231  continue;
232  abort_exclusive_wait(wq, &q->wait, mode, &q->key);
233  return ret;
234  } while (test_and_set_bit(q->key.bit_nr, q->key.flags));
235  finish_wait(wq, &q->wait);
236  return 0;
237 }
239 
240 int __sched out_of_line_wait_on_bit_lock(void *word, int bit,
241  int (*action)(void *), unsigned mode)
242 {
243  wait_queue_head_t *wq = bit_waitqueue(word, bit);
244  DEFINE_WAIT_BIT(wait, word, bit);
245 
246  return __wait_on_bit_lock(wq, &wait, action, mode);
247 }
249 
250 void __wake_up_bit(wait_queue_head_t *wq, void *word, int bit)
251 {
252  struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit);
253  if (waitqueue_active(wq))
254  __wake_up(wq, TASK_NORMAL, 1, &key);
255 }
257 
275 void wake_up_bit(void *word, int bit)
276 {
277  __wake_up_bit(bit_waitqueue(word, bit), word, bit);
278 }
280 
281 wait_queue_head_t *bit_waitqueue(void *word, int bit)
282 {
283  const int shift = BITS_PER_LONG == 32 ? 5 : 6;
284  const struct zone *zone = page_zone(virt_to_page(word));
285  unsigned long val = (unsigned long)word << shift | bit;
286 
287  return &zone->wait_table[hash_long(val, zone->wait_table_bits)];
288 }