Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
hugetlbpage.c
Go to the documentation of this file.
1 /*
2  * IA-32 Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2002, Rohit Seth <[email protected]>
5  */
6 
7 #include <linux/init.h>
8 #include <linux/fs.h>
9 #include <linux/mm.h>
10 #include <linux/hugetlb.h>
11 #include <linux/pagemap.h>
12 #include <linux/err.h>
13 #include <linux/sysctl.h>
14 #include <asm/mman.h>
15 #include <asm/tlb.h>
16 #include <asm/tlbflush.h>
17 #include <asm/pgalloc.h>
18 
19 static unsigned long page_table_shareable(struct vm_area_struct *svma,
20  struct vm_area_struct *vma,
21  unsigned long addr, pgoff_t idx)
22 {
23  unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
24  svma->vm_start;
25  unsigned long sbase = saddr & PUD_MASK;
26  unsigned long s_end = sbase + PUD_SIZE;
27 
28  /* Allow segments to share if only one is marked locked */
29  unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
30  unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
31 
32  /*
33  * match the virtual addresses, permission and the alignment of the
34  * page table page.
35  */
36  if (pmd_index(addr) != pmd_index(saddr) ||
37  vm_flags != svm_flags ||
38  sbase < svma->vm_start || svma->vm_end < s_end)
39  return 0;
40 
41  return saddr;
42 }
43 
44 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
45 {
46  unsigned long base = addr & PUD_MASK;
47  unsigned long end = base + PUD_SIZE;
48 
49  /*
50  * check on proper vm_flags and page table alignment
51  */
52  if (vma->vm_flags & VM_MAYSHARE &&
53  vma->vm_start <= base && end <= vma->vm_end)
54  return 1;
55  return 0;
56 }
57 
58 /*
59  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
60  * and returns the corresponding pte. While this is not necessary for the
61  * !shared pmd case because we can allocate the pmd later as well, it makes the
62  * code much cleaner. pmd allocation is essential for the shared case because
63  * pud has to be populated inside the same i_mmap_mutex section - otherwise
64  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
65  * bad pmd for sharing.
66  */
67 static pte_t *
68 huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
69 {
70  struct vm_area_struct *vma = find_vma(mm, addr);
71  struct address_space *mapping = vma->vm_file->f_mapping;
72  pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
73  vma->vm_pgoff;
74  struct vm_area_struct *svma;
75  unsigned long saddr;
76  pte_t *spte = NULL;
77  pte_t *pte;
78 
79  if (!vma_shareable(vma, addr))
80  return (pte_t *)pmd_alloc(mm, pud, addr);
81 
82  mutex_lock(&mapping->i_mmap_mutex);
83  vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
84  if (svma == vma)
85  continue;
86 
87  saddr = page_table_shareable(svma, vma, addr, idx);
88  if (saddr) {
89  spte = huge_pte_offset(svma->vm_mm, saddr);
90  if (spte) {
91  get_page(virt_to_page(spte));
92  break;
93  }
94  }
95  }
96 
97  if (!spte)
98  goto out;
99 
100  spin_lock(&mm->page_table_lock);
101  if (pud_none(*pud))
102  pud_populate(mm, pud, (pmd_t *)((unsigned long)spte & PAGE_MASK));
103  else
104  put_page(virt_to_page(spte));
105  spin_unlock(&mm->page_table_lock);
106 out:
107  pte = (pte_t *)pmd_alloc(mm, pud, addr);
108  mutex_unlock(&mapping->i_mmap_mutex);
109  return pte;
110 }
111 
112 /*
113  * unmap huge page backed by shared pte.
114  *
115  * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
116  * indicated by page_count > 1, unmap is achieved by clearing pud and
117  * decrementing the ref count. If count == 1, the pte page is not shared.
118  *
119  * called with vma->vm_mm->page_table_lock held.
120  *
121  * returns: 1 successfully unmapped a shared pte page
122  * 0 the underlying pte page is not shared, or it is the last user
123  */
124 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
125 {
126  pgd_t *pgd = pgd_offset(mm, *addr);
127  pud_t *pud = pud_offset(pgd, *addr);
128 
129  BUG_ON(page_count(virt_to_page(ptep)) == 0);
130  if (page_count(virt_to_page(ptep)) == 1)
131  return 0;
132 
133  pud_clear(pud);
134  put_page(virt_to_page(ptep));
135  *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
136  return 1;
137 }
138 
140  unsigned long addr, unsigned long sz)
141 {
142  pgd_t *pgd;
143  pud_t *pud;
144  pte_t *pte = NULL;
145 
146  pgd = pgd_offset(mm, addr);
147  pud = pud_alloc(mm, pgd, addr);
148  if (pud) {
149  if (sz == PUD_SIZE) {
150  pte = (pte_t *)pud;
151  } else {
152  BUG_ON(sz != PMD_SIZE);
153  if (pud_none(*pud))
154  pte = huge_pmd_share(mm, addr, pud);
155  else
156  pte = (pte_t *)pmd_alloc(mm, pud, addr);
157  }
158  }
159  BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
160 
161  return pte;
162 }
163 
164 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
165 {
166  pgd_t *pgd;
167  pud_t *pud;
168  pmd_t *pmd = NULL;
169 
170  pgd = pgd_offset(mm, addr);
171  if (pgd_present(*pgd)) {
172  pud = pud_offset(pgd, addr);
173  if (pud_present(*pud)) {
174  if (pud_large(*pud))
175  return (pte_t *)pud;
176  pmd = pmd_offset(pud, addr);
177  }
178  }
179  return (pte_t *) pmd;
180 }
181 
182 #if 0 /* This is just for testing */
183 struct page *
184 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
185 {
186  unsigned long start = address;
187  int length = 1;
188  int nr;
189  struct page *page;
190  struct vm_area_struct *vma;
191 
192  vma = find_vma(mm, addr);
193  if (!vma || !is_vm_hugetlb_page(vma))
194  return ERR_PTR(-EINVAL);
195 
196  pte = huge_pte_offset(mm, address);
197 
198  /* hugetlb should be locked, and hence, prefaulted */
199  WARN_ON(!pte || pte_none(*pte));
200 
201  page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
202 
203  WARN_ON(!PageHead(page));
204 
205  return page;
206 }
207 
208 int pmd_huge(pmd_t pmd)
209 {
210  return 0;
211 }
212 
213 int pud_huge(pud_t pud)
214 {
215  return 0;
216 }
217 
218 struct page *
219 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
220  pmd_t *pmd, int write)
221 {
222  return NULL;
223 }
224 
225 #else
226 
227 struct page *
228 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
229 {
230  return ERR_PTR(-EINVAL);
231 }
232 
234 {
235  return !!(pmd_val(pmd) & _PAGE_PSE);
236 }
237 
238 int pud_huge(pud_t pud)
239 {
240  return !!(pud_val(pud) & _PAGE_PSE);
241 }
242 
243 struct page *
244 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
245  pmd_t *pmd, int write)
246 {
247  struct page *page;
248 
249  page = pte_page(*(pte_t *)pmd);
250  if (page)
251  page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
252  return page;
253 }
254 
255 struct page *
256 follow_huge_pud(struct mm_struct *mm, unsigned long address,
257  pud_t *pud, int write)
258 {
259  struct page *page;
260 
261  page = pte_page(*(pte_t *)pud);
262  if (page)
263  page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
264  return page;
265 }
266 
267 #endif
268 
269 /* x86_64 also uses this file */
270 
271 #ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
272 static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file,
273  unsigned long addr, unsigned long len,
274  unsigned long pgoff, unsigned long flags)
275 {
276  struct hstate *h = hstate_file(file);
277  struct mm_struct *mm = current->mm;
278  struct vm_area_struct *vma;
279  unsigned long start_addr;
280 
281  if (len > mm->cached_hole_size) {
282  start_addr = mm->free_area_cache;
283  } else {
284  start_addr = TASK_UNMAPPED_BASE;
285  mm->cached_hole_size = 0;
286  }
287 
288 full_search:
289  addr = ALIGN(start_addr, huge_page_size(h));
290 
291  for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
292  /* At this point: (!vma || addr < vma->vm_end). */
293  if (TASK_SIZE - len < addr) {
294  /*
295  * Start a new search - just in case we missed
296  * some holes.
297  */
298  if (start_addr != TASK_UNMAPPED_BASE) {
299  start_addr = TASK_UNMAPPED_BASE;
300  mm->cached_hole_size = 0;
301  goto full_search;
302  }
303  return -ENOMEM;
304  }
305  if (!vma || addr + len <= vma->vm_start) {
306  mm->free_area_cache = addr + len;
307  return addr;
308  }
309  if (addr + mm->cached_hole_size < vma->vm_start)
310  mm->cached_hole_size = vma->vm_start - addr;
311  addr = ALIGN(vma->vm_end, huge_page_size(h));
312  }
313 }
314 
315 static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file,
316  unsigned long addr0, unsigned long len,
317  unsigned long pgoff, unsigned long flags)
318 {
319  struct hstate *h = hstate_file(file);
320  struct mm_struct *mm = current->mm;
321  struct vm_area_struct *vma;
322  unsigned long base = mm->mmap_base;
323  unsigned long addr = addr0;
324  unsigned long largest_hole = mm->cached_hole_size;
325  unsigned long start_addr;
326 
327  /* don't allow allocations above current base */
328  if (mm->free_area_cache > base)
329  mm->free_area_cache = base;
330 
331  if (len <= largest_hole) {
332  largest_hole = 0;
333  mm->free_area_cache = base;
334  }
335 try_again:
336  start_addr = mm->free_area_cache;
337 
338  /* make sure it can fit in the remaining address space */
339  if (mm->free_area_cache < len)
340  goto fail;
341 
342  /* either no address requested or can't fit in requested address hole */
343  addr = (mm->free_area_cache - len) & huge_page_mask(h);
344  do {
345  /*
346  * Lookup failure means no vma is above this address,
347  * i.e. return with success:
348  */
349  vma = find_vma(mm, addr);
350  if (!vma)
351  return addr;
352 
353  if (addr + len <= vma->vm_start) {
354  /* remember the address as a hint for next time */
355  mm->cached_hole_size = largest_hole;
356  return (mm->free_area_cache = addr);
357  } else if (mm->free_area_cache == vma->vm_end) {
358  /* pull free_area_cache down to the first hole */
359  mm->free_area_cache = vma->vm_start;
360  mm->cached_hole_size = largest_hole;
361  }
362 
363  /* remember the largest hole we saw so far */
364  if (addr + largest_hole < vma->vm_start)
365  largest_hole = vma->vm_start - addr;
366 
367  /* try just below the current vma->vm_start */
368  addr = (vma->vm_start - len) & huge_page_mask(h);
369  } while (len <= vma->vm_start);
370 
371 fail:
372  /*
373  * if hint left us with no space for the requested
374  * mapping then try again:
375  */
376  if (start_addr != base) {
377  mm->free_area_cache = base;
378  largest_hole = 0;
379  goto try_again;
380  }
381  /*
382  * A failed mmap() very likely causes application failure,
383  * so fall back to the bottom-up function here. This scenario
384  * can happen with large stack limits and large mmap()
385  * allocations.
386  */
388  mm->cached_hole_size = ~0UL;
389  addr = hugetlb_get_unmapped_area_bottomup(file, addr0,
390  len, pgoff, flags);
391 
392  /*
393  * Restore the topdown base:
394  */
395  mm->free_area_cache = base;
396  mm->cached_hole_size = ~0UL;
397 
398  return addr;
399 }
400 
401 unsigned long
402 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
403  unsigned long len, unsigned long pgoff, unsigned long flags)
404 {
405  struct hstate *h = hstate_file(file);
406  struct mm_struct *mm = current->mm;
407  struct vm_area_struct *vma;
408 
409  if (len & ~huge_page_mask(h))
410  return -EINVAL;
411  if (len > TASK_SIZE)
412  return -ENOMEM;
413 
414  if (flags & MAP_FIXED) {
415  if (prepare_hugepage_range(file, addr, len))
416  return -EINVAL;
417  return addr;
418  }
419 
420  if (addr) {
421  addr = ALIGN(addr, huge_page_size(h));
422  vma = find_vma(mm, addr);
423  if (TASK_SIZE - len >= addr &&
424  (!vma || addr + len <= vma->vm_start))
425  return addr;
426  }
427  if (mm->get_unmapped_area == arch_get_unmapped_area)
428  return hugetlb_get_unmapped_area_bottomup(file, addr, len,
429  pgoff, flags);
430  else
431  return hugetlb_get_unmapped_area_topdown(file, addr, len,
432  pgoff, flags);
433 }
434 
435 #endif /*HAVE_ARCH_HUGETLB_UNMAPPED_AREA*/
436 
437 #ifdef CONFIG_X86_64
438 static __init int setup_hugepagesz(char *opt)
439 {
440  unsigned long ps = memparse(opt, &opt);
441  if (ps == PMD_SIZE) {
443  } else if (ps == PUD_SIZE && cpu_has_gbpages) {
445  } else {
446  printk(KERN_ERR "hugepagesz: Unsupported page size %lu M\n",
447  ps >> 20);
448  return 0;
449  }
450  return 1;
451 }
452 __setup("hugepagesz=", setup_hugepagesz);
453 #endif