Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
xz_dec_lzma2.c
Go to the documentation of this file.
1 /*
2  * LZMA2 decoder
3  *
4  * Authors: Lasse Collin <[email protected]>
5  * Igor Pavlov <http://7-zip.org/>
6  *
7  * This file has been put into the public domain.
8  * You can do whatever you want with this file.
9  */
10 
11 #include "xz_private.h"
12 #include "xz_lzma2.h"
13 
14 /*
15  * Range decoder initialization eats the first five bytes of each LZMA chunk.
16  */
17 #define RC_INIT_BYTES 5
18 
19 /*
20  * Minimum number of usable input buffer to safely decode one LZMA symbol.
21  * The worst case is that we decode 22 bits using probabilities and 26
22  * direct bits. This may decode at maximum of 20 bytes of input. However,
23  * lzma_main() does an extra normalization before returning, thus we
24  * need to put 21 here.
25  */
26 #define LZMA_IN_REQUIRED 21
27 
28 /*
29  * Dictionary (history buffer)
30  *
31  * These are always true:
32  * start <= pos <= full <= end
33  * pos <= limit <= end
34  *
35  * In multi-call mode, also these are true:
36  * end == size
37  * size <= size_max
38  * allocated <= size
39  *
40  * Most of these variables are size_t to support single-call mode,
41  * in which the dictionary variables address the actual output
42  * buffer directly.
43  */
44 struct dictionary {
45  /* Beginning of the history buffer */
47 
48  /* Old position in buf (before decoding more data) */
49  size_t start;
50 
51  /* Position in buf */
52  size_t pos;
53 
54  /*
55  * How full dictionary is. This is used to detect corrupt input that
56  * would read beyond the beginning of the uncompressed stream.
57  */
58  size_t full;
59 
60  /* Write limit; we don't write to buf[limit] or later bytes. */
61  size_t limit;
62 
63  /*
64  * End of the dictionary buffer. In multi-call mode, this is
65  * the same as the dictionary size. In single-call mode, this
66  * indicates the size of the output buffer.
67  */
68  size_t end;
69 
70  /*
71  * Size of the dictionary as specified in Block Header. This is used
72  * together with "full" to detect corrupt input that would make us
73  * read beyond the beginning of the uncompressed stream.
74  */
76 
77  /*
78  * Maximum allowed dictionary size in multi-call mode.
79  * This is ignored in single-call mode.
80  */
82 
83  /*
84  * Amount of memory currently allocated for the dictionary.
85  * This is used only with XZ_DYNALLOC. (With XZ_PREALLOC,
86  * size_max is always the same as the allocated size.)
87  */
89 
90  /* Operation mode */
91  enum xz_mode mode;
92 };
93 
94 /* Range decoder */
95 struct rc_dec {
98 
99  /*
100  * Number of initializing bytes remaining to be read
101  * by rc_read_init().
102  */
104 
105  /*
106  * Buffer from which we read our input. It can be either
107  * temp.buf or the caller-provided input buffer.
108  */
109  const uint8_t *in;
110  size_t in_pos;
111  size_t in_limit;
112 };
113 
114 /* Probabilities for a length decoder. */
115 struct lzma_len_dec {
116  /* Probability of match length being at least 10 */
118 
119  /* Probability of match length being at least 18 */
121 
122  /* Probabilities for match lengths 2-9 */
124 
125  /* Probabilities for match lengths 10-17 */
127 
128  /* Probabilities for match lengths 18-273 */
130 };
131 
132 struct lzma_dec {
133  /* Distances of latest four matches */
138 
139  /* Types of the most recently seen LZMA symbols */
141 
142  /*
143  * Length of a match. This is updated so that dict_repeat can
144  * be called again to finish repeating the whole match.
145  */
147 
148  /*
149  * LZMA properties or related bit masks (number of literal
150  * context bits, a mask dervied from the number of literal
151  * position bits, and a mask dervied from the number
152  * position bits)
153  */
155  uint32_t literal_pos_mask; /* (1 << lp) - 1 */
156  uint32_t pos_mask; /* (1 << pb) - 1 */
157 
158  /* If 1, it's a match. Otherwise it's a single 8-bit literal. */
160 
161  /* If 1, it's a repeated match. The distance is one of rep0 .. rep3. */
163 
164  /*
165  * If 0, distance of a repeated match is rep0.
166  * Otherwise check is_rep1.
167  */
169 
170  /*
171  * If 0, distance of a repeated match is rep1.
172  * Otherwise check is_rep2.
173  */
175 
176  /* If 0, distance of a repeated match is rep2. Otherwise it is rep3. */
178 
179  /*
180  * If 1, the repeated match has length of one byte. Otherwise
181  * the length is decoded from rep_len_decoder.
182  */
184 
185  /*
186  * Probability tree for the highest two bits of the match
187  * distance. There is a separate probability tree for match
188  * lengths of 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273].
189  */
191 
192  /*
193  * Probility trees for additional bits for match distance
194  * when the distance is in the range [4, 127].
195  */
197 
198  /*
199  * Probability tree for the lowest four bits of a match
200  * distance that is equal to or greater than 128.
201  */
203 
204  /* Length of a normal match */
206 
207  /* Length of a repeated match */
209 
210  /* Probabilities of literals */
212 };
213 
214 struct lzma2_dec {
215  /* Position in xz_dec_lzma2_run(). */
216  enum lzma2_seq {
226  } sequence;
227 
228  /* Next position after decoding the compressed size of the chunk. */
230 
231  /* Uncompressed size of LZMA chunk (2 MiB at maximum) */
233 
234  /*
235  * Compressed size of LZMA chunk or compressed/uncompressed
236  * size of uncompressed chunk (64 KiB at maximum)
237  */
239 
240  /*
241  * True if dictionary reset is needed. This is false before
242  * the first chunk (LZMA or uncompressed).
243  */
245 
246  /*
247  * True if new LZMA properties are needed. This is false
248  * before the first LZMA chunk.
249  */
251 };
252 
253 struct xz_dec_lzma2 {
254  /*
255  * The order below is important on x86 to reduce code size and
256  * it shouldn't hurt on other platforms. Everything up to and
257  * including lzma.pos_mask are in the first 128 bytes on x86-32,
258  * which allows using smaller instructions to access those
259  * variables. On x86-64, fewer variables fit into the first 128
260  * bytes, but this is still the best order without sacrificing
261  * the readability by splitting the structures.
262  */
263  struct rc_dec rc;
264  struct dictionary dict;
265  struct lzma2_dec lzma2;
266  struct lzma_dec lzma;
267 
268  /*
269  * Temporary buffer which holds small number of input bytes between
270  * decoder calls. See lzma2_lzma() for details.
271  */
272  struct {
275  } temp;
276 };
277 
278 /**************
279  * Dictionary *
280  **************/
281 
282 /*
283  * Reset the dictionary state. When in single-call mode, set up the beginning
284  * of the dictionary to point to the actual output buffer.
285  */
286 static void dict_reset(struct dictionary *dict, struct xz_buf *b)
287 {
288  if (DEC_IS_SINGLE(dict->mode)) {
289  dict->buf = b->out + b->out_pos;
290  dict->end = b->out_size - b->out_pos;
291  }
292 
293  dict->start = 0;
294  dict->pos = 0;
295  dict->limit = 0;
296  dict->full = 0;
297 }
298 
299 /* Set dictionary write limit */
300 static void dict_limit(struct dictionary *dict, size_t out_max)
301 {
302  if (dict->end - dict->pos <= out_max)
303  dict->limit = dict->end;
304  else
305  dict->limit = dict->pos + out_max;
306 }
307 
308 /* Return true if at least one byte can be written into the dictionary. */
309 static inline bool dict_has_space(const struct dictionary *dict)
310 {
311  return dict->pos < dict->limit;
312 }
313 
314 /*
315  * Get a byte from the dictionary at the given distance. The distance is
316  * assumed to valid, or as a special case, zero when the dictionary is
317  * still empty. This special case is needed for single-call decoding to
318  * avoid writing a '\0' to the end of the destination buffer.
319  */
320 static inline uint32_t dict_get(const struct dictionary *dict, uint32_t dist)
321 {
322  size_t offset = dict->pos - dist - 1;
323 
324  if (dist >= dict->pos)
325  offset += dict->end;
326 
327  return dict->full > 0 ? dict->buf[offset] : 0;
328 }
329 
330 /*
331  * Put one byte into the dictionary. It is assumed that there is space for it.
332  */
333 static inline void dict_put(struct dictionary *dict, uint8_t byte)
334 {
335  dict->buf[dict->pos++] = byte;
336 
337  if (dict->full < dict->pos)
338  dict->full = dict->pos;
339 }
340 
341 /*
342  * Repeat given number of bytes from the given distance. If the distance is
343  * invalid, false is returned. On success, true is returned and *len is
344  * updated to indicate how many bytes were left to be repeated.
345  */
346 static bool dict_repeat(struct dictionary *dict, uint32_t *len, uint32_t dist)
347 {
348  size_t back;
349  uint32_t left;
350 
351  if (dist >= dict->full || dist >= dict->size)
352  return false;
353 
354  left = min_t(size_t, dict->limit - dict->pos, *len);
355  *len -= left;
356 
357  back = dict->pos - dist - 1;
358  if (dist >= dict->pos)
359  back += dict->end;
360 
361  do {
362  dict->buf[dict->pos++] = dict->buf[back++];
363  if (back == dict->end)
364  back = 0;
365  } while (--left > 0);
366 
367  if (dict->full < dict->pos)
368  dict->full = dict->pos;
369 
370  return true;
371 }
372 
373 /* Copy uncompressed data as is from input to dictionary and output buffers. */
374 static void dict_uncompressed(struct dictionary *dict, struct xz_buf *b,
375  uint32_t *left)
376 {
377  size_t copy_size;
378 
379  while (*left > 0 && b->in_pos < b->in_size
380  && b->out_pos < b->out_size) {
381  copy_size = min(b->in_size - b->in_pos,
382  b->out_size - b->out_pos);
383  if (copy_size > dict->end - dict->pos)
384  copy_size = dict->end - dict->pos;
385  if (copy_size > *left)
386  copy_size = *left;
387 
388  *left -= copy_size;
389 
390  memcpy(dict->buf + dict->pos, b->in + b->in_pos, copy_size);
391  dict->pos += copy_size;
392 
393  if (dict->full < dict->pos)
394  dict->full = dict->pos;
395 
396  if (DEC_IS_MULTI(dict->mode)) {
397  if (dict->pos == dict->end)
398  dict->pos = 0;
399 
400  memcpy(b->out + b->out_pos, b->in + b->in_pos,
401  copy_size);
402  }
403 
404  dict->start = dict->pos;
405 
406  b->out_pos += copy_size;
407  b->in_pos += copy_size;
408  }
409 }
410 
411 /*
412  * Flush pending data from dictionary to b->out. It is assumed that there is
413  * enough space in b->out. This is guaranteed because caller uses dict_limit()
414  * before decoding data into the dictionary.
415  */
416 static uint32_t dict_flush(struct dictionary *dict, struct xz_buf *b)
417 {
418  size_t copy_size = dict->pos - dict->start;
419 
420  if (DEC_IS_MULTI(dict->mode)) {
421  if (dict->pos == dict->end)
422  dict->pos = 0;
423 
424  memcpy(b->out + b->out_pos, dict->buf + dict->start,
425  copy_size);
426  }
427 
428  dict->start = dict->pos;
429  b->out_pos += copy_size;
430  return copy_size;
431 }
432 
433 /*****************
434  * Range decoder *
435  *****************/
436 
437 /* Reset the range decoder. */
438 static void rc_reset(struct rc_dec *rc)
439 {
440  rc->range = (uint32_t)-1;
441  rc->code = 0;
443 }
444 
445 /*
446  * Read the first five initial bytes into rc->code if they haven't been
447  * read already. (Yes, the first byte gets completely ignored.)
448  */
449 static bool rc_read_init(struct rc_dec *rc, struct xz_buf *b)
450 {
451  while (rc->init_bytes_left > 0) {
452  if (b->in_pos == b->in_size)
453  return false;
454 
455  rc->code = (rc->code << 8) + b->in[b->in_pos++];
456  --rc->init_bytes_left;
457  }
458 
459  return true;
460 }
461 
462 /* Return true if there may not be enough input for the next decoding loop. */
463 static inline bool rc_limit_exceeded(const struct rc_dec *rc)
464 {
465  return rc->in_pos > rc->in_limit;
466 }
467 
468 /*
469  * Return true if it is possible (from point of view of range decoder) that
470  * we have reached the end of the LZMA chunk.
471  */
472 static inline bool rc_is_finished(const struct rc_dec *rc)
473 {
474  return rc->code == 0;
475 }
476 
477 /* Read the next input byte if needed. */
478 static __always_inline void rc_normalize(struct rc_dec *rc)
479 {
480  if (rc->range < RC_TOP_VALUE) {
481  rc->range <<= RC_SHIFT_BITS;
482  rc->code = (rc->code << RC_SHIFT_BITS) + rc->in[rc->in_pos++];
483  }
484 }
485 
486 /*
487  * Decode one bit. In some versions, this function has been splitted in three
488  * functions so that the compiler is supposed to be able to more easily avoid
489  * an extra branch. In this particular version of the LZMA decoder, this
490  * doesn't seem to be a good idea (tested with GCC 3.3.6, 3.4.6, and 4.3.3
491  * on x86). Using a non-splitted version results in nicer looking code too.
492  *
493  * NOTE: This must return an int. Do not make it return a bool or the speed
494  * of the code generated by GCC 3.x decreases 10-15 %. (GCC 4.3 doesn't care,
495  * and it generates 10-20 % faster code than GCC 3.x from this file anyway.)
496  */
497 static __always_inline int rc_bit(struct rc_dec *rc, uint16_t *prob)
498 {
499  uint32_t bound;
500  int bit;
501 
502  rc_normalize(rc);
503  bound = (rc->range >> RC_BIT_MODEL_TOTAL_BITS) * *prob;
504  if (rc->code < bound) {
505  rc->range = bound;
506  *prob += (RC_BIT_MODEL_TOTAL - *prob) >> RC_MOVE_BITS;
507  bit = 0;
508  } else {
509  rc->range -= bound;
510  rc->code -= bound;
511  *prob -= *prob >> RC_MOVE_BITS;
512  bit = 1;
513  }
514 
515  return bit;
516 }
517 
518 /* Decode a bittree starting from the most significant bit. */
519 static __always_inline uint32_t rc_bittree(struct rc_dec *rc,
520  uint16_t *probs, uint32_t limit)
521 {
522  uint32_t symbol = 1;
523 
524  do {
525  if (rc_bit(rc, &probs[symbol]))
526  symbol = (symbol << 1) + 1;
527  else
528  symbol <<= 1;
529  } while (symbol < limit);
530 
531  return symbol;
532 }
533 
534 /* Decode a bittree starting from the least significant bit. */
535 static __always_inline void rc_bittree_reverse(struct rc_dec *rc,
536  uint16_t *probs,
537  uint32_t *dest, uint32_t limit)
538 {
539  uint32_t symbol = 1;
540  uint32_t i = 0;
541 
542  do {
543  if (rc_bit(rc, &probs[symbol])) {
544  symbol = (symbol << 1) + 1;
545  *dest += 1 << i;
546  } else {
547  symbol <<= 1;
548  }
549  } while (++i < limit);
550 }
551 
552 /* Decode direct bits (fixed fifty-fifty probability) */
553 static inline void rc_direct(struct rc_dec *rc, uint32_t *dest, uint32_t limit)
554 {
555  uint32_t mask;
556 
557  do {
558  rc_normalize(rc);
559  rc->range >>= 1;
560  rc->code -= rc->range;
561  mask = (uint32_t)0 - (rc->code >> 31);
562  rc->code += rc->range & mask;
563  *dest = (*dest << 1) + (mask + 1);
564  } while (--limit > 0);
565 }
566 
567 /********
568  * LZMA *
569  ********/
570 
571 /* Get pointer to literal coder probability array. */
572 static uint16_t *lzma_literal_probs(struct xz_dec_lzma2 *s)
573 {
574  uint32_t prev_byte = dict_get(&s->dict, 0);
575  uint32_t low = prev_byte >> (8 - s->lzma.lc);
576  uint32_t high = (s->dict.pos & s->lzma.literal_pos_mask) << s->lzma.lc;
577  return s->lzma.literal[low + high];
578 }
579 
580 /* Decode a literal (one 8-bit byte) */
581 static void lzma_literal(struct xz_dec_lzma2 *s)
582 {
583  uint16_t *probs;
584  uint32_t symbol;
585  uint32_t match_byte;
586  uint32_t match_bit;
588  uint32_t i;
589 
590  probs = lzma_literal_probs(s);
591 
592  if (lzma_state_is_literal(s->lzma.state)) {
593  symbol = rc_bittree(&s->rc, probs, 0x100);
594  } else {
595  symbol = 1;
596  match_byte = dict_get(&s->dict, s->lzma.rep0) << 1;
597  offset = 0x100;
598 
599  do {
600  match_bit = match_byte & offset;
601  match_byte <<= 1;
602  i = offset + match_bit + symbol;
603 
604  if (rc_bit(&s->rc, &probs[i])) {
605  symbol = (symbol << 1) + 1;
606  offset &= match_bit;
607  } else {
608  symbol <<= 1;
609  offset &= ~match_bit;
610  }
611  } while (symbol < 0x100);
612  }
613 
614  dict_put(&s->dict, (uint8_t)symbol);
615  lzma_state_literal(&s->lzma.state);
616 }
617 
618 /* Decode the length of the match into s->lzma.len. */
619 static void lzma_len(struct xz_dec_lzma2 *s, struct lzma_len_dec *l,
620  uint32_t pos_state)
621 {
622  uint16_t *probs;
623  uint32_t limit;
624 
625  if (!rc_bit(&s->rc, &l->choice)) {
626  probs = l->low[pos_state];
627  limit = LEN_LOW_SYMBOLS;
628  s->lzma.len = MATCH_LEN_MIN;
629  } else {
630  if (!rc_bit(&s->rc, &l->choice2)) {
631  probs = l->mid[pos_state];
632  limit = LEN_MID_SYMBOLS;
634  } else {
635  probs = l->high;
636  limit = LEN_HIGH_SYMBOLS;
638  + LEN_MID_SYMBOLS;
639  }
640  }
641 
642  s->lzma.len += rc_bittree(&s->rc, probs, limit) - limit;
643 }
644 
645 /* Decode a match. The distance will be stored in s->lzma.rep0. */
646 static void lzma_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
647 {
648  uint16_t *probs;
649  uint32_t dist_slot;
650  uint32_t limit;
651 
652  lzma_state_match(&s->lzma.state);
653 
654  s->lzma.rep3 = s->lzma.rep2;
655  s->lzma.rep2 = s->lzma.rep1;
656  s->lzma.rep1 = s->lzma.rep0;
657 
658  lzma_len(s, &s->lzma.match_len_dec, pos_state);
659 
660  probs = s->lzma.dist_slot[lzma_get_dist_state(s->lzma.len)];
661  dist_slot = rc_bittree(&s->rc, probs, DIST_SLOTS) - DIST_SLOTS;
662 
663  if (dist_slot < DIST_MODEL_START) {
664  s->lzma.rep0 = dist_slot;
665  } else {
666  limit = (dist_slot >> 1) - 1;
667  s->lzma.rep0 = 2 + (dist_slot & 1);
668 
669  if (dist_slot < DIST_MODEL_END) {
670  s->lzma.rep0 <<= limit;
671  probs = s->lzma.dist_special + s->lzma.rep0
672  - dist_slot - 1;
673  rc_bittree_reverse(&s->rc, probs,
674  &s->lzma.rep0, limit);
675  } else {
676  rc_direct(&s->rc, &s->lzma.rep0, limit - ALIGN_BITS);
677  s->lzma.rep0 <<= ALIGN_BITS;
678  rc_bittree_reverse(&s->rc, s->lzma.dist_align,
679  &s->lzma.rep0, ALIGN_BITS);
680  }
681  }
682 }
683 
684 /*
685  * Decode a repeated match. The distance is one of the four most recently
686  * seen matches. The distance will be stored in s->lzma.rep0.
687  */
688 static void lzma_rep_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
689 {
690  uint32_t tmp;
691 
692  if (!rc_bit(&s->rc, &s->lzma.is_rep0[s->lzma.state])) {
693  if (!rc_bit(&s->rc, &s->lzma.is_rep0_long[
694  s->lzma.state][pos_state])) {
695  lzma_state_short_rep(&s->lzma.state);
696  s->lzma.len = 1;
697  return;
698  }
699  } else {
700  if (!rc_bit(&s->rc, &s->lzma.is_rep1[s->lzma.state])) {
701  tmp = s->lzma.rep1;
702  } else {
703  if (!rc_bit(&s->rc, &s->lzma.is_rep2[s->lzma.state])) {
704  tmp = s->lzma.rep2;
705  } else {
706  tmp = s->lzma.rep3;
707  s->lzma.rep3 = s->lzma.rep2;
708  }
709 
710  s->lzma.rep2 = s->lzma.rep1;
711  }
712 
713  s->lzma.rep1 = s->lzma.rep0;
714  s->lzma.rep0 = tmp;
715  }
716 
717  lzma_state_long_rep(&s->lzma.state);
718  lzma_len(s, &s->lzma.rep_len_dec, pos_state);
719 }
720 
721 /* LZMA decoder core */
722 static bool lzma_main(struct xz_dec_lzma2 *s)
723 {
724  uint32_t pos_state;
725 
726  /*
727  * If the dictionary was reached during the previous call, try to
728  * finish the possibly pending repeat in the dictionary.
729  */
730  if (dict_has_space(&s->dict) && s->lzma.len > 0)
731  dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0);
732 
733  /*
734  * Decode more LZMA symbols. One iteration may consume up to
735  * LZMA_IN_REQUIRED - 1 bytes.
736  */
737  while (dict_has_space(&s->dict) && !rc_limit_exceeded(&s->rc)) {
738  pos_state = s->dict.pos & s->lzma.pos_mask;
739 
740  if (!rc_bit(&s->rc, &s->lzma.is_match[
741  s->lzma.state][pos_state])) {
742  lzma_literal(s);
743  } else {
744  if (rc_bit(&s->rc, &s->lzma.is_rep[s->lzma.state]))
745  lzma_rep_match(s, pos_state);
746  else
747  lzma_match(s, pos_state);
748 
749  if (!dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0))
750  return false;
751  }
752  }
753 
754  /*
755  * Having the range decoder always normalized when we are outside
756  * this function makes it easier to correctly handle end of the chunk.
757  */
758  rc_normalize(&s->rc);
759 
760  return true;
761 }
762 
763 /*
764  * Reset the LZMA decoder and range decoder state. Dictionary is nore reset
765  * here, because LZMA state may be reset without resetting the dictionary.
766  */
767 static void lzma_reset(struct xz_dec_lzma2 *s)
768 {
769  uint16_t *probs;
770  size_t i;
771 
772  s->lzma.state = STATE_LIT_LIT;
773  s->lzma.rep0 = 0;
774  s->lzma.rep1 = 0;
775  s->lzma.rep2 = 0;
776  s->lzma.rep3 = 0;
777 
778  /*
779  * All probabilities are initialized to the same value. This hack
780  * makes the code smaller by avoiding a separate loop for each
781  * probability array.
782  *
783  * This could be optimized so that only that part of literal
784  * probabilities that are actually required. In the common case
785  * we would write 12 KiB less.
786  */
787  probs = s->lzma.is_match[0];
788  for (i = 0; i < PROBS_TOTAL; ++i)
789  probs[i] = RC_BIT_MODEL_TOTAL / 2;
790 
791  rc_reset(&s->rc);
792 }
793 
794 /*
795  * Decode and validate LZMA properties (lc/lp/pb) and calculate the bit masks
796  * from the decoded lp and pb values. On success, the LZMA decoder state is
797  * reset and true is returned.
798  */
799 static bool lzma_props(struct xz_dec_lzma2 *s, uint8_t props)
800 {
801  if (props > (4 * 5 + 4) * 9 + 8)
802  return false;
803 
804  s->lzma.pos_mask = 0;
805  while (props >= 9 * 5) {
806  props -= 9 * 5;
807  ++s->lzma.pos_mask;
808  }
809 
810  s->lzma.pos_mask = (1 << s->lzma.pos_mask) - 1;
811 
812  s->lzma.literal_pos_mask = 0;
813  while (props >= 9) {
814  props -= 9;
815  ++s->lzma.literal_pos_mask;
816  }
817 
818  s->lzma.lc = props;
819 
820  if (s->lzma.lc + s->lzma.literal_pos_mask > 4)
821  return false;
822 
823  s->lzma.literal_pos_mask = (1 << s->lzma.literal_pos_mask) - 1;
824 
825  lzma_reset(s);
826 
827  return true;
828 }
829 
830 /*********
831  * LZMA2 *
832  *********/
833 
834 /*
835  * The LZMA decoder assumes that if the input limit (s->rc.in_limit) hasn't
836  * been exceeded, it is safe to read up to LZMA_IN_REQUIRED bytes. This
837  * wrapper function takes care of making the LZMA decoder's assumption safe.
838  *
839  * As long as there is plenty of input left to be decoded in the current LZMA
840  * chunk, we decode directly from the caller-supplied input buffer until
841  * there's LZMA_IN_REQUIRED bytes left. Those remaining bytes are copied into
842  * s->temp.buf, which (hopefully) gets filled on the next call to this
843  * function. We decode a few bytes from the temporary buffer so that we can
844  * continue decoding from the caller-supplied input buffer again.
845  */
846 static bool lzma2_lzma(struct xz_dec_lzma2 *s, struct xz_buf *b)
847 {
848  size_t in_avail;
849  uint32_t tmp;
850 
851  in_avail = b->in_size - b->in_pos;
852  if (s->temp.size > 0 || s->lzma2.compressed == 0) {
853  tmp = 2 * LZMA_IN_REQUIRED - s->temp.size;
854  if (tmp > s->lzma2.compressed - s->temp.size)
855  tmp = s->lzma2.compressed - s->temp.size;
856  if (tmp > in_avail)
857  tmp = in_avail;
858 
859  memcpy(s->temp.buf + s->temp.size, b->in + b->in_pos, tmp);
860 
861  if (s->temp.size + tmp == s->lzma2.compressed) {
862  memzero(s->temp.buf + s->temp.size + tmp,
863  sizeof(s->temp.buf)
864  - s->temp.size - tmp);
865  s->rc.in_limit = s->temp.size + tmp;
866  } else if (s->temp.size + tmp < LZMA_IN_REQUIRED) {
867  s->temp.size += tmp;
868  b->in_pos += tmp;
869  return true;
870  } else {
871  s->rc.in_limit = s->temp.size + tmp - LZMA_IN_REQUIRED;
872  }
873 
874  s->rc.in = s->temp.buf;
875  s->rc.in_pos = 0;
876 
877  if (!lzma_main(s) || s->rc.in_pos > s->temp.size + tmp)
878  return false;
879 
880  s->lzma2.compressed -= s->rc.in_pos;
881 
882  if (s->rc.in_pos < s->temp.size) {
883  s->temp.size -= s->rc.in_pos;
884  memmove(s->temp.buf, s->temp.buf + s->rc.in_pos,
885  s->temp.size);
886  return true;
887  }
888 
889  b->in_pos += s->rc.in_pos - s->temp.size;
890  s->temp.size = 0;
891  }
892 
893  in_avail = b->in_size - b->in_pos;
894  if (in_avail >= LZMA_IN_REQUIRED) {
895  s->rc.in = b->in;
896  s->rc.in_pos = b->in_pos;
897 
898  if (in_avail >= s->lzma2.compressed + LZMA_IN_REQUIRED)
899  s->rc.in_limit = b->in_pos + s->lzma2.compressed;
900  else
901  s->rc.in_limit = b->in_size - LZMA_IN_REQUIRED;
902 
903  if (!lzma_main(s))
904  return false;
905 
906  in_avail = s->rc.in_pos - b->in_pos;
907  if (in_avail > s->lzma2.compressed)
908  return false;
909 
910  s->lzma2.compressed -= in_avail;
911  b->in_pos = s->rc.in_pos;
912  }
913 
914  in_avail = b->in_size - b->in_pos;
915  if (in_avail < LZMA_IN_REQUIRED) {
916  if (in_avail > s->lzma2.compressed)
917  in_avail = s->lzma2.compressed;
918 
919  memcpy(s->temp.buf, b->in + b->in_pos, in_avail);
920  s->temp.size = in_avail;
921  b->in_pos += in_avail;
922  }
923 
924  return true;
925 }
926 
927 /*
928  * Take care of the LZMA2 control layer, and forward the job of actual LZMA
929  * decoding or copying of uncompressed chunks to other functions.
930  */
932  struct xz_buf *b)
933 {
934  uint32_t tmp;
935 
936  while (b->in_pos < b->in_size || s->lzma2.sequence == SEQ_LZMA_RUN) {
937  switch (s->lzma2.sequence) {
938  case SEQ_CONTROL:
939  /*
940  * LZMA2 control byte
941  *
942  * Exact values:
943  * 0x00 End marker
944  * 0x01 Dictionary reset followed by
945  * an uncompressed chunk
946  * 0x02 Uncompressed chunk (no dictionary reset)
947  *
948  * Highest three bits (s->control & 0xE0):
949  * 0xE0 Dictionary reset, new properties and state
950  * reset, followed by LZMA compressed chunk
951  * 0xC0 New properties and state reset, followed
952  * by LZMA compressed chunk (no dictionary
953  * reset)
954  * 0xA0 State reset using old properties,
955  * followed by LZMA compressed chunk (no
956  * dictionary reset)
957  * 0x80 LZMA chunk (no dictionary or state reset)
958  *
959  * For LZMA compressed chunks, the lowest five bits
960  * (s->control & 1F) are the highest bits of the
961  * uncompressed size (bits 16-20).
962  *
963  * A new LZMA2 stream must begin with a dictionary
964  * reset. The first LZMA chunk must set new
965  * properties and reset the LZMA state.
966  *
967  * Values that don't match anything described above
968  * are invalid and we return XZ_DATA_ERROR.
969  */
970  tmp = b->in[b->in_pos++];
971 
972  if (tmp == 0x00)
973  return XZ_STREAM_END;
974 
975  if (tmp >= 0xE0 || tmp == 0x01) {
976  s->lzma2.need_props = true;
977  s->lzma2.need_dict_reset = false;
978  dict_reset(&s->dict, b);
979  } else if (s->lzma2.need_dict_reset) {
980  return XZ_DATA_ERROR;
981  }
982 
983  if (tmp >= 0x80) {
984  s->lzma2.uncompressed = (tmp & 0x1F) << 16;
985  s->lzma2.sequence = SEQ_UNCOMPRESSED_1;
986 
987  if (tmp >= 0xC0) {
988  /*
989  * When there are new properties,
990  * state reset is done at
991  * SEQ_PROPERTIES.
992  */
993  s->lzma2.need_props = false;
994  s->lzma2.next_sequence
995  = SEQ_PROPERTIES;
996 
997  } else if (s->lzma2.need_props) {
998  return XZ_DATA_ERROR;
999 
1000  } else {
1001  s->lzma2.next_sequence
1002  = SEQ_LZMA_PREPARE;
1003  if (tmp >= 0xA0)
1004  lzma_reset(s);
1005  }
1006  } else {
1007  if (tmp > 0x02)
1008  return XZ_DATA_ERROR;
1009 
1010  s->lzma2.sequence = SEQ_COMPRESSED_0;
1011  s->lzma2.next_sequence = SEQ_COPY;
1012  }
1013 
1014  break;
1015 
1016  case SEQ_UNCOMPRESSED_1:
1017  s->lzma2.uncompressed
1018  += (uint32_t)b->in[b->in_pos++] << 8;
1019  s->lzma2.sequence = SEQ_UNCOMPRESSED_2;
1020  break;
1021 
1022  case SEQ_UNCOMPRESSED_2:
1023  s->lzma2.uncompressed
1024  += (uint32_t)b->in[b->in_pos++] + 1;
1025  s->lzma2.sequence = SEQ_COMPRESSED_0;
1026  break;
1027 
1028  case SEQ_COMPRESSED_0:
1029  s->lzma2.compressed
1030  = (uint32_t)b->in[b->in_pos++] << 8;
1031  s->lzma2.sequence = SEQ_COMPRESSED_1;
1032  break;
1033 
1034  case SEQ_COMPRESSED_1:
1035  s->lzma2.compressed
1036  += (uint32_t)b->in[b->in_pos++] + 1;
1037  s->lzma2.sequence = s->lzma2.next_sequence;
1038  break;
1039 
1040  case SEQ_PROPERTIES:
1041  if (!lzma_props(s, b->in[b->in_pos++]))
1042  return XZ_DATA_ERROR;
1043 
1044  s->lzma2.sequence = SEQ_LZMA_PREPARE;
1045 
1046  case SEQ_LZMA_PREPARE:
1047  if (s->lzma2.compressed < RC_INIT_BYTES)
1048  return XZ_DATA_ERROR;
1049 
1050  if (!rc_read_init(&s->rc, b))
1051  return XZ_OK;
1052 
1053  s->lzma2.compressed -= RC_INIT_BYTES;
1054  s->lzma2.sequence = SEQ_LZMA_RUN;
1055 
1056  case SEQ_LZMA_RUN:
1057  /*
1058  * Set dictionary limit to indicate how much we want
1059  * to be encoded at maximum. Decode new data into the
1060  * dictionary. Flush the new data from dictionary to
1061  * b->out. Check if we finished decoding this chunk.
1062  * In case the dictionary got full but we didn't fill
1063  * the output buffer yet, we may run this loop
1064  * multiple times without changing s->lzma2.sequence.
1065  */
1066  dict_limit(&s->dict, min_t(size_t,
1067  b->out_size - b->out_pos,
1068  s->lzma2.uncompressed));
1069  if (!lzma2_lzma(s, b))
1070  return XZ_DATA_ERROR;
1071 
1072  s->lzma2.uncompressed -= dict_flush(&s->dict, b);
1073 
1074  if (s->lzma2.uncompressed == 0) {
1075  if (s->lzma2.compressed > 0 || s->lzma.len > 0
1076  || !rc_is_finished(&s->rc))
1077  return XZ_DATA_ERROR;
1078 
1079  rc_reset(&s->rc);
1080  s->lzma2.sequence = SEQ_CONTROL;
1081 
1082  } else if (b->out_pos == b->out_size
1083  || (b->in_pos == b->in_size
1084  && s->temp.size
1085  < s->lzma2.compressed)) {
1086  return XZ_OK;
1087  }
1088 
1089  break;
1090 
1091  case SEQ_COPY:
1092  dict_uncompressed(&s->dict, b, &s->lzma2.compressed);
1093  if (s->lzma2.compressed > 0)
1094  return XZ_OK;
1095 
1096  s->lzma2.sequence = SEQ_CONTROL;
1097  break;
1098  }
1099  }
1100 
1101  return XZ_OK;
1102 }
1103 
1105  uint32_t dict_max)
1106 {
1107  struct xz_dec_lzma2 *s = kmalloc(sizeof(*s), GFP_KERNEL);
1108  if (s == NULL)
1109  return NULL;
1110 
1111  s->dict.mode = mode;
1112  s->dict.size_max = dict_max;
1113 
1114  if (DEC_IS_PREALLOC(mode)) {
1115  s->dict.buf = vmalloc(dict_max);
1116  if (s->dict.buf == NULL) {
1117  kfree(s);
1118  return NULL;
1119  }
1120  } else if (DEC_IS_DYNALLOC(mode)) {
1121  s->dict.buf = NULL;
1122  s->dict.allocated = 0;
1123  }
1124 
1125  return s;
1126 }
1127 
1129 {
1130  /* This limits dictionary size to 3 GiB to keep parsing simpler. */
1131  if (props > 39)
1132  return XZ_OPTIONS_ERROR;
1133 
1134  s->dict.size = 2 + (props & 1);
1135  s->dict.size <<= (props >> 1) + 11;
1136 
1137  if (DEC_IS_MULTI(s->dict.mode)) {
1138  if (s->dict.size > s->dict.size_max)
1139  return XZ_MEMLIMIT_ERROR;
1140 
1141  s->dict.end = s->dict.size;
1142 
1143  if (DEC_IS_DYNALLOC(s->dict.mode)) {
1144  if (s->dict.allocated < s->dict.size) {
1145  vfree(s->dict.buf);
1146  s->dict.buf = vmalloc(s->dict.size);
1147  if (s->dict.buf == NULL) {
1148  s->dict.allocated = 0;
1149  return XZ_MEM_ERROR;
1150  }
1151  }
1152  }
1153  }
1154 
1155  s->lzma.len = 0;
1156 
1157  s->lzma2.sequence = SEQ_CONTROL;
1158  s->lzma2.need_dict_reset = true;
1159 
1160  s->temp.size = 0;
1161 
1162  return XZ_OK;
1163 }
1164 
1166 {
1167  if (DEC_IS_MULTI(s->dict.mode))
1168  vfree(s->dict.buf);
1169 
1170  kfree(s);
1171 }