LLVM API Documentation

AArch64AsmBackend.cpp
Go to the documentation of this file.
00001 //===-- AArch64AsmBackend.cpp - AArch64 Assembler Backend -----------------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 
00010 #include "AArch64.h"
00011 #include "AArch64RegisterInfo.h"
00012 #include "MCTargetDesc/AArch64FixupKinds.h"
00013 #include "llvm/ADT/Triple.h"
00014 #include "llvm/MC/MCAsmBackend.h"
00015 #include "llvm/MC/MCDirectives.h"
00016 #include "llvm/MC/MCFixupKindInfo.h"
00017 #include "llvm/MC/MCELFObjectWriter.h"
00018 #include "llvm/MC/MCObjectWriter.h"
00019 #include "llvm/MC/MCSectionELF.h"
00020 #include "llvm/MC/MCSectionMachO.h"
00021 #include "llvm/Support/ErrorHandling.h"
00022 #include "llvm/Support/MachO.h"
00023 using namespace llvm;
00024 
00025 namespace {
00026 
00027 class AArch64AsmBackend : public MCAsmBackend {
00028   static const unsigned PCRelFlagVal =
00029       MCFixupKindInfo::FKF_IsAlignedDownTo32Bits | MCFixupKindInfo::FKF_IsPCRel;
00030 
00031 public:
00032   AArch64AsmBackend(const Target &T) : MCAsmBackend() {}
00033 
00034   unsigned getNumFixupKinds() const override {
00035     return AArch64::NumTargetFixupKinds;
00036   }
00037 
00038   const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override {
00039     const static MCFixupKindInfo Infos[AArch64::NumTargetFixupKinds] = {
00040       // This table *must* be in the order that the fixup_* kinds are defined in
00041       // AArch64FixupKinds.h.
00042       //
00043       // Name                           Offset (bits) Size (bits)     Flags
00044       { "fixup_aarch64_pcrel_adr_imm21", 0, 32, PCRelFlagVal },
00045       { "fixup_aarch64_pcrel_adrp_imm21", 0, 32, PCRelFlagVal },
00046       { "fixup_aarch64_add_imm12", 10, 12, 0 },
00047       { "fixup_aarch64_ldst_imm12_scale1", 10, 12, 0 },
00048       { "fixup_aarch64_ldst_imm12_scale2", 10, 12, 0 },
00049       { "fixup_aarch64_ldst_imm12_scale4", 10, 12, 0 },
00050       { "fixup_aarch64_ldst_imm12_scale8", 10, 12, 0 },
00051       { "fixup_aarch64_ldst_imm12_scale16", 10, 12, 0 },
00052       { "fixup_aarch64_ldr_pcrel_imm19", 5, 19, PCRelFlagVal },
00053       { "fixup_aarch64_movw", 5, 16, 0 },
00054       { "fixup_aarch64_pcrel_branch14", 5, 14, PCRelFlagVal },
00055       { "fixup_aarch64_pcrel_branch19", 5, 19, PCRelFlagVal },
00056       { "fixup_aarch64_pcrel_branch26", 0, 26, PCRelFlagVal },
00057       { "fixup_aarch64_pcrel_call26", 0, 26, PCRelFlagVal },
00058       { "fixup_aarch64_tlsdesc_call", 0, 0, 0 }
00059     };
00060 
00061     if (Kind < FirstTargetFixupKind)
00062       return MCAsmBackend::getFixupKindInfo(Kind);
00063 
00064     assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
00065            "Invalid kind!");
00066     return Infos[Kind - FirstTargetFixupKind];
00067   }
00068 
00069   void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
00070                   uint64_t Value, bool IsPCRel) const override;
00071 
00072   bool mayNeedRelaxation(const MCInst &Inst) const override;
00073   bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
00074                             const MCRelaxableFragment *DF,
00075                             const MCAsmLayout &Layout) const override;
00076   void relaxInstruction(const MCInst &Inst, MCInst &Res) const override;
00077   bool writeNopData(uint64_t Count, MCObjectWriter *OW) const override;
00078 
00079   void HandleAssemblerFlag(MCAssemblerFlag Flag) {}
00080 
00081   unsigned getPointerSize() const { return 8; }
00082 };
00083 
00084 } // end anonymous namespace
00085 
00086 /// \brief The number of bytes the fixup may change.
00087 static unsigned getFixupKindNumBytes(unsigned Kind) {
00088   switch (Kind) {
00089   default:
00090     llvm_unreachable("Unknown fixup kind!");
00091 
00092   case AArch64::fixup_aarch64_tlsdesc_call:
00093     return 0;
00094 
00095   case FK_Data_1:
00096     return 1;
00097 
00098   case FK_Data_2:
00099   case AArch64::fixup_aarch64_movw:
00100     return 2;
00101 
00102   case AArch64::fixup_aarch64_pcrel_branch14:
00103   case AArch64::fixup_aarch64_add_imm12:
00104   case AArch64::fixup_aarch64_ldst_imm12_scale1:
00105   case AArch64::fixup_aarch64_ldst_imm12_scale2:
00106   case AArch64::fixup_aarch64_ldst_imm12_scale4:
00107   case AArch64::fixup_aarch64_ldst_imm12_scale8:
00108   case AArch64::fixup_aarch64_ldst_imm12_scale16:
00109   case AArch64::fixup_aarch64_ldr_pcrel_imm19:
00110   case AArch64::fixup_aarch64_pcrel_branch19:
00111     return 3;
00112 
00113   case AArch64::fixup_aarch64_pcrel_adr_imm21:
00114   case AArch64::fixup_aarch64_pcrel_adrp_imm21:
00115   case AArch64::fixup_aarch64_pcrel_branch26:
00116   case AArch64::fixup_aarch64_pcrel_call26:
00117   case FK_Data_4:
00118     return 4;
00119 
00120   case FK_Data_8:
00121     return 8;
00122   }
00123 }
00124 
00125 static unsigned AdrImmBits(unsigned Value) {
00126   unsigned lo2 = Value & 0x3;
00127   unsigned hi19 = (Value & 0x1ffffc) >> 2;
00128   return (hi19 << 5) | (lo2 << 29);
00129 }
00130 
00131 static uint64_t adjustFixupValue(unsigned Kind, uint64_t Value) {
00132   int64_t SignedValue = static_cast<int64_t>(Value);
00133   switch (Kind) {
00134   default:
00135     assert(false && "Unknown fixup kind!");
00136   case AArch64::fixup_aarch64_pcrel_adr_imm21:
00137     if (SignedValue > 2097151 || SignedValue < -2097152)
00138       report_fatal_error("fixup value out of range");
00139     return AdrImmBits(Value & 0x1fffffULL);
00140   case AArch64::fixup_aarch64_pcrel_adrp_imm21:
00141     return AdrImmBits((Value & 0x1fffff000ULL) >> 12);
00142   case AArch64::fixup_aarch64_ldr_pcrel_imm19:
00143   case AArch64::fixup_aarch64_pcrel_branch19:
00144     // Signed 21-bit immediate
00145     if (SignedValue > 2097151 || SignedValue < -2097152)
00146       report_fatal_error("fixup value out of range");
00147     // Low two bits are not encoded.
00148     return (Value >> 2) & 0x7ffff;
00149   case AArch64::fixup_aarch64_add_imm12:
00150   case AArch64::fixup_aarch64_ldst_imm12_scale1:
00151     // Unsigned 12-bit immediate
00152     if (Value >= 0x1000)
00153       report_fatal_error("invalid imm12 fixup value");
00154     return Value;
00155   case AArch64::fixup_aarch64_ldst_imm12_scale2:
00156     // Unsigned 12-bit immediate which gets multiplied by 2
00157     if (Value & 1 || Value >= 0x2000)
00158       report_fatal_error("invalid imm12 fixup value");
00159     return Value >> 1;
00160   case AArch64::fixup_aarch64_ldst_imm12_scale4:
00161     // Unsigned 12-bit immediate which gets multiplied by 4
00162     if (Value & 3 || Value >= 0x4000)
00163       report_fatal_error("invalid imm12 fixup value");
00164     return Value >> 2;
00165   case AArch64::fixup_aarch64_ldst_imm12_scale8:
00166     // Unsigned 12-bit immediate which gets multiplied by 8
00167     if (Value & 7 || Value >= 0x8000)
00168       report_fatal_error("invalid imm12 fixup value");
00169     return Value >> 3;
00170   case AArch64::fixup_aarch64_ldst_imm12_scale16:
00171     // Unsigned 12-bit immediate which gets multiplied by 16
00172     if (Value & 15 || Value >= 0x10000)
00173       report_fatal_error("invalid imm12 fixup value");
00174     return Value >> 4;
00175   case AArch64::fixup_aarch64_movw:
00176     report_fatal_error("no resolvable MOVZ/MOVK fixups supported yet");
00177     return Value;
00178   case AArch64::fixup_aarch64_pcrel_branch14:
00179     // Signed 16-bit immediate
00180     if (SignedValue > 32767 || SignedValue < -32768)
00181       report_fatal_error("fixup value out of range");
00182     // Low two bits are not encoded (4-byte alignment assumed).
00183     if (Value & 0x3)
00184       report_fatal_error("fixup not sufficiently aligned");
00185     return (Value >> 2) & 0x3fff;
00186   case AArch64::fixup_aarch64_pcrel_branch26:
00187   case AArch64::fixup_aarch64_pcrel_call26:
00188     // Signed 28-bit immediate
00189     if (SignedValue > 134217727 || SignedValue < -134217728)
00190       report_fatal_error("fixup value out of range");
00191     // Low two bits are not encoded (4-byte alignment assumed).
00192     if (Value & 0x3)
00193       report_fatal_error("fixup not sufficiently aligned");
00194     return (Value >> 2) & 0x3ffffff;
00195   case FK_Data_1:
00196   case FK_Data_2:
00197   case FK_Data_4:
00198   case FK_Data_8:
00199     return Value;
00200   }
00201 }
00202 
00203 void AArch64AsmBackend::applyFixup(const MCFixup &Fixup, char *Data,
00204                                    unsigned DataSize, uint64_t Value,
00205                                    bool IsPCRel) const {
00206   unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind());
00207   if (!Value)
00208     return; // Doesn't change encoding.
00209   MCFixupKindInfo Info = getFixupKindInfo(Fixup.getKind());
00210   // Apply any target-specific value adjustments.
00211   Value = adjustFixupValue(Fixup.getKind(), Value);
00212 
00213   // Shift the value into position.
00214   Value <<= Info.TargetOffset;
00215 
00216   unsigned Offset = Fixup.getOffset();
00217   assert(Offset + NumBytes <= DataSize && "Invalid fixup offset!");
00218 
00219   // For each byte of the fragment that the fixup touches, mask in the
00220   // bits from the fixup value.
00221   for (unsigned i = 0; i != NumBytes; ++i)
00222     Data[Offset + i] |= uint8_t((Value >> (i * 8)) & 0xff);
00223 }
00224 
00225 bool AArch64AsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
00226   return false;
00227 }
00228 
00229 bool AArch64AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
00230                                              uint64_t Value,
00231                                              const MCRelaxableFragment *DF,
00232                                              const MCAsmLayout &Layout) const {
00233   // FIXME:  This isn't correct for AArch64. Just moving the "generic" logic
00234   // into the targets for now.
00235   //
00236   // Relax if the value is too big for a (signed) i8.
00237   return int64_t(Value) != int64_t(int8_t(Value));
00238 }
00239 
00240 void AArch64AsmBackend::relaxInstruction(const MCInst &Inst,
00241                                          MCInst &Res) const {
00242   assert(false && "AArch64AsmBackend::relaxInstruction() unimplemented");
00243 }
00244 
00245 bool AArch64AsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
00246   // If the count is not 4-byte aligned, we must be writing data into the text
00247   // section (otherwise we have unaligned instructions, and thus have far
00248   // bigger problems), so just write zeros instead.
00249   if ((Count & 3) != 0) {
00250     for (uint64_t i = 0, e = (Count & 3); i != e; ++i)
00251       OW->Write8(0);
00252   }
00253 
00254   // We are properly aligned, so write NOPs as requested.
00255   Count /= 4;
00256   for (uint64_t i = 0; i != Count; ++i)
00257     OW->Write32(0xd503201f);
00258   return true;
00259 }
00260 
00261 namespace {
00262 
00263 namespace CU {
00264 
00265 /// \brief Compact unwind encoding values.
00266 enum CompactUnwindEncodings {
00267   /// \brief A "frameless" leaf function, where no non-volatile registers are
00268   /// saved. The return remains in LR throughout the function.
00269   UNWIND_AArch64_MODE_FRAMELESS = 0x02000000,
00270 
00271   /// \brief No compact unwind encoding available. Instead the low 23-bits of
00272   /// the compact unwind encoding is the offset of the DWARF FDE in the
00273   /// __eh_frame section. This mode is never used in object files. It is only
00274   /// generated by the linker in final linked images, which have only DWARF info
00275   /// for a function.
00276   UNWIND_AArch64_MODE_DWARF = 0x03000000,
00277 
00278   /// \brief This is a standard arm64 prologue where FP/LR are immediately
00279   /// pushed on the stack, then SP is copied to FP. If there are any
00280   /// non-volatile register saved, they are copied into the stack fame in pairs
00281   /// in a contiguous ranger right below the saved FP/LR pair. Any subset of the
00282   /// five X pairs and four D pairs can be saved, but the memory layout must be
00283   /// in register number order.
00284   UNWIND_AArch64_MODE_FRAME = 0x04000000,
00285 
00286   /// \brief Frame register pair encodings.
00287   UNWIND_AArch64_FRAME_X19_X20_PAIR = 0x00000001,
00288   UNWIND_AArch64_FRAME_X21_X22_PAIR = 0x00000002,
00289   UNWIND_AArch64_FRAME_X23_X24_PAIR = 0x00000004,
00290   UNWIND_AArch64_FRAME_X25_X26_PAIR = 0x00000008,
00291   UNWIND_AArch64_FRAME_X27_X28_PAIR = 0x00000010,
00292   UNWIND_AArch64_FRAME_D8_D9_PAIR = 0x00000100,
00293   UNWIND_AArch64_FRAME_D10_D11_PAIR = 0x00000200,
00294   UNWIND_AArch64_FRAME_D12_D13_PAIR = 0x00000400,
00295   UNWIND_AArch64_FRAME_D14_D15_PAIR = 0x00000800
00296 };
00297 
00298 } // end CU namespace
00299 
00300 // FIXME: This should be in a separate file.
00301 class DarwinAArch64AsmBackend : public AArch64AsmBackend {
00302   const MCRegisterInfo &MRI;
00303 
00304   /// \brief Encode compact unwind stack adjustment for frameless functions.
00305   /// See UNWIND_AArch64_FRAMELESS_STACK_SIZE_MASK in compact_unwind_encoding.h.
00306   /// The stack size always needs to be 16 byte aligned.
00307   uint32_t encodeStackAdjustment(uint32_t StackSize) const {
00308     return (StackSize / 16) << 12;
00309   }
00310 
00311 public:
00312   DarwinAArch64AsmBackend(const Target &T, const MCRegisterInfo &MRI)
00313       : AArch64AsmBackend(T), MRI(MRI) {}
00314 
00315   MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
00316     return createAArch64MachObjectWriter(OS, MachO::CPU_TYPE_ARM64,
00317                                          MachO::CPU_SUBTYPE_ARM64_ALL);
00318   }
00319 
00320   bool doesSectionRequireSymbols(const MCSection &Section) const override {
00321     // Any section for which the linker breaks things into atoms needs to
00322     // preserve symbols, including assembler local symbols, to identify
00323     // those atoms. These sections are:
00324     // Sections of type:
00325     //
00326     //    S_CSTRING_LITERALS  (e.g. __cstring)
00327     //    S_LITERAL_POINTERS  (e.g.  objc selector pointers)
00328     //    S_16BYTE_LITERALS, S_8BYTE_LITERALS, S_4BYTE_LITERALS
00329     //
00330     // Sections named:
00331     //
00332     //    __TEXT,__eh_frame
00333     //    __TEXT,__ustring
00334     //    __DATA,__cfstring
00335     //    __DATA,__objc_classrefs
00336     //    __DATA,__objc_catlist
00337     //
00338     // FIXME: It would be better if the compiler used actual linker local
00339     // symbols for each of these sections rather than preserving what
00340     // are ostensibly assembler local symbols.
00341     const MCSectionMachO &SMO = static_cast<const MCSectionMachO &>(Section);
00342     return (SMO.getType() == MachO::S_CSTRING_LITERALS ||
00343             SMO.getType() == MachO::S_4BYTE_LITERALS ||
00344             SMO.getType() == MachO::S_8BYTE_LITERALS ||
00345             SMO.getType() == MachO::S_16BYTE_LITERALS ||
00346             SMO.getType() == MachO::S_LITERAL_POINTERS ||
00347             (SMO.getSegmentName() == "__TEXT" &&
00348              (SMO.getSectionName() == "__eh_frame" ||
00349               SMO.getSectionName() == "__ustring")) ||
00350             (SMO.getSegmentName() == "__DATA" &&
00351              (SMO.getSectionName() == "__cfstring" ||
00352               SMO.getSectionName() == "__objc_classrefs" ||
00353               SMO.getSectionName() == "__objc_catlist")));
00354   }
00355 
00356   /// \brief Generate the compact unwind encoding from the CFI directives.
00357   uint32_t generateCompactUnwindEncoding(
00358                              ArrayRef<MCCFIInstruction> Instrs) const override {
00359     if (Instrs.empty())
00360       return CU::UNWIND_AArch64_MODE_FRAMELESS;
00361 
00362     bool HasFP = false;
00363     unsigned StackSize = 0;
00364 
00365     uint32_t CompactUnwindEncoding = 0;
00366     for (size_t i = 0, e = Instrs.size(); i != e; ++i) {
00367       const MCCFIInstruction &Inst = Instrs[i];
00368 
00369       switch (Inst.getOperation()) {
00370       default:
00371         // Cannot handle this directive:  bail out.
00372         return CU::UNWIND_AArch64_MODE_DWARF;
00373       case MCCFIInstruction::OpDefCfa: {
00374         // Defines a frame pointer.
00375         assert(getXRegFromWReg(MRI.getLLVMRegNum(Inst.getRegister(), true)) ==
00376                    AArch64::FP &&
00377                "Invalid frame pointer!");
00378         assert(i + 2 < e && "Insufficient CFI instructions to define a frame!");
00379 
00380         const MCCFIInstruction &LRPush = Instrs[++i];
00381         assert(LRPush.getOperation() == MCCFIInstruction::OpOffset &&
00382                "Link register not pushed!");
00383         const MCCFIInstruction &FPPush = Instrs[++i];
00384         assert(FPPush.getOperation() == MCCFIInstruction::OpOffset &&
00385                "Frame pointer not pushed!");
00386 
00387         unsigned LRReg = MRI.getLLVMRegNum(LRPush.getRegister(), true);
00388         unsigned FPReg = MRI.getLLVMRegNum(FPPush.getRegister(), true);
00389 
00390         LRReg = getXRegFromWReg(LRReg);
00391         FPReg = getXRegFromWReg(FPReg);
00392 
00393         assert(LRReg == AArch64::LR && FPReg == AArch64::FP &&
00394                "Pushing invalid registers for frame!");
00395 
00396         // Indicate that the function has a frame.
00397         CompactUnwindEncoding |= CU::UNWIND_AArch64_MODE_FRAME;
00398         HasFP = true;
00399         break;
00400       }
00401       case MCCFIInstruction::OpDefCfaOffset: {
00402         assert(StackSize == 0 && "We already have the CFA offset!");
00403         StackSize = std::abs(Inst.getOffset());
00404         break;
00405       }
00406       case MCCFIInstruction::OpOffset: {
00407         // Registers are saved in pairs. We expect there to be two consecutive
00408         // `.cfi_offset' instructions with the appropriate registers specified.
00409         unsigned Reg1 = MRI.getLLVMRegNum(Inst.getRegister(), true);
00410         if (i + 1 == e)
00411           return CU::UNWIND_AArch64_MODE_DWARF;
00412 
00413         const MCCFIInstruction &Inst2 = Instrs[++i];
00414         if (Inst2.getOperation() != MCCFIInstruction::OpOffset)
00415           return CU::UNWIND_AArch64_MODE_DWARF;
00416         unsigned Reg2 = MRI.getLLVMRegNum(Inst2.getRegister(), true);
00417 
00418         // N.B. The encodings must be in register number order, and the X
00419         // registers before the D registers.
00420 
00421         // X19/X20 pair = 0x00000001,
00422         // X21/X22 pair = 0x00000002,
00423         // X23/X24 pair = 0x00000004,
00424         // X25/X26 pair = 0x00000008,
00425         // X27/X28 pair = 0x00000010
00426         Reg1 = getXRegFromWReg(Reg1);
00427         Reg2 = getXRegFromWReg(Reg2);
00428 
00429         if (Reg1 == AArch64::X19 && Reg2 == AArch64::X20 &&
00430             (CompactUnwindEncoding & 0xF1E) == 0)
00431           CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_X19_X20_PAIR;
00432         else if (Reg1 == AArch64::X21 && Reg2 == AArch64::X22 &&
00433                  (CompactUnwindEncoding & 0xF1C) == 0)
00434           CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_X21_X22_PAIR;
00435         else if (Reg1 == AArch64::X23 && Reg2 == AArch64::X24 &&
00436                  (CompactUnwindEncoding & 0xF18) == 0)
00437           CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_X23_X24_PAIR;
00438         else if (Reg1 == AArch64::X25 && Reg2 == AArch64::X26 &&
00439                  (CompactUnwindEncoding & 0xF10) == 0)
00440           CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_X25_X26_PAIR;
00441         else if (Reg1 == AArch64::X27 && Reg2 == AArch64::X28 &&
00442                  (CompactUnwindEncoding & 0xF00) == 0)
00443           CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_X27_X28_PAIR;
00444         else {
00445           Reg1 = getDRegFromBReg(Reg1);
00446           Reg2 = getDRegFromBReg(Reg2);
00447 
00448           // D8/D9 pair   = 0x00000100,
00449           // D10/D11 pair = 0x00000200,
00450           // D12/D13 pair = 0x00000400,
00451           // D14/D15 pair = 0x00000800
00452           if (Reg1 == AArch64::D8 && Reg2 == AArch64::D9 &&
00453               (CompactUnwindEncoding & 0xE00) == 0)
00454             CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_D8_D9_PAIR;
00455           else if (Reg1 == AArch64::D10 && Reg2 == AArch64::D11 &&
00456                    (CompactUnwindEncoding & 0xC00) == 0)
00457             CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_D10_D11_PAIR;
00458           else if (Reg1 == AArch64::D12 && Reg2 == AArch64::D13 &&
00459                    (CompactUnwindEncoding & 0x800) == 0)
00460             CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_D12_D13_PAIR;
00461           else if (Reg1 == AArch64::D14 && Reg2 == AArch64::D15)
00462             CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_D14_D15_PAIR;
00463           else
00464             // A pair was pushed which we cannot handle.
00465             return CU::UNWIND_AArch64_MODE_DWARF;
00466         }
00467 
00468         break;
00469       }
00470       }
00471     }
00472 
00473     if (!HasFP) {
00474       // With compact unwind info we can only represent stack adjustments of up
00475       // to 65520 bytes.
00476       if (StackSize > 65520)
00477         return CU::UNWIND_AArch64_MODE_DWARF;
00478 
00479       CompactUnwindEncoding |= CU::UNWIND_AArch64_MODE_FRAMELESS;
00480       CompactUnwindEncoding |= encodeStackAdjustment(StackSize);
00481     }
00482 
00483     return CompactUnwindEncoding;
00484   }
00485 };
00486 
00487 } // end anonymous namespace
00488 
00489 namespace {
00490 
00491 class ELFAArch64AsmBackend : public AArch64AsmBackend {
00492 public:
00493   uint8_t OSABI;
00494   bool IsLittleEndian;
00495 
00496   ELFAArch64AsmBackend(const Target &T, uint8_t OSABI, bool IsLittleEndian)
00497     : AArch64AsmBackend(T), OSABI(OSABI), IsLittleEndian(IsLittleEndian) {}
00498 
00499   MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
00500     return createAArch64ELFObjectWriter(OS, OSABI, IsLittleEndian);
00501   }
00502 
00503   void processFixupValue(const MCAssembler &Asm, const MCAsmLayout &Layout,
00504                          const MCFixup &Fixup, const MCFragment *DF,
00505                          const MCValue &Target, uint64_t &Value,
00506                          bool &IsResolved) override;
00507 
00508   void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
00509                   uint64_t Value, bool IsPCRel) const override;
00510 };
00511 
00512 void ELFAArch64AsmBackend::processFixupValue(
00513     const MCAssembler &Asm, const MCAsmLayout &Layout, const MCFixup &Fixup,
00514     const MCFragment *DF, const MCValue &Target, uint64_t &Value,
00515     bool &IsResolved) {
00516   // The ADRP instruction adds some multiple of 0x1000 to the current PC &
00517   // ~0xfff. This means that the required offset to reach a symbol can vary by
00518   // up to one step depending on where the ADRP is in memory. For example:
00519   //
00520   //     ADRP x0, there
00521   //  there:
00522   //
00523   // If the ADRP occurs at address 0xffc then "there" will be at 0x1000 and
00524   // we'll need that as an offset. At any other address "there" will be in the
00525   // same page as the ADRP and the instruction should encode 0x0. Assuming the
00526   // section isn't 0x1000-aligned, we therefore need to delegate this decision
00527   // to the linker -- a relocation!
00528   if ((uint32_t)Fixup.getKind() == AArch64::fixup_aarch64_pcrel_adrp_imm21)
00529     IsResolved = false;
00530 }
00531 
00532 void ELFAArch64AsmBackend::applyFixup(const MCFixup &Fixup, char *Data,
00533                                       unsigned DataSize, uint64_t Value,
00534                                       bool IsPCRel) const {
00535   // store fixups in .eh_frame section in big endian order
00536   if (!IsLittleEndian && Fixup.getKind() == FK_Data_4) {
00537     const MCSection *Sec = Fixup.getValue()->FindAssociatedSection();
00538     const MCSectionELF *SecELF = static_cast<const MCSectionELF *>(Sec);
00539     if (SecELF->getSectionName() == ".eh_frame")
00540       Value = ByteSwap_32(unsigned(Value));
00541   }
00542   AArch64AsmBackend::applyFixup (Fixup, Data, DataSize, Value, IsPCRel);
00543 }
00544 }
00545 
00546 MCAsmBackend *llvm::createAArch64leAsmBackend(const Target &T,
00547                                             const MCRegisterInfo &MRI,
00548                                             StringRef TT, StringRef CPU) {
00549   Triple TheTriple(TT);
00550 
00551   if (TheTriple.isOSDarwin())
00552     return new DarwinAArch64AsmBackend(T, MRI);
00553 
00554   assert(TheTriple.isOSBinFormatELF() && "Expect either MachO or ELF target");
00555   uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
00556   return new ELFAArch64AsmBackend(T, OSABI, /*IsLittleEndian=*/true);
00557 }
00558 
00559 MCAsmBackend *llvm::createAArch64beAsmBackend(const Target &T,
00560                                             const MCRegisterInfo &MRI,
00561                                             StringRef TT, StringRef CPU) {
00562   Triple TheTriple(TT);
00563 
00564   assert(TheTriple.isOSBinFormatELF() &&
00565          "Big endian is only supported for ELF targets!");
00566   uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
00567   return new ELFAArch64AsmBackend(T, OSABI,
00568                                   /*IsLittleEndian=*/false);
00569 }