LLVM API Documentation

APFloat.h
Go to the documentation of this file.
00001 //===- llvm/ADT/APFloat.h - Arbitrary Precision Floating Point ---*- C++ -*-==//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 ///
00010 /// \file
00011 /// \brief
00012 /// This file declares a class to represent arbitrary precision floating point
00013 /// values and provide a variety of arithmetic operations on them.
00014 ///
00015 //===----------------------------------------------------------------------===//
00016 
00017 #ifndef LLVM_ADT_APFLOAT_H
00018 #define LLVM_ADT_APFLOAT_H
00019 
00020 #include "llvm/ADT/APInt.h"
00021 
00022 namespace llvm {
00023 
00024 struct fltSemantics;
00025 class APSInt;
00026 class StringRef;
00027 
00028 /// Enum that represents what fraction of the LSB truncated bits of an fp number
00029 /// represent.
00030 ///
00031 /// This essentially combines the roles of guard and sticky bits.
00032 enum lostFraction { // Example of truncated bits:
00033   lfExactlyZero,    // 000000
00034   lfLessThanHalf,   // 0xxxxx  x's not all zero
00035   lfExactlyHalf,    // 100000
00036   lfMoreThanHalf    // 1xxxxx  x's not all zero
00037 };
00038 
00039 /// \brief A self-contained host- and target-independent arbitrary-precision
00040 /// floating-point software implementation.
00041 ///
00042 /// APFloat uses bignum integer arithmetic as provided by static functions in
00043 /// the APInt class.  The library will work with bignum integers whose parts are
00044 /// any unsigned type at least 16 bits wide, but 64 bits is recommended.
00045 ///
00046 /// Written for clarity rather than speed, in particular with a view to use in
00047 /// the front-end of a cross compiler so that target arithmetic can be correctly
00048 /// performed on the host.  Performance should nonetheless be reasonable,
00049 /// particularly for its intended use.  It may be useful as a base
00050 /// implementation for a run-time library during development of a faster
00051 /// target-specific one.
00052 ///
00053 /// All 5 rounding modes in the IEEE-754R draft are handled correctly for all
00054 /// implemented operations.  Currently implemented operations are add, subtract,
00055 /// multiply, divide, fused-multiply-add, conversion-to-float,
00056 /// conversion-to-integer and conversion-from-integer.  New rounding modes
00057 /// (e.g. away from zero) can be added with three or four lines of code.
00058 ///
00059 /// Four formats are built-in: IEEE single precision, double precision,
00060 /// quadruple precision, and x87 80-bit extended double (when operating with
00061 /// full extended precision).  Adding a new format that obeys IEEE semantics
00062 /// only requires adding two lines of code: a declaration and definition of the
00063 /// format.
00064 ///
00065 /// All operations return the status of that operation as an exception bit-mask,
00066 /// so multiple operations can be done consecutively with their results or-ed
00067 /// together.  The returned status can be useful for compiler diagnostics; e.g.,
00068 /// inexact, underflow and overflow can be easily diagnosed on constant folding,
00069 /// and compiler optimizers can determine what exceptions would be raised by
00070 /// folding operations and optimize, or perhaps not optimize, accordingly.
00071 ///
00072 /// At present, underflow tininess is detected after rounding; it should be
00073 /// straight forward to add support for the before-rounding case too.
00074 ///
00075 /// The library reads hexadecimal floating point numbers as per C99, and
00076 /// correctly rounds if necessary according to the specified rounding mode.
00077 /// Syntax is required to have been validated by the caller.  It also converts
00078 /// floating point numbers to hexadecimal text as per the C99 %a and %A
00079 /// conversions.  The output precision (or alternatively the natural minimal
00080 /// precision) can be specified; if the requested precision is less than the
00081 /// natural precision the output is correctly rounded for the specified rounding
00082 /// mode.
00083 ///
00084 /// It also reads decimal floating point numbers and correctly rounds according
00085 /// to the specified rounding mode.
00086 ///
00087 /// Conversion to decimal text is not currently implemented.
00088 ///
00089 /// Non-zero finite numbers are represented internally as a sign bit, a 16-bit
00090 /// signed exponent, and the significand as an array of integer parts.  After
00091 /// normalization of a number of precision P the exponent is within the range of
00092 /// the format, and if the number is not denormal the P-th bit of the
00093 /// significand is set as an explicit integer bit.  For denormals the most
00094 /// significant bit is shifted right so that the exponent is maintained at the
00095 /// format's minimum, so that the smallest denormal has just the least
00096 /// significant bit of the significand set.  The sign of zeroes and infinities
00097 /// is significant; the exponent and significand of such numbers is not stored,
00098 /// but has a known implicit (deterministic) value: 0 for the significands, 0
00099 /// for zero exponent, all 1 bits for infinity exponent.  For NaNs the sign and
00100 /// significand are deterministic, although not really meaningful, and preserved
00101 /// in non-conversion operations.  The exponent is implicitly all 1 bits.
00102 ///
00103 /// APFloat does not provide any exception handling beyond default exception
00104 /// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause
00105 /// by encoding Signaling NaNs with the first bit of its trailing significand as
00106 /// 0.
00107 ///
00108 /// TODO
00109 /// ====
00110 ///
00111 /// Some features that may or may not be worth adding:
00112 ///
00113 /// Binary to decimal conversion (hard).
00114 ///
00115 /// Optional ability to detect underflow tininess before rounding.
00116 ///
00117 /// New formats: x87 in single and double precision mode (IEEE apart from
00118 /// extended exponent range) (hard).
00119 ///
00120 /// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward.
00121 ///
00122 class APFloat {
00123 public:
00124 
00125   /// A signed type to represent a floating point numbers unbiased exponent.
00126   typedef signed short ExponentType;
00127 
00128   /// \name Floating Point Semantics.
00129   /// @{
00130 
00131   static const fltSemantics IEEEhalf;
00132   static const fltSemantics IEEEsingle;
00133   static const fltSemantics IEEEdouble;
00134   static const fltSemantics IEEEquad;
00135   static const fltSemantics PPCDoubleDouble;
00136   static const fltSemantics x87DoubleExtended;
00137 
00138   /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with
00139   /// anything real.
00140   static const fltSemantics Bogus;
00141 
00142   /// @}
00143 
00144   static unsigned int semanticsPrecision(const fltSemantics &);
00145 
00146   /// IEEE-754R 5.11: Floating Point Comparison Relations.
00147   enum cmpResult {
00148     cmpLessThan,
00149     cmpEqual,
00150     cmpGreaterThan,
00151     cmpUnordered
00152   };
00153 
00154   /// IEEE-754R 4.3: Rounding-direction attributes.
00155   enum roundingMode {
00156     rmNearestTiesToEven,
00157     rmTowardPositive,
00158     rmTowardNegative,
00159     rmTowardZero,
00160     rmNearestTiesToAway
00161   };
00162 
00163   /// IEEE-754R 7: Default exception handling.
00164   ///
00165   /// opUnderflow or opOverflow are always returned or-ed with opInexact.
00166   enum opStatus {
00167     opOK = 0x00,
00168     opInvalidOp = 0x01,
00169     opDivByZero = 0x02,
00170     opOverflow = 0x04,
00171     opUnderflow = 0x08,
00172     opInexact = 0x10
00173   };
00174 
00175   /// Category of internally-represented number.
00176   enum fltCategory {
00177     fcInfinity,
00178     fcNaN,
00179     fcNormal,
00180     fcZero
00181   };
00182 
00183   /// Convenience enum used to construct an uninitialized APFloat.
00184   enum uninitializedTag {
00185     uninitialized
00186   };
00187 
00188   /// \name Constructors
00189   /// @{
00190 
00191   APFloat(const fltSemantics &); // Default construct to 0.0
00192   APFloat(const fltSemantics &, StringRef);
00193   APFloat(const fltSemantics &, integerPart);
00194   APFloat(const fltSemantics &, uninitializedTag);
00195   APFloat(const fltSemantics &, const APInt &);
00196   explicit APFloat(double d);
00197   explicit APFloat(float f);
00198   APFloat(const APFloat &);
00199   APFloat(APFloat &&);
00200   ~APFloat();
00201 
00202   /// @}
00203 
00204   /// \brief Returns whether this instance allocated memory.
00205   bool needsCleanup() const { return partCount() > 1; }
00206 
00207   /// \name Convenience "constructors"
00208   /// @{
00209 
00210   /// Factory for Positive and Negative Zero.
00211   ///
00212   /// \param Negative True iff the number should be negative.
00213   static APFloat getZero(const fltSemantics &Sem, bool Negative = false) {
00214     APFloat Val(Sem, uninitialized);
00215     Val.makeZero(Negative);
00216     return Val;
00217   }
00218 
00219   /// Factory for Positive and Negative Infinity.
00220   ///
00221   /// \param Negative True iff the number should be negative.
00222   static APFloat getInf(const fltSemantics &Sem, bool Negative = false) {
00223     APFloat Val(Sem, uninitialized);
00224     Val.makeInf(Negative);
00225     return Val;
00226   }
00227 
00228   /// Factory for QNaN values.
00229   ///
00230   /// \param Negative - True iff the NaN generated should be negative.
00231   /// \param type - The unspecified fill bits for creating the NaN, 0 by
00232   /// default.  The value is truncated as necessary.
00233   static APFloat getNaN(const fltSemantics &Sem, bool Negative = false,
00234                         unsigned type = 0) {
00235     if (type) {
00236       APInt fill(64, type);
00237       return getQNaN(Sem, Negative, &fill);
00238     } else {
00239       return getQNaN(Sem, Negative, nullptr);
00240     }
00241   }
00242 
00243   /// Factory for QNaN values.
00244   static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false,
00245                          const APInt *payload = nullptr) {
00246     return makeNaN(Sem, false, Negative, payload);
00247   }
00248 
00249   /// Factory for SNaN values.
00250   static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false,
00251                          const APInt *payload = nullptr) {
00252     return makeNaN(Sem, true, Negative, payload);
00253   }
00254 
00255   /// Returns the largest finite number in the given semantics.
00256   ///
00257   /// \param Negative - True iff the number should be negative
00258   static APFloat getLargest(const fltSemantics &Sem, bool Negative = false);
00259 
00260   /// Returns the smallest (by magnitude) finite number in the given semantics.
00261   /// Might be denormalized, which implies a relative loss of precision.
00262   ///
00263   /// \param Negative - True iff the number should be negative
00264   static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false);
00265 
00266   /// Returns the smallest (by magnitude) normalized finite number in the given
00267   /// semantics.
00268   ///
00269   /// \param Negative - True iff the number should be negative
00270   static APFloat getSmallestNormalized(const fltSemantics &Sem,
00271                                        bool Negative = false);
00272 
00273   /// Returns a float which is bitcasted from an all one value int.
00274   ///
00275   /// \param BitWidth - Select float type
00276   /// \param isIEEE   - If 128 bit number, select between PPC and IEEE
00277   static APFloat getAllOnesValue(unsigned BitWidth, bool isIEEE = false);
00278 
00279   /// @}
00280 
00281   /// Used to insert APFloat objects, or objects that contain APFloat objects,
00282   /// into FoldingSets.
00283   void Profile(FoldingSetNodeID &NID) const;
00284 
00285   /// \brief Used by the Bitcode serializer to emit APInts to Bitcode.
00286   void Emit(Serializer &S) const;
00287 
00288   /// \brief Used by the Bitcode deserializer to deserialize APInts.
00289   static APFloat ReadVal(Deserializer &D);
00290 
00291   /// \name Arithmetic
00292   /// @{
00293 
00294   opStatus add(const APFloat &, roundingMode);
00295   opStatus subtract(const APFloat &, roundingMode);
00296   opStatus multiply(const APFloat &, roundingMode);
00297   opStatus divide(const APFloat &, roundingMode);
00298   /// IEEE remainder.
00299   opStatus remainder(const APFloat &);
00300   /// C fmod, or llvm frem.
00301   opStatus mod(const APFloat &, roundingMode);
00302   opStatus fusedMultiplyAdd(const APFloat &, const APFloat &, roundingMode);
00303   opStatus roundToIntegral(roundingMode);
00304   /// IEEE-754R 5.3.1: nextUp/nextDown.
00305   opStatus next(bool nextDown);
00306 
00307   /// @}
00308 
00309   /// \name Sign operations.
00310   /// @{
00311 
00312   void changeSign();
00313   void clearSign();
00314   void copySign(const APFloat &);
00315 
00316   /// @}
00317 
00318   /// \name Conversions
00319   /// @{
00320 
00321   opStatus convert(const fltSemantics &, roundingMode, bool *);
00322   opStatus convertToInteger(integerPart *, unsigned int, bool, roundingMode,
00323                             bool *) const;
00324   opStatus convertToInteger(APSInt &, roundingMode, bool *) const;
00325   opStatus convertFromAPInt(const APInt &, bool, roundingMode);
00326   opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int,
00327                                           bool, roundingMode);
00328   opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int,
00329                                           bool, roundingMode);
00330   opStatus convertFromString(StringRef, roundingMode);
00331   APInt bitcastToAPInt() const;
00332   double convertToDouble() const;
00333   float convertToFloat() const;
00334 
00335   /// @}
00336 
00337   /// The definition of equality is not straightforward for floating point, so
00338   /// we won't use operator==.  Use one of the following, or write whatever it
00339   /// is you really mean.
00340   bool operator==(const APFloat &) const LLVM_DELETED_FUNCTION;
00341 
00342   /// IEEE comparison with another floating point number (NaNs compare
00343   /// unordered, 0==-0).
00344   cmpResult compare(const APFloat &) const;
00345 
00346   /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
00347   bool bitwiseIsEqual(const APFloat &) const;
00348 
00349   /// Write out a hexadecimal representation of the floating point value to DST,
00350   /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d.
00351   /// Return the number of characters written, excluding the terminating NUL.
00352   unsigned int convertToHexString(char *dst, unsigned int hexDigits,
00353                                   bool upperCase, roundingMode) const;
00354 
00355   /// \name IEEE-754R 5.7.2 General operations.
00356   /// @{
00357 
00358   /// IEEE-754R isSignMinus: Returns true if and only if the current value is
00359   /// negative.
00360   ///
00361   /// This applies to zeros and NaNs as well.
00362   bool isNegative() const { return sign; }
00363 
00364   /// IEEE-754R isNormal: Returns true if and only if the current value is normal.
00365   ///
00366   /// This implies that the current value of the float is not zero, subnormal,
00367   /// infinite, or NaN following the definition of normality from IEEE-754R.
00368   bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
00369 
00370   /// Returns true if and only if the current value is zero, subnormal, or
00371   /// normal.
00372   ///
00373   /// This means that the value is not infinite or NaN.
00374   bool isFinite() const { return !isNaN() && !isInfinity(); }
00375 
00376   /// Returns true if and only if the float is plus or minus zero.
00377   bool isZero() const { return category == fcZero; }
00378 
00379   /// IEEE-754R isSubnormal(): Returns true if and only if the float is a
00380   /// denormal.
00381   bool isDenormal() const;
00382 
00383   /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity.
00384   bool isInfinity() const { return category == fcInfinity; }
00385 
00386   /// Returns true if and only if the float is a quiet or signaling NaN.
00387   bool isNaN() const { return category == fcNaN; }
00388 
00389   /// Returns true if and only if the float is a signaling NaN.
00390   bool isSignaling() const;
00391 
00392   /// @}
00393 
00394   /// \name Simple Queries
00395   /// @{
00396 
00397   fltCategory getCategory() const { return category; }
00398   const fltSemantics &getSemantics() const { return *semantics; }
00399   bool isNonZero() const { return category != fcZero; }
00400   bool isFiniteNonZero() const { return isFinite() && !isZero(); }
00401   bool isPosZero() const { return isZero() && !isNegative(); }
00402   bool isNegZero() const { return isZero() && isNegative(); }
00403 
00404   /// Returns true if and only if the number has the smallest possible non-zero
00405   /// magnitude in the current semantics.
00406   bool isSmallest() const;
00407 
00408   /// Returns true if and only if the number has the largest possible finite
00409   /// magnitude in the current semantics.
00410   bool isLargest() const;
00411 
00412   /// @}
00413 
00414   APFloat &operator=(const APFloat &);
00415   APFloat &operator=(APFloat &&);
00416 
00417   /// \brief Overload to compute a hash code for an APFloat value.
00418   ///
00419   /// Note that the use of hash codes for floating point values is in general
00420   /// frought with peril. Equality is hard to define for these values. For
00421   /// example, should negative and positive zero hash to different codes? Are
00422   /// they equal or not? This hash value implementation specifically
00423   /// emphasizes producing different codes for different inputs in order to
00424   /// be used in canonicalization and memoization. As such, equality is
00425   /// bitwiseIsEqual, and 0 != -0.
00426   friend hash_code hash_value(const APFloat &Arg);
00427 
00428   /// Converts this value into a decimal string.
00429   ///
00430   /// \param FormatPrecision The maximum number of digits of
00431   ///   precision to output.  If there are fewer digits available,
00432   ///   zero padding will not be used unless the value is
00433   ///   integral and small enough to be expressed in
00434   ///   FormatPrecision digits.  0 means to use the natural
00435   ///   precision of the number.
00436   /// \param FormatMaxPadding The maximum number of zeros to
00437   ///   consider inserting before falling back to scientific
00438   ///   notation.  0 means to always use scientific notation.
00439   ///
00440   /// Number       Precision    MaxPadding      Result
00441   /// ------       ---------    ----------      ------
00442   /// 1.01E+4              5             2       10100
00443   /// 1.01E+4              4             2       1.01E+4
00444   /// 1.01E+4              5             1       1.01E+4
00445   /// 1.01E-2              5             2       0.0101
00446   /// 1.01E-2              4             2       0.0101
00447   /// 1.01E-2              4             1       1.01E-2
00448   void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
00449                 unsigned FormatMaxPadding = 3) const;
00450 
00451   /// If this value has an exact multiplicative inverse, store it in inv and
00452   /// return true.
00453   bool getExactInverse(APFloat *inv) const;
00454 
00455 private:
00456 
00457   /// \name Simple Queries
00458   /// @{
00459 
00460   integerPart *significandParts();
00461   const integerPart *significandParts() const;
00462   unsigned int partCount() const;
00463 
00464   /// @}
00465 
00466   /// \name Significand operations.
00467   /// @{
00468 
00469   integerPart addSignificand(const APFloat &);
00470   integerPart subtractSignificand(const APFloat &, integerPart);
00471   lostFraction addOrSubtractSignificand(const APFloat &, bool subtract);
00472   lostFraction multiplySignificand(const APFloat &, const APFloat *);
00473   lostFraction divideSignificand(const APFloat &);
00474   void incrementSignificand();
00475   void initialize(const fltSemantics *);
00476   void shiftSignificandLeft(unsigned int);
00477   lostFraction shiftSignificandRight(unsigned int);
00478   unsigned int significandLSB() const;
00479   unsigned int significandMSB() const;
00480   void zeroSignificand();
00481   /// Return true if the significand excluding the integral bit is all ones.
00482   bool isSignificandAllOnes() const;
00483   /// Return true if the significand excluding the integral bit is all zeros.
00484   bool isSignificandAllZeros() const;
00485 
00486   /// @}
00487 
00488   /// \name Arithmetic on special values.
00489   /// @{
00490 
00491   opStatus addOrSubtractSpecials(const APFloat &, bool subtract);
00492   opStatus divideSpecials(const APFloat &);
00493   opStatus multiplySpecials(const APFloat &);
00494   opStatus modSpecials(const APFloat &);
00495 
00496   /// @}
00497 
00498   /// \name Special value setters.
00499   /// @{
00500 
00501   void makeLargest(bool Neg = false);
00502   void makeSmallest(bool Neg = false);
00503   void makeNaN(bool SNaN = false, bool Neg = false,
00504                const APInt *fill = nullptr);
00505   static APFloat makeNaN(const fltSemantics &Sem, bool SNaN, bool Negative,
00506                          const APInt *fill);
00507   void makeInf(bool Neg = false);
00508   void makeZero(bool Neg = false);
00509 
00510   /// @}
00511 
00512   /// \name Miscellany
00513   /// @{
00514 
00515   bool convertFromStringSpecials(StringRef str);
00516   opStatus normalize(roundingMode, lostFraction);
00517   opStatus addOrSubtract(const APFloat &, roundingMode, bool subtract);
00518   cmpResult compareAbsoluteValue(const APFloat &) const;
00519   opStatus handleOverflow(roundingMode);
00520   bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const;
00521   opStatus convertToSignExtendedInteger(integerPart *, unsigned int, bool,
00522                                         roundingMode, bool *) const;
00523   opStatus convertFromUnsignedParts(const integerPart *, unsigned int,
00524                                     roundingMode);
00525   opStatus convertFromHexadecimalString(StringRef, roundingMode);
00526   opStatus convertFromDecimalString(StringRef, roundingMode);
00527   char *convertNormalToHexString(char *, unsigned int, bool,
00528                                  roundingMode) const;
00529   opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int,
00530                                         roundingMode);
00531 
00532   /// @}
00533 
00534   APInt convertHalfAPFloatToAPInt() const;
00535   APInt convertFloatAPFloatToAPInt() const;
00536   APInt convertDoubleAPFloatToAPInt() const;
00537   APInt convertQuadrupleAPFloatToAPInt() const;
00538   APInt convertF80LongDoubleAPFloatToAPInt() const;
00539   APInt convertPPCDoubleDoubleAPFloatToAPInt() const;
00540   void initFromAPInt(const fltSemantics *Sem, const APInt &api);
00541   void initFromHalfAPInt(const APInt &api);
00542   void initFromFloatAPInt(const APInt &api);
00543   void initFromDoubleAPInt(const APInt &api);
00544   void initFromQuadrupleAPInt(const APInt &api);
00545   void initFromF80LongDoubleAPInt(const APInt &api);
00546   void initFromPPCDoubleDoubleAPInt(const APInt &api);
00547 
00548   void assign(const APFloat &);
00549   void copySignificand(const APFloat &);
00550   void freeSignificand();
00551 
00552   /// The semantics that this value obeys.
00553   const fltSemantics *semantics;
00554 
00555   /// A binary fraction with an explicit integer bit.
00556   ///
00557   /// The significand must be at least one bit wider than the target precision.
00558   union Significand {
00559     integerPart part;
00560     integerPart *parts;
00561   } significand;
00562 
00563   /// The signed unbiased exponent of the value.
00564   ExponentType exponent;
00565 
00566   /// What kind of floating point number this is.
00567   ///
00568   /// Only 2 bits are required, but VisualStudio incorrectly sign extends it.
00569   /// Using the extra bit keeps it from failing under VisualStudio.
00570   fltCategory category : 3;
00571 
00572   /// Sign bit of the number.
00573   unsigned int sign : 1;
00574 };
00575 
00576 /// See friend declaration above.
00577 ///
00578 /// This additional declaration is required in order to compile LLVM with IBM
00579 /// xlC compiler.
00580 hash_code hash_value(const APFloat &Arg);
00581 } // namespace llvm
00582 
00583 #endif // LLVM_ADT_APFLOAT_H