LLVM API Documentation

AsmWriter.cpp
Go to the documentation of this file.
00001 //===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This library implements the functionality defined in llvm/IR/Writer.h
00011 //
00012 // Note that these routines must be extremely tolerant of various errors in the
00013 // LLVM code, because it can be used for debugging transformations.
00014 //
00015 //===----------------------------------------------------------------------===//
00016 
00017 #include "AsmWriter.h"
00018 #include "llvm/ADT/DenseMap.h"
00019 #include "llvm/ADT/STLExtras.h"
00020 #include "llvm/ADT/SmallString.h"
00021 #include "llvm/ADT/StringExtras.h"
00022 #include "llvm/IR/AssemblyAnnotationWriter.h"
00023 #include "llvm/IR/CFG.h"
00024 #include "llvm/IR/CallingConv.h"
00025 #include "llvm/IR/Constants.h"
00026 #include "llvm/IR/DebugInfo.h"
00027 #include "llvm/IR/DerivedTypes.h"
00028 #include "llvm/IR/IRPrintingPasses.h"
00029 #include "llvm/IR/InlineAsm.h"
00030 #include "llvm/IR/IntrinsicInst.h"
00031 #include "llvm/IR/LLVMContext.h"
00032 #include "llvm/IR/Module.h"
00033 #include "llvm/IR/Operator.h"
00034 #include "llvm/IR/TypeFinder.h"
00035 #include "llvm/IR/ValueSymbolTable.h"
00036 #include "llvm/Support/Debug.h"
00037 #include "llvm/Support/Dwarf.h"
00038 #include "llvm/Support/ErrorHandling.h"
00039 #include "llvm/Support/FormattedStream.h"
00040 #include "llvm/Support/MathExtras.h"
00041 #include <algorithm>
00042 #include <cctype>
00043 using namespace llvm;
00044 
00045 // Make virtual table appear in this compilation unit.
00046 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
00047 
00048 //===----------------------------------------------------------------------===//
00049 // Helper Functions
00050 //===----------------------------------------------------------------------===//
00051 
00052 namespace {
00053 struct OrderMap {
00054   DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
00055 
00056   unsigned size() const { return IDs.size(); }
00057   std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
00058   std::pair<unsigned, bool> lookup(const Value *V) const {
00059     return IDs.lookup(V);
00060   }
00061   void index(const Value *V) {
00062     // Explicitly sequence get-size and insert-value operations to avoid UB.
00063     unsigned ID = IDs.size() + 1;
00064     IDs[V].first = ID;
00065   }
00066 };
00067 }
00068 
00069 static void orderValue(const Value *V, OrderMap &OM) {
00070   if (OM.lookup(V).first)
00071     return;
00072 
00073   if (const Constant *C = dyn_cast<Constant>(V))
00074     if (C->getNumOperands() && !isa<GlobalValue>(C))
00075       for (const Value *Op : C->operands())
00076         if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
00077           orderValue(Op, OM);
00078 
00079   // Note: we cannot cache this lookup above, since inserting into the map
00080   // changes the map's size, and thus affects the other IDs.
00081   OM.index(V);
00082 }
00083 
00084 static OrderMap orderModule(const Module *M) {
00085   // This needs to match the order used by ValueEnumerator::ValueEnumerator()
00086   // and ValueEnumerator::incorporateFunction().
00087   OrderMap OM;
00088 
00089   for (const GlobalVariable &G : M->globals()) {
00090     if (G.hasInitializer())
00091       if (!isa<GlobalValue>(G.getInitializer()))
00092         orderValue(G.getInitializer(), OM);
00093     orderValue(&G, OM);
00094   }
00095   for (const GlobalAlias &A : M->aliases()) {
00096     if (!isa<GlobalValue>(A.getAliasee()))
00097       orderValue(A.getAliasee(), OM);
00098     orderValue(&A, OM);
00099   }
00100   for (const Function &F : *M) {
00101     if (F.hasPrefixData())
00102       if (!isa<GlobalValue>(F.getPrefixData()))
00103         orderValue(F.getPrefixData(), OM);
00104     orderValue(&F, OM);
00105 
00106     if (F.isDeclaration())
00107       continue;
00108 
00109     for (const Argument &A : F.args())
00110       orderValue(&A, OM);
00111     for (const BasicBlock &BB : F) {
00112       orderValue(&BB, OM);
00113       for (const Instruction &I : BB) {
00114         for (const Value *Op : I.operands())
00115           if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
00116               isa<InlineAsm>(*Op))
00117             orderValue(Op, OM);
00118         orderValue(&I, OM);
00119       }
00120     }
00121   }
00122   return OM;
00123 }
00124 
00125 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
00126                                          unsigned ID, const OrderMap &OM,
00127                                          UseListOrderStack &Stack) {
00128   // Predict use-list order for this one.
00129   typedef std::pair<const Use *, unsigned> Entry;
00130   SmallVector<Entry, 64> List;
00131   for (const Use &U : V->uses())
00132     // Check if this user will be serialized.
00133     if (OM.lookup(U.getUser()).first)
00134       List.push_back(std::make_pair(&U, List.size()));
00135 
00136   if (List.size() < 2)
00137     // We may have lost some users.
00138     return;
00139 
00140   bool GetsReversed =
00141       !isa<GlobalVariable>(V) && !isa<Function>(V) && !isa<BasicBlock>(V);
00142   if (auto *BA = dyn_cast<BlockAddress>(V))
00143     ID = OM.lookup(BA->getBasicBlock()).first;
00144   std::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) {
00145     const Use *LU = L.first;
00146     const Use *RU = R.first;
00147     if (LU == RU)
00148       return false;
00149 
00150     auto LID = OM.lookup(LU->getUser()).first;
00151     auto RID = OM.lookup(RU->getUser()).first;
00152 
00153     // If ID is 4, then expect: 7 6 5 1 2 3.
00154     if (LID < RID) {
00155       if (GetsReversed)
00156         if (RID <= ID)
00157           return true;
00158       return false;
00159     }
00160     if (RID < LID) {
00161       if (GetsReversed)
00162         if (LID <= ID)
00163           return false;
00164       return true;
00165     }
00166 
00167     // LID and RID are equal, so we have different operands of the same user.
00168     // Assume operands are added in order for all instructions.
00169     if (GetsReversed)
00170       if (LID <= ID)
00171         return LU->getOperandNo() < RU->getOperandNo();
00172     return LU->getOperandNo() > RU->getOperandNo();
00173   });
00174 
00175   if (std::is_sorted(
00176           List.begin(), List.end(),
00177           [](const Entry &L, const Entry &R) { return L.second < R.second; }))
00178     // Order is already correct.
00179     return;
00180 
00181   // Store the shuffle.
00182   Stack.emplace_back(V, F, List.size());
00183   assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
00184   for (size_t I = 0, E = List.size(); I != E; ++I)
00185     Stack.back().Shuffle[I] = List[I].second;
00186 }
00187 
00188 static void predictValueUseListOrder(const Value *V, const Function *F,
00189                                      OrderMap &OM, UseListOrderStack &Stack) {
00190   auto &IDPair = OM[V];
00191   assert(IDPair.first && "Unmapped value");
00192   if (IDPair.second)
00193     // Already predicted.
00194     return;
00195 
00196   // Do the actual prediction.
00197   IDPair.second = true;
00198   if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
00199     predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
00200 
00201   // Recursive descent into constants.
00202   if (const Constant *C = dyn_cast<Constant>(V))
00203     if (C->getNumOperands()) // Visit GlobalValues.
00204       for (const Value *Op : C->operands())
00205         if (isa<Constant>(Op)) // Visit GlobalValues.
00206           predictValueUseListOrder(Op, F, OM, Stack);
00207 }
00208 
00209 static UseListOrderStack predictUseListOrder(const Module *M) {
00210   OrderMap OM = orderModule(M);
00211 
00212   // Use-list orders need to be serialized after all the users have been added
00213   // to a value, or else the shuffles will be incomplete.  Store them per
00214   // function in a stack.
00215   //
00216   // Aside from function order, the order of values doesn't matter much here.
00217   UseListOrderStack Stack;
00218 
00219   // We want to visit the functions backward now so we can list function-local
00220   // constants in the last Function they're used in.  Module-level constants
00221   // have already been visited above.
00222   for (auto I = M->rbegin(), E = M->rend(); I != E; ++I) {
00223     const Function &F = *I;
00224     if (F.isDeclaration())
00225       continue;
00226     for (const BasicBlock &BB : F)
00227       predictValueUseListOrder(&BB, &F, OM, Stack);
00228     for (const Argument &A : F.args())
00229       predictValueUseListOrder(&A, &F, OM, Stack);
00230     for (const BasicBlock &BB : F)
00231       for (const Instruction &I : BB)
00232         for (const Value *Op : I.operands())
00233           if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
00234             predictValueUseListOrder(Op, &F, OM, Stack);
00235     for (const BasicBlock &BB : F)
00236       for (const Instruction &I : BB)
00237         predictValueUseListOrder(&I, &F, OM, Stack);
00238   }
00239 
00240   // Visit globals last.
00241   for (const GlobalVariable &G : M->globals())
00242     predictValueUseListOrder(&G, nullptr, OM, Stack);
00243   for (const Function &F : *M)
00244     predictValueUseListOrder(&F, nullptr, OM, Stack);
00245   for (const GlobalAlias &A : M->aliases())
00246     predictValueUseListOrder(&A, nullptr, OM, Stack);
00247   for (const GlobalVariable &G : M->globals())
00248     if (G.hasInitializer())
00249       predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
00250   for (const GlobalAlias &A : M->aliases())
00251     predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
00252   for (const Function &F : *M)
00253     if (F.hasPrefixData())
00254       predictValueUseListOrder(F.getPrefixData(), nullptr, OM, Stack);
00255 
00256   return Stack;
00257 }
00258 
00259 static const Module *getModuleFromVal(const Value *V) {
00260   if (const Argument *MA = dyn_cast<Argument>(V))
00261     return MA->getParent() ? MA->getParent()->getParent() : nullptr;
00262 
00263   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
00264     return BB->getParent() ? BB->getParent()->getParent() : nullptr;
00265 
00266   if (const Instruction *I = dyn_cast<Instruction>(V)) {
00267     const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
00268     return M ? M->getParent() : nullptr;
00269   }
00270 
00271   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
00272     return GV->getParent();
00273   return nullptr;
00274 }
00275 
00276 static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
00277   switch (cc) {
00278   default:                         Out << "cc" << cc; break;
00279   case CallingConv::Fast:          Out << "fastcc"; break;
00280   case CallingConv::Cold:          Out << "coldcc"; break;
00281   case CallingConv::WebKit_JS:     Out << "webkit_jscc"; break;
00282   case CallingConv::AnyReg:        Out << "anyregcc"; break;
00283   case CallingConv::PreserveMost:  Out << "preserve_mostcc"; break;
00284   case CallingConv::PreserveAll:   Out << "preserve_allcc"; break;
00285   case CallingConv::X86_StdCall:   Out << "x86_stdcallcc"; break;
00286   case CallingConv::X86_FastCall:  Out << "x86_fastcallcc"; break;
00287   case CallingConv::X86_ThisCall:  Out << "x86_thiscallcc"; break;
00288   case CallingConv::Intel_OCL_BI:  Out << "intel_ocl_bicc"; break;
00289   case CallingConv::ARM_APCS:      Out << "arm_apcscc"; break;
00290   case CallingConv::ARM_AAPCS:     Out << "arm_aapcscc"; break;
00291   case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
00292   case CallingConv::MSP430_INTR:   Out << "msp430_intrcc"; break;
00293   case CallingConv::PTX_Kernel:    Out << "ptx_kernel"; break;
00294   case CallingConv::PTX_Device:    Out << "ptx_device"; break;
00295   case CallingConv::X86_64_SysV:   Out << "x86_64_sysvcc"; break;
00296   case CallingConv::X86_64_Win64:  Out << "x86_64_win64cc"; break;
00297   case CallingConv::SPIR_FUNC:     Out << "spir_func"; break;
00298   case CallingConv::SPIR_KERNEL:   Out << "spir_kernel"; break;
00299   }
00300 }
00301 
00302 // PrintEscapedString - Print each character of the specified string, escaping
00303 // it if it is not printable or if it is an escape char.
00304 static void PrintEscapedString(StringRef Name, raw_ostream &Out) {
00305   for (unsigned i = 0, e = Name.size(); i != e; ++i) {
00306     unsigned char C = Name[i];
00307     if (isprint(C) && C != '\\' && C != '"')
00308       Out << C;
00309     else
00310       Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
00311   }
00312 }
00313 
00314 enum PrefixType {
00315   GlobalPrefix,
00316   ComdatPrefix,
00317   LabelPrefix,
00318   LocalPrefix,
00319   NoPrefix
00320 };
00321 
00322 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
00323 /// prefixed with % (if the string only contains simple characters) or is
00324 /// surrounded with ""'s (if it has special chars in it).  Print it out.
00325 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
00326   assert(!Name.empty() && "Cannot get empty name!");
00327   switch (Prefix) {
00328   case NoPrefix: break;
00329   case GlobalPrefix: OS << '@'; break;
00330   case ComdatPrefix: OS << '$'; break;
00331   case LabelPrefix:  break;
00332   case LocalPrefix:  OS << '%'; break;
00333   }
00334 
00335   // Scan the name to see if it needs quotes first.
00336   bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
00337   if (!NeedsQuotes) {
00338     for (unsigned i = 0, e = Name.size(); i != e; ++i) {
00339       // By making this unsigned, the value passed in to isalnum will always be
00340       // in the range 0-255.  This is important when building with MSVC because
00341       // its implementation will assert.  This situation can arise when dealing
00342       // with UTF-8 multibyte characters.
00343       unsigned char C = Name[i];
00344       if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
00345           C != '_') {
00346         NeedsQuotes = true;
00347         break;
00348       }
00349     }
00350   }
00351 
00352   // If we didn't need any quotes, just write out the name in one blast.
00353   if (!NeedsQuotes) {
00354     OS << Name;
00355     return;
00356   }
00357 
00358   // Okay, we need quotes.  Output the quotes and escape any scary characters as
00359   // needed.
00360   OS << '"';
00361   PrintEscapedString(Name, OS);
00362   OS << '"';
00363 }
00364 
00365 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
00366 /// prefixed with % (if the string only contains simple characters) or is
00367 /// surrounded with ""'s (if it has special chars in it).  Print it out.
00368 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
00369   PrintLLVMName(OS, V->getName(),
00370                 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
00371 }
00372 
00373 
00374 namespace llvm {
00375 
00376 void TypePrinting::incorporateTypes(const Module &M) {
00377   NamedTypes.run(M, false);
00378 
00379   // The list of struct types we got back includes all the struct types, split
00380   // the unnamed ones out to a numbering and remove the anonymous structs.
00381   unsigned NextNumber = 0;
00382 
00383   std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
00384   for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
00385     StructType *STy = *I;
00386 
00387     // Ignore anonymous types.
00388     if (STy->isLiteral())
00389       continue;
00390 
00391     if (STy->getName().empty())
00392       NumberedTypes[STy] = NextNumber++;
00393     else
00394       *NextToUse++ = STy;
00395   }
00396 
00397   NamedTypes.erase(NextToUse, NamedTypes.end());
00398 }
00399 
00400 
00401 /// CalcTypeName - Write the specified type to the specified raw_ostream, making
00402 /// use of type names or up references to shorten the type name where possible.
00403 void TypePrinting::print(Type *Ty, raw_ostream &OS) {
00404   switch (Ty->getTypeID()) {
00405   case Type::VoidTyID:      OS << "void"; return;
00406   case Type::HalfTyID:      OS << "half"; return;
00407   case Type::FloatTyID:     OS << "float"; return;
00408   case Type::DoubleTyID:    OS << "double"; return;
00409   case Type::X86_FP80TyID:  OS << "x86_fp80"; return;
00410   case Type::FP128TyID:     OS << "fp128"; return;
00411   case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
00412   case Type::LabelTyID:     OS << "label"; return;
00413   case Type::MetadataTyID:  OS << "metadata"; return;
00414   case Type::X86_MMXTyID:   OS << "x86_mmx"; return;
00415   case Type::IntegerTyID:
00416     OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
00417     return;
00418 
00419   case Type::FunctionTyID: {
00420     FunctionType *FTy = cast<FunctionType>(Ty);
00421     print(FTy->getReturnType(), OS);
00422     OS << " (";
00423     for (FunctionType::param_iterator I = FTy->param_begin(),
00424          E = FTy->param_end(); I != E; ++I) {
00425       if (I != FTy->param_begin())
00426         OS << ", ";
00427       print(*I, OS);
00428     }
00429     if (FTy->isVarArg()) {
00430       if (FTy->getNumParams()) OS << ", ";
00431       OS << "...";
00432     }
00433     OS << ')';
00434     return;
00435   }
00436   case Type::StructTyID: {
00437     StructType *STy = cast<StructType>(Ty);
00438 
00439     if (STy->isLiteral())
00440       return printStructBody(STy, OS);
00441 
00442     if (!STy->getName().empty())
00443       return PrintLLVMName(OS, STy->getName(), LocalPrefix);
00444 
00445     DenseMap<StructType*, unsigned>::iterator I = NumberedTypes.find(STy);
00446     if (I != NumberedTypes.end())
00447       OS << '%' << I->second;
00448     else  // Not enumerated, print the hex address.
00449       OS << "%\"type " << STy << '\"';
00450     return;
00451   }
00452   case Type::PointerTyID: {
00453     PointerType *PTy = cast<PointerType>(Ty);
00454     print(PTy->getElementType(), OS);
00455     if (unsigned AddressSpace = PTy->getAddressSpace())
00456       OS << " addrspace(" << AddressSpace << ')';
00457     OS << '*';
00458     return;
00459   }
00460   case Type::ArrayTyID: {
00461     ArrayType *ATy = cast<ArrayType>(Ty);
00462     OS << '[' << ATy->getNumElements() << " x ";
00463     print(ATy->getElementType(), OS);
00464     OS << ']';
00465     return;
00466   }
00467   case Type::VectorTyID: {
00468     VectorType *PTy = cast<VectorType>(Ty);
00469     OS << "<" << PTy->getNumElements() << " x ";
00470     print(PTy->getElementType(), OS);
00471     OS << '>';
00472     return;
00473   }
00474   }
00475   llvm_unreachable("Invalid TypeID");
00476 }
00477 
00478 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
00479   if (STy->isOpaque()) {
00480     OS << "opaque";
00481     return;
00482   }
00483 
00484   if (STy->isPacked())
00485     OS << '<';
00486 
00487   if (STy->getNumElements() == 0) {
00488     OS << "{}";
00489   } else {
00490     StructType::element_iterator I = STy->element_begin();
00491     OS << "{ ";
00492     print(*I++, OS);
00493     for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
00494       OS << ", ";
00495       print(*I, OS);
00496     }
00497 
00498     OS << " }";
00499   }
00500   if (STy->isPacked())
00501     OS << '>';
00502 }
00503 
00504 //===----------------------------------------------------------------------===//
00505 // SlotTracker Class: Enumerate slot numbers for unnamed values
00506 //===----------------------------------------------------------------------===//
00507 /// This class provides computation of slot numbers for LLVM Assembly writing.
00508 ///
00509 class SlotTracker {
00510 public:
00511   /// ValueMap - A mapping of Values to slot numbers.
00512   typedef DenseMap<const Value*, unsigned> ValueMap;
00513 
00514 private:
00515   /// TheModule - The module for which we are holding slot numbers.
00516   const Module* TheModule;
00517 
00518   /// TheFunction - The function for which we are holding slot numbers.
00519   const Function* TheFunction;
00520   bool FunctionProcessed;
00521 
00522   /// mMap - The slot map for the module level data.
00523   ValueMap mMap;
00524   unsigned mNext;
00525 
00526   /// fMap - The slot map for the function level data.
00527   ValueMap fMap;
00528   unsigned fNext;
00529 
00530   /// mdnMap - Map for MDNodes.
00531   DenseMap<const MDNode*, unsigned> mdnMap;
00532   unsigned mdnNext;
00533 
00534   /// asMap - The slot map for attribute sets.
00535   DenseMap<AttributeSet, unsigned> asMap;
00536   unsigned asNext;
00537 public:
00538   /// Construct from a module
00539   explicit SlotTracker(const Module *M);
00540   /// Construct from a function, starting out in incorp state.
00541   explicit SlotTracker(const Function *F);
00542 
00543   /// Return the slot number of the specified value in it's type
00544   /// plane.  If something is not in the SlotTracker, return -1.
00545   int getLocalSlot(const Value *V);
00546   int getGlobalSlot(const GlobalValue *V);
00547   int getMetadataSlot(const MDNode *N);
00548   int getAttributeGroupSlot(AttributeSet AS);
00549 
00550   /// If you'd like to deal with a function instead of just a module, use
00551   /// this method to get its data into the SlotTracker.
00552   void incorporateFunction(const Function *F) {
00553     TheFunction = F;
00554     FunctionProcessed = false;
00555   }
00556 
00557   const Function *getFunction() const { return TheFunction; }
00558 
00559   /// After calling incorporateFunction, use this method to remove the
00560   /// most recently incorporated function from the SlotTracker. This
00561   /// will reset the state of the machine back to just the module contents.
00562   void purgeFunction();
00563 
00564   /// MDNode map iterators.
00565   typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator;
00566   mdn_iterator mdn_begin() { return mdnMap.begin(); }
00567   mdn_iterator mdn_end() { return mdnMap.end(); }
00568   unsigned mdn_size() const { return mdnMap.size(); }
00569   bool mdn_empty() const { return mdnMap.empty(); }
00570 
00571   /// AttributeSet map iterators.
00572   typedef DenseMap<AttributeSet, unsigned>::iterator as_iterator;
00573   as_iterator as_begin()   { return asMap.begin(); }
00574   as_iterator as_end()     { return asMap.end(); }
00575   unsigned as_size() const { return asMap.size(); }
00576   bool as_empty() const    { return asMap.empty(); }
00577 
00578   /// This function does the actual initialization.
00579   inline void initialize();
00580 
00581   // Implementation Details
00582 private:
00583   /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
00584   void CreateModuleSlot(const GlobalValue *V);
00585 
00586   /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
00587   void CreateMetadataSlot(const MDNode *N);
00588 
00589   /// CreateFunctionSlot - Insert the specified Value* into the slot table.
00590   void CreateFunctionSlot(const Value *V);
00591 
00592   /// \brief Insert the specified AttributeSet into the slot table.
00593   void CreateAttributeSetSlot(AttributeSet AS);
00594 
00595   /// Add all of the module level global variables (and their initializers)
00596   /// and function declarations, but not the contents of those functions.
00597   void processModule();
00598 
00599   /// Add all of the functions arguments, basic blocks, and instructions.
00600   void processFunction();
00601 
00602   SlotTracker(const SlotTracker &) LLVM_DELETED_FUNCTION;
00603   void operator=(const SlotTracker &) LLVM_DELETED_FUNCTION;
00604 };
00605 
00606 SlotTracker *createSlotTracker(const Module *M) {
00607   return new SlotTracker(M);
00608 }
00609 
00610 static SlotTracker *createSlotTracker(const Value *V) {
00611   if (const Argument *FA = dyn_cast<Argument>(V))
00612     return new SlotTracker(FA->getParent());
00613 
00614   if (const Instruction *I = dyn_cast<Instruction>(V))
00615     if (I->getParent())
00616       return new SlotTracker(I->getParent()->getParent());
00617 
00618   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
00619     return new SlotTracker(BB->getParent());
00620 
00621   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
00622     return new SlotTracker(GV->getParent());
00623 
00624   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
00625     return new SlotTracker(GA->getParent());
00626 
00627   if (const Function *Func = dyn_cast<Function>(V))
00628     return new SlotTracker(Func);
00629 
00630   if (const MDNode *MD = dyn_cast<MDNode>(V)) {
00631     if (!MD->isFunctionLocal())
00632       return new SlotTracker(MD->getFunction());
00633 
00634     return new SlotTracker((Function *)nullptr);
00635   }
00636 
00637   return nullptr;
00638 }
00639 
00640 #if 0
00641 #define ST_DEBUG(X) dbgs() << X
00642 #else
00643 #define ST_DEBUG(X)
00644 #endif
00645 
00646 // Module level constructor. Causes the contents of the Module (sans functions)
00647 // to be added to the slot table.
00648 SlotTracker::SlotTracker(const Module *M)
00649   : TheModule(M), TheFunction(nullptr), FunctionProcessed(false),
00650     mNext(0), fNext(0),  mdnNext(0), asNext(0) {
00651 }
00652 
00653 // Function level constructor. Causes the contents of the Module and the one
00654 // function provided to be added to the slot table.
00655 SlotTracker::SlotTracker(const Function *F)
00656   : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
00657     FunctionProcessed(false), mNext(0), fNext(0), mdnNext(0), asNext(0) {
00658 }
00659 
00660 inline void SlotTracker::initialize() {
00661   if (TheModule) {
00662     processModule();
00663     TheModule = nullptr; ///< Prevent re-processing next time we're called.
00664   }
00665 
00666   if (TheFunction && !FunctionProcessed)
00667     processFunction();
00668 }
00669 
00670 // Iterate through all the global variables, functions, and global
00671 // variable initializers and create slots for them.
00672 void SlotTracker::processModule() {
00673   ST_DEBUG("begin processModule!\n");
00674 
00675   // Add all of the unnamed global variables to the value table.
00676   for (Module::const_global_iterator I = TheModule->global_begin(),
00677          E = TheModule->global_end(); I != E; ++I) {
00678     if (!I->hasName())
00679       CreateModuleSlot(I);
00680   }
00681 
00682   // Add metadata used by named metadata.
00683   for (Module::const_named_metadata_iterator
00684          I = TheModule->named_metadata_begin(),
00685          E = TheModule->named_metadata_end(); I != E; ++I) {
00686     const NamedMDNode *NMD = I;
00687     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
00688       CreateMetadataSlot(NMD->getOperand(i));
00689   }
00690 
00691   for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
00692        I != E; ++I) {
00693     if (!I->hasName())
00694       // Add all the unnamed functions to the table.
00695       CreateModuleSlot(I);
00696 
00697     // Add all the function attributes to the table.
00698     // FIXME: Add attributes of other objects?
00699     AttributeSet FnAttrs = I->getAttributes().getFnAttributes();
00700     if (FnAttrs.hasAttributes(AttributeSet::FunctionIndex))
00701       CreateAttributeSetSlot(FnAttrs);
00702   }
00703 
00704   ST_DEBUG("end processModule!\n");
00705 }
00706 
00707 // Process the arguments, basic blocks, and instructions  of a function.
00708 void SlotTracker::processFunction() {
00709   ST_DEBUG("begin processFunction!\n");
00710   fNext = 0;
00711 
00712   // Add all the function arguments with no names.
00713   for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
00714       AE = TheFunction->arg_end(); AI != AE; ++AI)
00715     if (!AI->hasName())
00716       CreateFunctionSlot(AI);
00717 
00718   ST_DEBUG("Inserting Instructions:\n");
00719 
00720   SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst;
00721 
00722   // Add all of the basic blocks and instructions with no names.
00723   for (Function::const_iterator BB = TheFunction->begin(),
00724        E = TheFunction->end(); BB != E; ++BB) {
00725     if (!BB->hasName())
00726       CreateFunctionSlot(BB);
00727 
00728     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
00729          ++I) {
00730       if (!I->getType()->isVoidTy() && !I->hasName())
00731         CreateFunctionSlot(I);
00732 
00733       // Intrinsics can directly use metadata.  We allow direct calls to any
00734       // llvm.foo function here, because the target may not be linked into the
00735       // optimizer.
00736       if (const CallInst *CI = dyn_cast<CallInst>(I)) {
00737         if (Function *F = CI->getCalledFunction())
00738           if (F->isIntrinsic())
00739             for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
00740               if (MDNode *N = dyn_cast_or_null<MDNode>(I->getOperand(i)))
00741                 CreateMetadataSlot(N);
00742 
00743         // Add all the call attributes to the table.
00744         AttributeSet Attrs = CI->getAttributes().getFnAttributes();
00745         if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
00746           CreateAttributeSetSlot(Attrs);
00747       } else if (const InvokeInst *II = dyn_cast<InvokeInst>(I)) {
00748         // Add all the call attributes to the table.
00749         AttributeSet Attrs = II->getAttributes().getFnAttributes();
00750         if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
00751           CreateAttributeSetSlot(Attrs);
00752       }
00753 
00754       // Process metadata attached with this instruction.
00755       I->getAllMetadata(MDForInst);
00756       for (unsigned i = 0, e = MDForInst.size(); i != e; ++i)
00757         CreateMetadataSlot(MDForInst[i].second);
00758       MDForInst.clear();
00759     }
00760   }
00761 
00762   FunctionProcessed = true;
00763 
00764   ST_DEBUG("end processFunction!\n");
00765 }
00766 
00767 /// Clean up after incorporating a function. This is the only way to get out of
00768 /// the function incorporation state that affects get*Slot/Create*Slot. Function
00769 /// incorporation state is indicated by TheFunction != 0.
00770 void SlotTracker::purgeFunction() {
00771   ST_DEBUG("begin purgeFunction!\n");
00772   fMap.clear(); // Simply discard the function level map
00773   TheFunction = nullptr;
00774   FunctionProcessed = false;
00775   ST_DEBUG("end purgeFunction!\n");
00776 }
00777 
00778 /// getGlobalSlot - Get the slot number of a global value.
00779 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
00780   // Check for uninitialized state and do lazy initialization.
00781   initialize();
00782 
00783   // Find the value in the module map
00784   ValueMap::iterator MI = mMap.find(V);
00785   return MI == mMap.end() ? -1 : (int)MI->second;
00786 }
00787 
00788 /// getMetadataSlot - Get the slot number of a MDNode.
00789 int SlotTracker::getMetadataSlot(const MDNode *N) {
00790   // Check for uninitialized state and do lazy initialization.
00791   initialize();
00792 
00793   // Find the MDNode in the module map
00794   mdn_iterator MI = mdnMap.find(N);
00795   return MI == mdnMap.end() ? -1 : (int)MI->second;
00796 }
00797 
00798 
00799 /// getLocalSlot - Get the slot number for a value that is local to a function.
00800 int SlotTracker::getLocalSlot(const Value *V) {
00801   assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
00802 
00803   // Check for uninitialized state and do lazy initialization.
00804   initialize();
00805 
00806   ValueMap::iterator FI = fMap.find(V);
00807   return FI == fMap.end() ? -1 : (int)FI->second;
00808 }
00809 
00810 int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
00811   // Check for uninitialized state and do lazy initialization.
00812   initialize();
00813 
00814   // Find the AttributeSet in the module map.
00815   as_iterator AI = asMap.find(AS);
00816   return AI == asMap.end() ? -1 : (int)AI->second;
00817 }
00818 
00819 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
00820 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
00821   assert(V && "Can't insert a null Value into SlotTracker!");
00822   assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
00823   assert(!V->hasName() && "Doesn't need a slot!");
00824 
00825   unsigned DestSlot = mNext++;
00826   mMap[V] = DestSlot;
00827 
00828   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
00829            DestSlot << " [");
00830   // G = Global, F = Function, A = Alias, o = other
00831   ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
00832             (isa<Function>(V) ? 'F' :
00833              (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
00834 }
00835 
00836 /// CreateSlot - Create a new slot for the specified value if it has no name.
00837 void SlotTracker::CreateFunctionSlot(const Value *V) {
00838   assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
00839 
00840   unsigned DestSlot = fNext++;
00841   fMap[V] = DestSlot;
00842 
00843   // G = Global, F = Function, o = other
00844   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
00845            DestSlot << " [o]\n");
00846 }
00847 
00848 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
00849 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
00850   assert(N && "Can't insert a null Value into SlotTracker!");
00851 
00852   // Don't insert if N is a function-local metadata, these are always printed
00853   // inline.
00854   if (!N->isFunctionLocal()) {
00855     mdn_iterator I = mdnMap.find(N);
00856     if (I != mdnMap.end())
00857       return;
00858 
00859     unsigned DestSlot = mdnNext++;
00860     mdnMap[N] = DestSlot;
00861   }
00862 
00863   // Recursively add any MDNodes referenced by operands.
00864   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
00865     if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
00866       CreateMetadataSlot(Op);
00867 }
00868 
00869 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
00870   assert(AS.hasAttributes(AttributeSet::FunctionIndex) &&
00871          "Doesn't need a slot!");
00872 
00873   as_iterator I = asMap.find(AS);
00874   if (I != asMap.end())
00875     return;
00876 
00877   unsigned DestSlot = asNext++;
00878   asMap[AS] = DestSlot;
00879 }
00880 
00881 //===----------------------------------------------------------------------===//
00882 // AsmWriter Implementation
00883 //===----------------------------------------------------------------------===//
00884 
00885 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
00886                                    TypePrinting *TypePrinter,
00887                                    SlotTracker *Machine,
00888                                    const Module *Context);
00889 
00890 static const char *getPredicateText(unsigned predicate) {
00891   const char * pred = "unknown";
00892   switch (predicate) {
00893   case FCmpInst::FCMP_FALSE: pred = "false"; break;
00894   case FCmpInst::FCMP_OEQ:   pred = "oeq"; break;
00895   case FCmpInst::FCMP_OGT:   pred = "ogt"; break;
00896   case FCmpInst::FCMP_OGE:   pred = "oge"; break;
00897   case FCmpInst::FCMP_OLT:   pred = "olt"; break;
00898   case FCmpInst::FCMP_OLE:   pred = "ole"; break;
00899   case FCmpInst::FCMP_ONE:   pred = "one"; break;
00900   case FCmpInst::FCMP_ORD:   pred = "ord"; break;
00901   case FCmpInst::FCMP_UNO:   pred = "uno"; break;
00902   case FCmpInst::FCMP_UEQ:   pred = "ueq"; break;
00903   case FCmpInst::FCMP_UGT:   pred = "ugt"; break;
00904   case FCmpInst::FCMP_UGE:   pred = "uge"; break;
00905   case FCmpInst::FCMP_ULT:   pred = "ult"; break;
00906   case FCmpInst::FCMP_ULE:   pred = "ule"; break;
00907   case FCmpInst::FCMP_UNE:   pred = "une"; break;
00908   case FCmpInst::FCMP_TRUE:  pred = "true"; break;
00909   case ICmpInst::ICMP_EQ:    pred = "eq"; break;
00910   case ICmpInst::ICMP_NE:    pred = "ne"; break;
00911   case ICmpInst::ICMP_SGT:   pred = "sgt"; break;
00912   case ICmpInst::ICMP_SGE:   pred = "sge"; break;
00913   case ICmpInst::ICMP_SLT:   pred = "slt"; break;
00914   case ICmpInst::ICMP_SLE:   pred = "sle"; break;
00915   case ICmpInst::ICMP_UGT:   pred = "ugt"; break;
00916   case ICmpInst::ICMP_UGE:   pred = "uge"; break;
00917   case ICmpInst::ICMP_ULT:   pred = "ult"; break;
00918   case ICmpInst::ICMP_ULE:   pred = "ule"; break;
00919   }
00920   return pred;
00921 }
00922 
00923 static void writeAtomicRMWOperation(raw_ostream &Out,
00924                                     AtomicRMWInst::BinOp Op) {
00925   switch (Op) {
00926   default: Out << " <unknown operation " << Op << ">"; break;
00927   case AtomicRMWInst::Xchg: Out << " xchg"; break;
00928   case AtomicRMWInst::Add:  Out << " add"; break;
00929   case AtomicRMWInst::Sub:  Out << " sub"; break;
00930   case AtomicRMWInst::And:  Out << " and"; break;
00931   case AtomicRMWInst::Nand: Out << " nand"; break;
00932   case AtomicRMWInst::Or:   Out << " or"; break;
00933   case AtomicRMWInst::Xor:  Out << " xor"; break;
00934   case AtomicRMWInst::Max:  Out << " max"; break;
00935   case AtomicRMWInst::Min:  Out << " min"; break;
00936   case AtomicRMWInst::UMax: Out << " umax"; break;
00937   case AtomicRMWInst::UMin: Out << " umin"; break;
00938   }
00939 }
00940 
00941 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
00942   if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
00943     // Unsafe algebra implies all the others, no need to write them all out
00944     if (FPO->hasUnsafeAlgebra())
00945       Out << " fast";
00946     else {
00947       if (FPO->hasNoNaNs())
00948         Out << " nnan";
00949       if (FPO->hasNoInfs())
00950         Out << " ninf";
00951       if (FPO->hasNoSignedZeros())
00952         Out << " nsz";
00953       if (FPO->hasAllowReciprocal())
00954         Out << " arcp";
00955     }
00956   }
00957 
00958   if (const OverflowingBinaryOperator *OBO =
00959         dyn_cast<OverflowingBinaryOperator>(U)) {
00960     if (OBO->hasNoUnsignedWrap())
00961       Out << " nuw";
00962     if (OBO->hasNoSignedWrap())
00963       Out << " nsw";
00964   } else if (const PossiblyExactOperator *Div =
00965                dyn_cast<PossiblyExactOperator>(U)) {
00966     if (Div->isExact())
00967       Out << " exact";
00968   } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
00969     if (GEP->isInBounds())
00970       Out << " inbounds";
00971   }
00972 }
00973 
00974 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
00975                                   TypePrinting &TypePrinter,
00976                                   SlotTracker *Machine,
00977                                   const Module *Context) {
00978   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
00979     if (CI->getType()->isIntegerTy(1)) {
00980       Out << (CI->getZExtValue() ? "true" : "false");
00981       return;
00982     }
00983     Out << CI->getValue();
00984     return;
00985   }
00986 
00987   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
00988     if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle ||
00989         &CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble) {
00990       // We would like to output the FP constant value in exponential notation,
00991       // but we cannot do this if doing so will lose precision.  Check here to
00992       // make sure that we only output it in exponential format if we can parse
00993       // the value back and get the same value.
00994       //
00995       bool ignored;
00996       bool isHalf = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEhalf;
00997       bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
00998       bool isInf = CFP->getValueAPF().isInfinity();
00999       bool isNaN = CFP->getValueAPF().isNaN();
01000       if (!isHalf && !isInf && !isNaN) {
01001         double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
01002                                 CFP->getValueAPF().convertToFloat();
01003         SmallString<128> StrVal;
01004         raw_svector_ostream(StrVal) << Val;
01005 
01006         // Check to make sure that the stringized number is not some string like
01007         // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
01008         // that the string matches the "[-+]?[0-9]" regex.
01009         //
01010         if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
01011             ((StrVal[0] == '-' || StrVal[0] == '+') &&
01012              (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
01013           // Reparse stringized version!
01014           if (APFloat(APFloat::IEEEdouble, StrVal).convertToDouble() == Val) {
01015             Out << StrVal.str();
01016             return;
01017           }
01018         }
01019       }
01020       // Otherwise we could not reparse it to exactly the same value, so we must
01021       // output the string in hexadecimal format!  Note that loading and storing
01022       // floating point types changes the bits of NaNs on some hosts, notably
01023       // x86, so we must not use these types.
01024       static_assert(sizeof(double) == sizeof(uint64_t),
01025                     "assuming that double is 64 bits!");
01026       char Buffer[40];
01027       APFloat apf = CFP->getValueAPF();
01028       // Halves and floats are represented in ASCII IR as double, convert.
01029       if (!isDouble)
01030         apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
01031                           &ignored);
01032       Out << "0x" <<
01033               utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
01034                             Buffer+40);
01035       return;
01036     }
01037 
01038     // Either half, or some form of long double.
01039     // These appear as a magic letter identifying the type, then a
01040     // fixed number of hex digits.
01041     Out << "0x";
01042     // Bit position, in the current word, of the next nibble to print.
01043     int shiftcount;
01044 
01045     if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
01046       Out << 'K';
01047       // api needed to prevent premature destruction
01048       APInt api = CFP->getValueAPF().bitcastToAPInt();
01049       const uint64_t* p = api.getRawData();
01050       uint64_t word = p[1];
01051       shiftcount = 12;
01052       int width = api.getBitWidth();
01053       for (int j=0; j<width; j+=4, shiftcount-=4) {
01054         unsigned int nibble = (word>>shiftcount) & 15;
01055         if (nibble < 10)
01056           Out << (unsigned char)(nibble + '0');
01057         else
01058           Out << (unsigned char)(nibble - 10 + 'A');
01059         if (shiftcount == 0 && j+4 < width) {
01060           word = *p;
01061           shiftcount = 64;
01062           if (width-j-4 < 64)
01063             shiftcount = width-j-4;
01064         }
01065       }
01066       return;
01067     } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) {
01068       shiftcount = 60;
01069       Out << 'L';
01070     } else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) {
01071       shiftcount = 60;
01072       Out << 'M';
01073     } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEhalf) {
01074       shiftcount = 12;
01075       Out << 'H';
01076     } else
01077       llvm_unreachable("Unsupported floating point type");
01078     // api needed to prevent premature destruction
01079     APInt api = CFP->getValueAPF().bitcastToAPInt();
01080     const uint64_t* p = api.getRawData();
01081     uint64_t word = *p;
01082     int width = api.getBitWidth();
01083     for (int j=0; j<width; j+=4, shiftcount-=4) {
01084       unsigned int nibble = (word>>shiftcount) & 15;
01085       if (nibble < 10)
01086         Out << (unsigned char)(nibble + '0');
01087       else
01088         Out << (unsigned char)(nibble - 10 + 'A');
01089       if (shiftcount == 0 && j+4 < width) {
01090         word = *(++p);
01091         shiftcount = 64;
01092         if (width-j-4 < 64)
01093           shiftcount = width-j-4;
01094       }
01095     }
01096     return;
01097   }
01098 
01099   if (isa<ConstantAggregateZero>(CV)) {
01100     Out << "zeroinitializer";
01101     return;
01102   }
01103 
01104   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
01105     Out << "blockaddress(";
01106     WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
01107                            Context);
01108     Out << ", ";
01109     WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
01110                            Context);
01111     Out << ")";
01112     return;
01113   }
01114 
01115   if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
01116     Type *ETy = CA->getType()->getElementType();
01117     Out << '[';
01118     TypePrinter.print(ETy, Out);
01119     Out << ' ';
01120     WriteAsOperandInternal(Out, CA->getOperand(0),
01121                            &TypePrinter, Machine,
01122                            Context);
01123     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
01124       Out << ", ";
01125       TypePrinter.print(ETy, Out);
01126       Out << ' ';
01127       WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
01128                              Context);
01129     }
01130     Out << ']';
01131     return;
01132   }
01133 
01134   if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
01135     // As a special case, print the array as a string if it is an array of
01136     // i8 with ConstantInt values.
01137     if (CA->isString()) {
01138       Out << "c\"";
01139       PrintEscapedString(CA->getAsString(), Out);
01140       Out << '"';
01141       return;
01142     }
01143 
01144     Type *ETy = CA->getType()->getElementType();
01145     Out << '[';
01146     TypePrinter.print(ETy, Out);
01147     Out << ' ';
01148     WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
01149                            &TypePrinter, Machine,
01150                            Context);
01151     for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
01152       Out << ", ";
01153       TypePrinter.print(ETy, Out);
01154       Out << ' ';
01155       WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
01156                              Machine, Context);
01157     }
01158     Out << ']';
01159     return;
01160   }
01161 
01162 
01163   if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
01164     if (CS->getType()->isPacked())
01165       Out << '<';
01166     Out << '{';
01167     unsigned N = CS->getNumOperands();
01168     if (N) {
01169       Out << ' ';
01170       TypePrinter.print(CS->getOperand(0)->getType(), Out);
01171       Out << ' ';
01172 
01173       WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
01174                              Context);
01175 
01176       for (unsigned i = 1; i < N; i++) {
01177         Out << ", ";
01178         TypePrinter.print(CS->getOperand(i)->getType(), Out);
01179         Out << ' ';
01180 
01181         WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
01182                                Context);
01183       }
01184       Out << ' ';
01185     }
01186 
01187     Out << '}';
01188     if (CS->getType()->isPacked())
01189       Out << '>';
01190     return;
01191   }
01192 
01193   if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
01194     Type *ETy = CV->getType()->getVectorElementType();
01195     Out << '<';
01196     TypePrinter.print(ETy, Out);
01197     Out << ' ';
01198     WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
01199                            Machine, Context);
01200     for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){
01201       Out << ", ";
01202       TypePrinter.print(ETy, Out);
01203       Out << ' ';
01204       WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
01205                              Machine, Context);
01206     }
01207     Out << '>';
01208     return;
01209   }
01210 
01211   if (isa<ConstantPointerNull>(CV)) {
01212     Out << "null";
01213     return;
01214   }
01215 
01216   if (isa<UndefValue>(CV)) {
01217     Out << "undef";
01218     return;
01219   }
01220 
01221   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
01222     Out << CE->getOpcodeName();
01223     WriteOptimizationInfo(Out, CE);
01224     if (CE->isCompare())
01225       Out << ' ' << getPredicateText(CE->getPredicate());
01226     Out << " (";
01227 
01228     for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
01229       TypePrinter.print((*OI)->getType(), Out);
01230       Out << ' ';
01231       WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
01232       if (OI+1 != CE->op_end())
01233         Out << ", ";
01234     }
01235 
01236     if (CE->hasIndices()) {
01237       ArrayRef<unsigned> Indices = CE->getIndices();
01238       for (unsigned i = 0, e = Indices.size(); i != e; ++i)
01239         Out << ", " << Indices[i];
01240     }
01241 
01242     if (CE->isCast()) {
01243       Out << " to ";
01244       TypePrinter.print(CE->getType(), Out);
01245     }
01246 
01247     Out << ')';
01248     return;
01249   }
01250 
01251   Out << "<placeholder or erroneous Constant>";
01252 }
01253 
01254 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
01255                                     TypePrinting *TypePrinter,
01256                                     SlotTracker *Machine,
01257                                     const Module *Context) {
01258   Out << "!{";
01259   for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
01260     const Value *V = Node->getOperand(mi);
01261     if (!V)
01262       Out << "null";
01263     else {
01264       TypePrinter->print(V->getType(), Out);
01265       Out << ' ';
01266       WriteAsOperandInternal(Out, Node->getOperand(mi),
01267                              TypePrinter, Machine, Context);
01268     }
01269     if (mi + 1 != me)
01270       Out << ", ";
01271   }
01272 
01273   Out << "}";
01274 }
01275 
01276 // Full implementation of printing a Value as an operand with support for
01277 // TypePrinting, etc.
01278 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
01279                                    TypePrinting *TypePrinter,
01280                                    SlotTracker *Machine,
01281                                    const Module *Context) {
01282   if (V->hasName()) {
01283     PrintLLVMName(Out, V);
01284     return;
01285   }
01286 
01287   const Constant *CV = dyn_cast<Constant>(V);
01288   if (CV && !isa<GlobalValue>(CV)) {
01289     assert(TypePrinter && "Constants require TypePrinting!");
01290     WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
01291     return;
01292   }
01293 
01294   if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
01295     Out << "asm ";
01296     if (IA->hasSideEffects())
01297       Out << "sideeffect ";
01298     if (IA->isAlignStack())
01299       Out << "alignstack ";
01300     // We don't emit the AD_ATT dialect as it's the assumed default.
01301     if (IA->getDialect() == InlineAsm::AD_Intel)
01302       Out << "inteldialect ";
01303     Out << '"';
01304     PrintEscapedString(IA->getAsmString(), Out);
01305     Out << "\", \"";
01306     PrintEscapedString(IA->getConstraintString(), Out);
01307     Out << '"';
01308     return;
01309   }
01310 
01311   if (const MDNode *N = dyn_cast<MDNode>(V)) {
01312     if (N->isFunctionLocal()) {
01313       // Print metadata inline, not via slot reference number.
01314       WriteMDNodeBodyInternal(Out, N, TypePrinter, Machine, Context);
01315       return;
01316     }
01317 
01318     if (!Machine) {
01319       if (N->isFunctionLocal())
01320         Machine = new SlotTracker(N->getFunction());
01321       else
01322         Machine = new SlotTracker(Context);
01323     }
01324     int Slot = Machine->getMetadataSlot(N);
01325     if (Slot == -1)
01326       Out << "<badref>";
01327     else
01328       Out << '!' << Slot;
01329     return;
01330   }
01331 
01332   if (const MDString *MDS = dyn_cast<MDString>(V)) {
01333     Out << "!\"";
01334     PrintEscapedString(MDS->getString(), Out);
01335     Out << '"';
01336     return;
01337   }
01338 
01339   char Prefix = '%';
01340   int Slot;
01341   // If we have a SlotTracker, use it.
01342   if (Machine) {
01343     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
01344       Slot = Machine->getGlobalSlot(GV);
01345       Prefix = '@';
01346     } else {
01347       Slot = Machine->getLocalSlot(V);
01348 
01349       // If the local value didn't succeed, then we may be referring to a value
01350       // from a different function.  Translate it, as this can happen when using
01351       // address of blocks.
01352       if (Slot == -1)
01353         if ((Machine = createSlotTracker(V))) {
01354           Slot = Machine->getLocalSlot(V);
01355           delete Machine;
01356         }
01357     }
01358   } else if ((Machine = createSlotTracker(V))) {
01359     // Otherwise, create one to get the # and then destroy it.
01360     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
01361       Slot = Machine->getGlobalSlot(GV);
01362       Prefix = '@';
01363     } else {
01364       Slot = Machine->getLocalSlot(V);
01365     }
01366     delete Machine;
01367     Machine = nullptr;
01368   } else {
01369     Slot = -1;
01370   }
01371 
01372   if (Slot != -1)
01373     Out << Prefix << Slot;
01374   else
01375     Out << "<badref>";
01376 }
01377 
01378 void AssemblyWriter::init() {
01379   if (!TheModule)
01380     return;
01381   TypePrinter.incorporateTypes(*TheModule);
01382   for (const Function &F : *TheModule)
01383     if (const Comdat *C = F.getComdat())
01384       Comdats.insert(C);
01385   for (const GlobalVariable &GV : TheModule->globals())
01386     if (const Comdat *C = GV.getComdat())
01387       Comdats.insert(C);
01388 }
01389 
01390 
01391 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
01392                                const Module *M,
01393                                AssemblyAnnotationWriter *AAW)
01394   : Out(o), TheModule(M), Machine(Mac), AnnotationWriter(AAW) {
01395   init();
01396 }
01397 
01398 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, const Module *M,
01399                                AssemblyAnnotationWriter *AAW)
01400   : Out(o), TheModule(M), ModuleSlotTracker(createSlotTracker(M)),
01401     Machine(*ModuleSlotTracker), AnnotationWriter(AAW) {
01402   init();
01403 }
01404 
01405 AssemblyWriter::~AssemblyWriter() { }
01406 
01407 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
01408   if (!Operand) {
01409     Out << "<null operand!>";
01410     return;
01411   }
01412   if (PrintType) {
01413     TypePrinter.print(Operand->getType(), Out);
01414     Out << ' ';
01415   }
01416   WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
01417 }
01418 
01419 void AssemblyWriter::writeAtomic(AtomicOrdering Ordering,
01420                                  SynchronizationScope SynchScope) {
01421   if (Ordering == NotAtomic)
01422     return;
01423 
01424   switch (SynchScope) {
01425   case SingleThread: Out << " singlethread"; break;
01426   case CrossThread: break;
01427   }
01428 
01429   switch (Ordering) {
01430   default: Out << " <bad ordering " << int(Ordering) << ">"; break;
01431   case Unordered: Out << " unordered"; break;
01432   case Monotonic: Out << " monotonic"; break;
01433   case Acquire: Out << " acquire"; break;
01434   case Release: Out << " release"; break;
01435   case AcquireRelease: Out << " acq_rel"; break;
01436   case SequentiallyConsistent: Out << " seq_cst"; break;
01437   }
01438 }
01439 
01440 void AssemblyWriter::writeAtomicCmpXchg(AtomicOrdering SuccessOrdering,
01441                                         AtomicOrdering FailureOrdering,
01442                                         SynchronizationScope SynchScope) {
01443   assert(SuccessOrdering != NotAtomic && FailureOrdering != NotAtomic);
01444 
01445   switch (SynchScope) {
01446   case SingleThread: Out << " singlethread"; break;
01447   case CrossThread: break;
01448   }
01449 
01450   switch (SuccessOrdering) {
01451   default: Out << " <bad ordering " << int(SuccessOrdering) << ">"; break;
01452   case Unordered: Out << " unordered"; break;
01453   case Monotonic: Out << " monotonic"; break;
01454   case Acquire: Out << " acquire"; break;
01455   case Release: Out << " release"; break;
01456   case AcquireRelease: Out << " acq_rel"; break;
01457   case SequentiallyConsistent: Out << " seq_cst"; break;
01458   }
01459 
01460   switch (FailureOrdering) {
01461   default: Out << " <bad ordering " << int(FailureOrdering) << ">"; break;
01462   case Unordered: Out << " unordered"; break;
01463   case Monotonic: Out << " monotonic"; break;
01464   case Acquire: Out << " acquire"; break;
01465   case Release: Out << " release"; break;
01466   case AcquireRelease: Out << " acq_rel"; break;
01467   case SequentiallyConsistent: Out << " seq_cst"; break;
01468   }
01469 }
01470 
01471 void AssemblyWriter::writeParamOperand(const Value *Operand,
01472                                        AttributeSet Attrs, unsigned Idx) {
01473   if (!Operand) {
01474     Out << "<null operand!>";
01475     return;
01476   }
01477 
01478   // Print the type
01479   TypePrinter.print(Operand->getType(), Out);
01480   // Print parameter attributes list
01481   if (Attrs.hasAttributes(Idx))
01482     Out << ' ' << Attrs.getAsString(Idx);
01483   Out << ' ';
01484   // Print the operand
01485   WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
01486 }
01487 
01488 void AssemblyWriter::printModule(const Module *M) {
01489   Machine.initialize();
01490 
01491   if (shouldPreserveAssemblyUseListOrder())
01492     UseListOrders = predictUseListOrder(M);
01493 
01494   if (!M->getModuleIdentifier().empty() &&
01495       // Don't print the ID if it will start a new line (which would
01496       // require a comment char before it).
01497       M->getModuleIdentifier().find('\n') == std::string::npos)
01498     Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
01499 
01500   const std::string &DL = M->getDataLayoutStr();
01501   if (!DL.empty())
01502     Out << "target datalayout = \"" << DL << "\"\n";
01503   if (!M->getTargetTriple().empty())
01504     Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
01505 
01506   if (!M->getModuleInlineAsm().empty()) {
01507     // Split the string into lines, to make it easier to read the .ll file.
01508     std::string Asm = M->getModuleInlineAsm();
01509     size_t CurPos = 0;
01510     size_t NewLine = Asm.find_first_of('\n', CurPos);
01511     Out << '\n';
01512     while (NewLine != std::string::npos) {
01513       // We found a newline, print the portion of the asm string from the
01514       // last newline up to this newline.
01515       Out << "module asm \"";
01516       PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
01517                          Out);
01518       Out << "\"\n";
01519       CurPos = NewLine+1;
01520       NewLine = Asm.find_first_of('\n', CurPos);
01521     }
01522     std::string rest(Asm.begin()+CurPos, Asm.end());
01523     if (!rest.empty()) {
01524       Out << "module asm \"";
01525       PrintEscapedString(rest, Out);
01526       Out << "\"\n";
01527     }
01528   }
01529 
01530   printTypeIdentities();
01531 
01532   // Output all comdats.
01533   if (!Comdats.empty())
01534     Out << '\n';
01535   for (const Comdat *C : Comdats) {
01536     printComdat(C);
01537     if (C != Comdats.back())
01538       Out << '\n';
01539   }
01540 
01541   // Output all globals.
01542   if (!M->global_empty()) Out << '\n';
01543   for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
01544        I != E; ++I) {
01545     printGlobal(I); Out << '\n';
01546   }
01547 
01548   // Output all aliases.
01549   if (!M->alias_empty()) Out << "\n";
01550   for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
01551        I != E; ++I)
01552     printAlias(I);
01553 
01554   // Output global use-lists.
01555   printUseLists(nullptr);
01556 
01557   // Output all of the functions.
01558   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
01559     printFunction(I);
01560   assert(UseListOrders.empty() && "All use-lists should have been consumed");
01561 
01562   // Output all attribute groups.
01563   if (!Machine.as_empty()) {
01564     Out << '\n';
01565     writeAllAttributeGroups();
01566   }
01567 
01568   // Output named metadata.
01569   if (!M->named_metadata_empty()) Out << '\n';
01570 
01571   for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
01572        E = M->named_metadata_end(); I != E; ++I)
01573     printNamedMDNode(I);
01574 
01575   // Output metadata.
01576   if (!Machine.mdn_empty()) {
01577     Out << '\n';
01578     writeAllMDNodes();
01579   }
01580 }
01581 
01582 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
01583   Out << '!';
01584   StringRef Name = NMD->getName();
01585   if (Name.empty()) {
01586     Out << "<empty name> ";
01587   } else {
01588     if (isalpha(static_cast<unsigned char>(Name[0])) ||
01589         Name[0] == '-' || Name[0] == '$' ||
01590         Name[0] == '.' || Name[0] == '_')
01591       Out << Name[0];
01592     else
01593       Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
01594     for (unsigned i = 1, e = Name.size(); i != e; ++i) {
01595       unsigned char C = Name[i];
01596       if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
01597           C == '.' || C == '_')
01598         Out << C;
01599       else
01600         Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
01601     }
01602   }
01603   Out << " = !{";
01604   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
01605     if (i) Out << ", ";
01606     int Slot = Machine.getMetadataSlot(NMD->getOperand(i));
01607     if (Slot == -1)
01608       Out << "<badref>";
01609     else
01610       Out << '!' << Slot;
01611   }
01612   Out << "}\n";
01613 }
01614 
01615 
01616 static void PrintLinkage(GlobalValue::LinkageTypes LT,
01617                          formatted_raw_ostream &Out) {
01618   switch (LT) {
01619   case GlobalValue::ExternalLinkage: break;
01620   case GlobalValue::PrivateLinkage:       Out << "private ";        break;
01621   case GlobalValue::InternalLinkage:      Out << "internal ";       break;
01622   case GlobalValue::LinkOnceAnyLinkage:   Out << "linkonce ";       break;
01623   case GlobalValue::LinkOnceODRLinkage:   Out << "linkonce_odr ";   break;
01624   case GlobalValue::WeakAnyLinkage:       Out << "weak ";           break;
01625   case GlobalValue::WeakODRLinkage:       Out << "weak_odr ";       break;
01626   case GlobalValue::CommonLinkage:        Out << "common ";         break;
01627   case GlobalValue::AppendingLinkage:     Out << "appending ";      break;
01628   case GlobalValue::ExternalWeakLinkage:  Out << "extern_weak ";    break;
01629   case GlobalValue::AvailableExternallyLinkage:
01630     Out << "available_externally ";
01631     break;
01632   }
01633 }
01634 
01635 
01636 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
01637                             formatted_raw_ostream &Out) {
01638   switch (Vis) {
01639   case GlobalValue::DefaultVisibility: break;
01640   case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
01641   case GlobalValue::ProtectedVisibility: Out << "protected "; break;
01642   }
01643 }
01644 
01645 static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
01646                                  formatted_raw_ostream &Out) {
01647   switch (SCT) {
01648   case GlobalValue::DefaultStorageClass: break;
01649   case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
01650   case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
01651   }
01652 }
01653 
01654 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
01655                                   formatted_raw_ostream &Out) {
01656   switch (TLM) {
01657     case GlobalVariable::NotThreadLocal:
01658       break;
01659     case GlobalVariable::GeneralDynamicTLSModel:
01660       Out << "thread_local ";
01661       break;
01662     case GlobalVariable::LocalDynamicTLSModel:
01663       Out << "thread_local(localdynamic) ";
01664       break;
01665     case GlobalVariable::InitialExecTLSModel:
01666       Out << "thread_local(initialexec) ";
01667       break;
01668     case GlobalVariable::LocalExecTLSModel:
01669       Out << "thread_local(localexec) ";
01670       break;
01671   }
01672 }
01673 
01674 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
01675   if (GV->isMaterializable())
01676     Out << "; Materializable\n";
01677 
01678   WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
01679   Out << " = ";
01680 
01681   if (!GV->hasInitializer() && GV->hasExternalLinkage())
01682     Out << "external ";
01683 
01684   PrintLinkage(GV->getLinkage(), Out);
01685   PrintVisibility(GV->getVisibility(), Out);
01686   PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
01687   PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
01688   if (GV->hasUnnamedAddr())
01689     Out << "unnamed_addr ";
01690 
01691   if (unsigned AddressSpace = GV->getType()->getAddressSpace())
01692     Out << "addrspace(" << AddressSpace << ") ";
01693   if (GV->isExternallyInitialized()) Out << "externally_initialized ";
01694   Out << (GV->isConstant() ? "constant " : "global ");
01695   TypePrinter.print(GV->getType()->getElementType(), Out);
01696 
01697   if (GV->hasInitializer()) {
01698     Out << ' ';
01699     writeOperand(GV->getInitializer(), false);
01700   }
01701 
01702   if (GV->hasSection()) {
01703     Out << ", section \"";
01704     PrintEscapedString(GV->getSection(), Out);
01705     Out << '"';
01706   }
01707   if (GV->hasComdat()) {
01708     Out << ", comdat ";
01709     PrintLLVMName(Out, GV->getComdat()->getName(), ComdatPrefix);
01710   }
01711   if (GV->getAlignment())
01712     Out << ", align " << GV->getAlignment();
01713 
01714   printInfoComment(*GV);
01715 }
01716 
01717 void AssemblyWriter::printAlias(const GlobalAlias *GA) {
01718   if (GA->isMaterializable())
01719     Out << "; Materializable\n";
01720 
01721   // Don't crash when dumping partially built GA
01722   if (!GA->hasName())
01723     Out << "<<nameless>> = ";
01724   else {
01725     PrintLLVMName(Out, GA);
01726     Out << " = ";
01727   }
01728   PrintLinkage(GA->getLinkage(), Out);
01729   PrintVisibility(GA->getVisibility(), Out);
01730   PrintDLLStorageClass(GA->getDLLStorageClass(), Out);
01731   PrintThreadLocalModel(GA->getThreadLocalMode(), Out);
01732   if (GA->hasUnnamedAddr())
01733     Out << "unnamed_addr ";
01734 
01735   Out << "alias ";
01736 
01737   const Constant *Aliasee = GA->getAliasee();
01738 
01739   if (!Aliasee) {
01740     TypePrinter.print(GA->getType(), Out);
01741     Out << " <<NULL ALIASEE>>";
01742   } else {
01743     writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee));
01744   }
01745 
01746   printInfoComment(*GA);
01747   Out << '\n';
01748 }
01749 
01750 void AssemblyWriter::printComdat(const Comdat *C) {
01751   C->print(Out);
01752 }
01753 
01754 void AssemblyWriter::printTypeIdentities() {
01755   if (TypePrinter.NumberedTypes.empty() &&
01756       TypePrinter.NamedTypes.empty())
01757     return;
01758 
01759   Out << '\n';
01760 
01761   // We know all the numbers that each type is used and we know that it is a
01762   // dense assignment.  Convert the map to an index table.
01763   std::vector<StructType*> NumberedTypes(TypePrinter.NumberedTypes.size());
01764   for (DenseMap<StructType*, unsigned>::iterator I =
01765        TypePrinter.NumberedTypes.begin(), E = TypePrinter.NumberedTypes.end();
01766        I != E; ++I) {
01767     assert(I->second < NumberedTypes.size() && "Didn't get a dense numbering?");
01768     NumberedTypes[I->second] = I->first;
01769   }
01770 
01771   // Emit all numbered types.
01772   for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
01773     Out << '%' << i << " = type ";
01774 
01775     // Make sure we print out at least one level of the type structure, so
01776     // that we do not get %2 = type %2
01777     TypePrinter.printStructBody(NumberedTypes[i], Out);
01778     Out << '\n';
01779   }
01780 
01781   for (unsigned i = 0, e = TypePrinter.NamedTypes.size(); i != e; ++i) {
01782     PrintLLVMName(Out, TypePrinter.NamedTypes[i]->getName(), LocalPrefix);
01783     Out << " = type ";
01784 
01785     // Make sure we print out at least one level of the type structure, so
01786     // that we do not get %FILE = type %FILE
01787     TypePrinter.printStructBody(TypePrinter.NamedTypes[i], Out);
01788     Out << '\n';
01789   }
01790 }
01791 
01792 /// printFunction - Print all aspects of a function.
01793 ///
01794 void AssemblyWriter::printFunction(const Function *F) {
01795   // Print out the return type and name.
01796   Out << '\n';
01797 
01798   if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
01799 
01800   if (F->isMaterializable())
01801     Out << "; Materializable\n";
01802 
01803   const AttributeSet &Attrs = F->getAttributes();
01804   if (Attrs.hasAttributes(AttributeSet::FunctionIndex)) {
01805     AttributeSet AS = Attrs.getFnAttributes();
01806     std::string AttrStr;
01807 
01808     unsigned Idx = 0;
01809     for (unsigned E = AS.getNumSlots(); Idx != E; ++Idx)
01810       if (AS.getSlotIndex(Idx) == AttributeSet::FunctionIndex)
01811         break;
01812 
01813     for (AttributeSet::iterator I = AS.begin(Idx), E = AS.end(Idx);
01814          I != E; ++I) {
01815       Attribute Attr = *I;
01816       if (!Attr.isStringAttribute()) {
01817         if (!AttrStr.empty()) AttrStr += ' ';
01818         AttrStr += Attr.getAsString();
01819       }
01820     }
01821 
01822     if (!AttrStr.empty())
01823       Out << "; Function Attrs: " << AttrStr << '\n';
01824   }
01825 
01826   if (F->isDeclaration())
01827     Out << "declare ";
01828   else
01829     Out << "define ";
01830 
01831   PrintLinkage(F->getLinkage(), Out);
01832   PrintVisibility(F->getVisibility(), Out);
01833   PrintDLLStorageClass(F->getDLLStorageClass(), Out);
01834 
01835   // Print the calling convention.
01836   if (F->getCallingConv() != CallingConv::C) {
01837     PrintCallingConv(F->getCallingConv(), Out);
01838     Out << " ";
01839   }
01840 
01841   FunctionType *FT = F->getFunctionType();
01842   if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
01843     Out <<  Attrs.getAsString(AttributeSet::ReturnIndex) << ' ';
01844   TypePrinter.print(F->getReturnType(), Out);
01845   Out << ' ';
01846   WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
01847   Out << '(';
01848   Machine.incorporateFunction(F);
01849 
01850   // Loop over the arguments, printing them...
01851 
01852   unsigned Idx = 1;
01853   if (!F->isDeclaration()) {
01854     // If this isn't a declaration, print the argument names as well.
01855     for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
01856          I != E; ++I) {
01857       // Insert commas as we go... the first arg doesn't get a comma
01858       if (I != F->arg_begin()) Out << ", ";
01859       printArgument(I, Attrs, Idx);
01860       Idx++;
01861     }
01862   } else {
01863     // Otherwise, print the types from the function type.
01864     for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
01865       // Insert commas as we go... the first arg doesn't get a comma
01866       if (i) Out << ", ";
01867 
01868       // Output type...
01869       TypePrinter.print(FT->getParamType(i), Out);
01870 
01871       if (Attrs.hasAttributes(i+1))
01872         Out << ' ' << Attrs.getAsString(i+1);
01873     }
01874   }
01875 
01876   // Finish printing arguments...
01877   if (FT->isVarArg()) {
01878     if (FT->getNumParams()) Out << ", ";
01879     Out << "...";  // Output varargs portion of signature!
01880   }
01881   Out << ')';
01882   if (F->hasUnnamedAddr())
01883     Out << " unnamed_addr";
01884   if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
01885     Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
01886   if (F->hasSection()) {
01887     Out << " section \"";
01888     PrintEscapedString(F->getSection(), Out);
01889     Out << '"';
01890   }
01891   if (F->hasComdat()) {
01892     Out << " comdat ";
01893     PrintLLVMName(Out, F->getComdat()->getName(), ComdatPrefix);
01894   }
01895   if (F->getAlignment())
01896     Out << " align " << F->getAlignment();
01897   if (F->hasGC())
01898     Out << " gc \"" << F->getGC() << '"';
01899   if (F->hasPrefixData()) {
01900     Out << " prefix ";
01901     writeOperand(F->getPrefixData(), true);
01902   }
01903   if (F->isDeclaration()) {
01904     Out << '\n';
01905   } else {
01906     Out << " {";
01907     // Output all of the function's basic blocks.
01908     for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
01909       printBasicBlock(I);
01910 
01911     // Output the function's use-lists.
01912     printUseLists(F);
01913 
01914     Out << "}\n";
01915   }
01916 
01917   Machine.purgeFunction();
01918 }
01919 
01920 /// printArgument - This member is called for every argument that is passed into
01921 /// the function.  Simply print it out
01922 ///
01923 void AssemblyWriter::printArgument(const Argument *Arg,
01924                                    AttributeSet Attrs, unsigned Idx) {
01925   // Output type...
01926   TypePrinter.print(Arg->getType(), Out);
01927 
01928   // Output parameter attributes list
01929   if (Attrs.hasAttributes(Idx))
01930     Out << ' ' << Attrs.getAsString(Idx);
01931 
01932   // Output name, if available...
01933   if (Arg->hasName()) {
01934     Out << ' ';
01935     PrintLLVMName(Out, Arg);
01936   }
01937 }
01938 
01939 /// printBasicBlock - This member is called for each basic block in a method.
01940 ///
01941 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
01942   if (BB->hasName()) {              // Print out the label if it exists...
01943     Out << "\n";
01944     PrintLLVMName(Out, BB->getName(), LabelPrefix);
01945     Out << ':';
01946   } else if (!BB->use_empty()) {      // Don't print block # of no uses...
01947     Out << "\n; <label>:";
01948     int Slot = Machine.getLocalSlot(BB);
01949     if (Slot != -1)
01950       Out << Slot;
01951     else
01952       Out << "<badref>";
01953   }
01954 
01955   if (!BB->getParent()) {
01956     Out.PadToColumn(50);
01957     Out << "; Error: Block without parent!";
01958   } else if (BB != &BB->getParent()->getEntryBlock()) {  // Not the entry block?
01959     // Output predecessors for the block.
01960     Out.PadToColumn(50);
01961     Out << ";";
01962     const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
01963 
01964     if (PI == PE) {
01965       Out << " No predecessors!";
01966     } else {
01967       Out << " preds = ";
01968       writeOperand(*PI, false);
01969       for (++PI; PI != PE; ++PI) {
01970         Out << ", ";
01971         writeOperand(*PI, false);
01972       }
01973     }
01974   }
01975 
01976   Out << "\n";
01977 
01978   if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
01979 
01980   // Output all of the instructions in the basic block...
01981   for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
01982     printInstructionLine(*I);
01983   }
01984 
01985   if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
01986 }
01987 
01988 /// printInstructionLine - Print an instruction and a newline character.
01989 void AssemblyWriter::printInstructionLine(const Instruction &I) {
01990   printInstruction(I);
01991   Out << '\n';
01992 }
01993 
01994 /// printInfoComment - Print a little comment after the instruction indicating
01995 /// which slot it occupies.
01996 ///
01997 void AssemblyWriter::printInfoComment(const Value &V) {
01998   if (AnnotationWriter)
01999     AnnotationWriter->printInfoComment(V, Out);
02000 }
02001 
02002 // This member is called for each Instruction in a function..
02003 void AssemblyWriter::printInstruction(const Instruction &I) {
02004   if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
02005 
02006   // Print out indentation for an instruction.
02007   Out << "  ";
02008 
02009   // Print out name if it exists...
02010   if (I.hasName()) {
02011     PrintLLVMName(Out, &I);
02012     Out << " = ";
02013   } else if (!I.getType()->isVoidTy()) {
02014     // Print out the def slot taken.
02015     int SlotNum = Machine.getLocalSlot(&I);
02016     if (SlotNum == -1)
02017       Out << "<badref> = ";
02018     else
02019       Out << '%' << SlotNum << " = ";
02020   }
02021 
02022   if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
02023     if (CI->isMustTailCall())
02024       Out << "musttail ";
02025     else if (CI->isTailCall())
02026       Out << "tail ";
02027   }
02028 
02029   // Print out the opcode...
02030   Out << I.getOpcodeName();
02031 
02032   // If this is an atomic load or store, print out the atomic marker.
02033   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isAtomic()) ||
02034       (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
02035     Out << " atomic";
02036 
02037   if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
02038     Out << " weak";
02039 
02040   // If this is a volatile operation, print out the volatile marker.
02041   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
02042       (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
02043       (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
02044       (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
02045     Out << " volatile";
02046 
02047   // Print out optimization information.
02048   WriteOptimizationInfo(Out, &I);
02049 
02050   // Print out the compare instruction predicates
02051   if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
02052     Out << ' ' << getPredicateText(CI->getPredicate());
02053 
02054   // Print out the atomicrmw operation
02055   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
02056     writeAtomicRMWOperation(Out, RMWI->getOperation());
02057 
02058   // Print out the type of the operands...
02059   const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
02060 
02061   // Special case conditional branches to swizzle the condition out to the front
02062   if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
02063     const BranchInst &BI(cast<BranchInst>(I));
02064     Out << ' ';
02065     writeOperand(BI.getCondition(), true);
02066     Out << ", ";
02067     writeOperand(BI.getSuccessor(0), true);
02068     Out << ", ";
02069     writeOperand(BI.getSuccessor(1), true);
02070 
02071   } else if (isa<SwitchInst>(I)) {
02072     const SwitchInst& SI(cast<SwitchInst>(I));
02073     // Special case switch instruction to get formatting nice and correct.
02074     Out << ' ';
02075     writeOperand(SI.getCondition(), true);
02076     Out << ", ";
02077     writeOperand(SI.getDefaultDest(), true);
02078     Out << " [";
02079     for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
02080          i != e; ++i) {
02081       Out << "\n    ";
02082       writeOperand(i.getCaseValue(), true);
02083       Out << ", ";
02084       writeOperand(i.getCaseSuccessor(), true);
02085     }
02086     Out << "\n  ]";
02087   } else if (isa<IndirectBrInst>(I)) {
02088     // Special case indirectbr instruction to get formatting nice and correct.
02089     Out << ' ';
02090     writeOperand(Operand, true);
02091     Out << ", [";
02092 
02093     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
02094       if (i != 1)
02095         Out << ", ";
02096       writeOperand(I.getOperand(i), true);
02097     }
02098     Out << ']';
02099   } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
02100     Out << ' ';
02101     TypePrinter.print(I.getType(), Out);
02102     Out << ' ';
02103 
02104     for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
02105       if (op) Out << ", ";
02106       Out << "[ ";
02107       writeOperand(PN->getIncomingValue(op), false); Out << ", ";
02108       writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
02109     }
02110   } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
02111     Out << ' ';
02112     writeOperand(I.getOperand(0), true);
02113     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
02114       Out << ", " << *i;
02115   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
02116     Out << ' ';
02117     writeOperand(I.getOperand(0), true); Out << ", ";
02118     writeOperand(I.getOperand(1), true);
02119     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
02120       Out << ", " << *i;
02121   } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
02122     Out << ' ';
02123     TypePrinter.print(I.getType(), Out);
02124     Out << " personality ";
02125     writeOperand(I.getOperand(0), true); Out << '\n';
02126 
02127     if (LPI->isCleanup())
02128       Out << "          cleanup";
02129 
02130     for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
02131       if (i != 0 || LPI->isCleanup()) Out << "\n";
02132       if (LPI->isCatch(i))
02133         Out << "          catch ";
02134       else
02135         Out << "          filter ";
02136 
02137       writeOperand(LPI->getClause(i), true);
02138     }
02139   } else if (isa<ReturnInst>(I) && !Operand) {
02140     Out << " void";
02141   } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
02142     // Print the calling convention being used.
02143     if (CI->getCallingConv() != CallingConv::C) {
02144       Out << " ";
02145       PrintCallingConv(CI->getCallingConv(), Out);
02146     }
02147 
02148     Operand = CI->getCalledValue();
02149     PointerType *PTy = cast<PointerType>(Operand->getType());
02150     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
02151     Type *RetTy = FTy->getReturnType();
02152     const AttributeSet &PAL = CI->getAttributes();
02153 
02154     if (PAL.hasAttributes(AttributeSet::ReturnIndex))
02155       Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
02156 
02157     // If possible, print out the short form of the call instruction.  We can
02158     // only do this if the first argument is a pointer to a nonvararg function,
02159     // and if the return type is not a pointer to a function.
02160     //
02161     Out << ' ';
02162     if (!FTy->isVarArg() &&
02163         (!RetTy->isPointerTy() ||
02164          !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
02165       TypePrinter.print(RetTy, Out);
02166       Out << ' ';
02167       writeOperand(Operand, false);
02168     } else {
02169       writeOperand(Operand, true);
02170     }
02171     Out << '(';
02172     for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
02173       if (op > 0)
02174         Out << ", ";
02175       writeParamOperand(CI->getArgOperand(op), PAL, op + 1);
02176     }
02177 
02178     // Emit an ellipsis if this is a musttail call in a vararg function.  This
02179     // is only to aid readability, musttail calls forward varargs by default.
02180     if (CI->isMustTailCall() && CI->getParent() &&
02181         CI->getParent()->getParent() &&
02182         CI->getParent()->getParent()->isVarArg())
02183       Out << ", ...";
02184 
02185     Out << ')';
02186     if (PAL.hasAttributes(AttributeSet::FunctionIndex))
02187       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
02188   } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
02189     Operand = II->getCalledValue();
02190     PointerType *PTy = cast<PointerType>(Operand->getType());
02191     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
02192     Type *RetTy = FTy->getReturnType();
02193     const AttributeSet &PAL = II->getAttributes();
02194 
02195     // Print the calling convention being used.
02196     if (II->getCallingConv() != CallingConv::C) {
02197       Out << " ";
02198       PrintCallingConv(II->getCallingConv(), Out);
02199     }
02200 
02201     if (PAL.hasAttributes(AttributeSet::ReturnIndex))
02202       Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
02203 
02204     // If possible, print out the short form of the invoke instruction. We can
02205     // only do this if the first argument is a pointer to a nonvararg function,
02206     // and if the return type is not a pointer to a function.
02207     //
02208     Out << ' ';
02209     if (!FTy->isVarArg() &&
02210         (!RetTy->isPointerTy() ||
02211          !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
02212       TypePrinter.print(RetTy, Out);
02213       Out << ' ';
02214       writeOperand(Operand, false);
02215     } else {
02216       writeOperand(Operand, true);
02217     }
02218     Out << '(';
02219     for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
02220       if (op)
02221         Out << ", ";
02222       writeParamOperand(II->getArgOperand(op), PAL, op + 1);
02223     }
02224 
02225     Out << ')';
02226     if (PAL.hasAttributes(AttributeSet::FunctionIndex))
02227       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
02228 
02229     Out << "\n          to ";
02230     writeOperand(II->getNormalDest(), true);
02231     Out << " unwind ";
02232     writeOperand(II->getUnwindDest(), true);
02233 
02234   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
02235     Out << ' ';
02236     if (AI->isUsedWithInAlloca())
02237       Out << "inalloca ";
02238     TypePrinter.print(AI->getAllocatedType(), Out);
02239     if (!AI->getArraySize() || AI->isArrayAllocation()) {
02240       Out << ", ";
02241       writeOperand(AI->getArraySize(), true);
02242     }
02243     if (AI->getAlignment()) {
02244       Out << ", align " << AI->getAlignment();
02245     }
02246   } else if (isa<CastInst>(I)) {
02247     if (Operand) {
02248       Out << ' ';
02249       writeOperand(Operand, true);   // Work with broken code
02250     }
02251     Out << " to ";
02252     TypePrinter.print(I.getType(), Out);
02253   } else if (isa<VAArgInst>(I)) {
02254     if (Operand) {
02255       Out << ' ';
02256       writeOperand(Operand, true);   // Work with broken code
02257     }
02258     Out << ", ";
02259     TypePrinter.print(I.getType(), Out);
02260   } else if (Operand) {   // Print the normal way.
02261 
02262     // PrintAllTypes - Instructions who have operands of all the same type
02263     // omit the type from all but the first operand.  If the instruction has
02264     // different type operands (for example br), then they are all printed.
02265     bool PrintAllTypes = false;
02266     Type *TheType = Operand->getType();
02267 
02268     // Select, Store and ShuffleVector always print all types.
02269     if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
02270         || isa<ReturnInst>(I)) {
02271       PrintAllTypes = true;
02272     } else {
02273       for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
02274         Operand = I.getOperand(i);
02275         // note that Operand shouldn't be null, but the test helps make dump()
02276         // more tolerant of malformed IR
02277         if (Operand && Operand->getType() != TheType) {
02278           PrintAllTypes = true;    // We have differing types!  Print them all!
02279           break;
02280         }
02281       }
02282     }
02283 
02284     if (!PrintAllTypes) {
02285       Out << ' ';
02286       TypePrinter.print(TheType, Out);
02287     }
02288 
02289     Out << ' ';
02290     for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
02291       if (i) Out << ", ";
02292       writeOperand(I.getOperand(i), PrintAllTypes);
02293     }
02294   }
02295 
02296   // Print atomic ordering/alignment for memory operations
02297   if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
02298     if (LI->isAtomic())
02299       writeAtomic(LI->getOrdering(), LI->getSynchScope());
02300     if (LI->getAlignment())
02301       Out << ", align " << LI->getAlignment();
02302   } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
02303     if (SI->isAtomic())
02304       writeAtomic(SI->getOrdering(), SI->getSynchScope());
02305     if (SI->getAlignment())
02306       Out << ", align " << SI->getAlignment();
02307   } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
02308     writeAtomicCmpXchg(CXI->getSuccessOrdering(), CXI->getFailureOrdering(),
02309                        CXI->getSynchScope());
02310   } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
02311     writeAtomic(RMWI->getOrdering(), RMWI->getSynchScope());
02312   } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
02313     writeAtomic(FI->getOrdering(), FI->getSynchScope());
02314   }
02315 
02316   // Print Metadata info.
02317   SmallVector<std::pair<unsigned, MDNode*>, 4> InstMD;
02318   I.getAllMetadata(InstMD);
02319   if (!InstMD.empty()) {
02320     SmallVector<StringRef, 8> MDNames;
02321     I.getType()->getContext().getMDKindNames(MDNames);
02322     for (unsigned i = 0, e = InstMD.size(); i != e; ++i) {
02323       unsigned Kind = InstMD[i].first;
02324        if (Kind < MDNames.size()) {
02325          Out << ", !" << MDNames[Kind];
02326        } else {
02327          Out << ", !<unknown kind #" << Kind << ">";
02328        }
02329       Out << ' ';
02330       WriteAsOperandInternal(Out, InstMD[i].second, &TypePrinter, &Machine,
02331                              TheModule);
02332     }
02333   }
02334   printInfoComment(I);
02335 }
02336 
02337 static void WriteMDNodeComment(const MDNode *Node,
02338                                formatted_raw_ostream &Out) {
02339   if (Node->getNumOperands() < 1)
02340     return;
02341 
02342   Value *Op = Node->getOperand(0);
02343   if (!Op || !isa<ConstantInt>(Op) || cast<ConstantInt>(Op)->getBitWidth() < 32)
02344     return;
02345 
02346   DIDescriptor Desc(Node);
02347   if (!Desc.Verify())
02348     return;
02349 
02350   unsigned Tag = Desc.getTag();
02351   Out.PadToColumn(50);
02352   if (dwarf::TagString(Tag)) {
02353     Out << "; ";
02354     Desc.print(Out);
02355   } else if (Tag == dwarf::DW_TAG_user_base) {
02356     Out << "; [ DW_TAG_user_base ]";
02357   }
02358 }
02359 
02360 void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
02361   Out << '!' << Slot << " = metadata ";
02362   printMDNodeBody(Node);
02363 }
02364 
02365 void AssemblyWriter::writeAllMDNodes() {
02366   SmallVector<const MDNode *, 16> Nodes;
02367   Nodes.resize(Machine.mdn_size());
02368   for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
02369        I != E; ++I)
02370     Nodes[I->second] = cast<MDNode>(I->first);
02371 
02372   for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
02373     writeMDNode(i, Nodes[i]);
02374   }
02375 }
02376 
02377 void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
02378   WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
02379   WriteMDNodeComment(Node, Out);
02380   Out << "\n";
02381 }
02382 
02383 void AssemblyWriter::writeAllAttributeGroups() {
02384   std::vector<std::pair<AttributeSet, unsigned> > asVec;
02385   asVec.resize(Machine.as_size());
02386 
02387   for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end();
02388        I != E; ++I)
02389     asVec[I->second] = *I;
02390 
02391   for (std::vector<std::pair<AttributeSet, unsigned> >::iterator
02392          I = asVec.begin(), E = asVec.end(); I != E; ++I)
02393     Out << "attributes #" << I->second << " = { "
02394         << I->first.getAsString(AttributeSet::FunctionIndex, true) << " }\n";
02395 }
02396 
02397 } // namespace llvm
02398 
02399 void AssemblyWriter::printUseListOrder(const UseListOrder &Order) {
02400   bool IsInFunction = Machine.getFunction();
02401   if (IsInFunction)
02402     Out << "  ";
02403 
02404   Out << "uselistorder";
02405   if (const BasicBlock *BB =
02406           IsInFunction ? nullptr : dyn_cast<BasicBlock>(Order.V)) {
02407     Out << "_bb ";
02408     writeOperand(BB->getParent(), false);
02409     Out << ", ";
02410     writeOperand(BB, false);
02411   } else {
02412     Out << " ";
02413     writeOperand(Order.V, true);
02414   }
02415   Out << ", { ";
02416 
02417   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
02418   Out << Order.Shuffle[0];
02419   for (unsigned I = 1, E = Order.Shuffle.size(); I != E; ++I)
02420     Out << ", " << Order.Shuffle[I];
02421   Out << " }\n";
02422 }
02423 
02424 void AssemblyWriter::printUseLists(const Function *F) {
02425   auto hasMore =
02426       [&]() { return !UseListOrders.empty() && UseListOrders.back().F == F; };
02427   if (!hasMore())
02428     // Nothing to do.
02429     return;
02430 
02431   Out << "\n; uselistorder directives\n";
02432   while (hasMore()) {
02433     printUseListOrder(UseListOrders.back());
02434     UseListOrders.pop_back();
02435   }
02436 }
02437 
02438 //===----------------------------------------------------------------------===//
02439 //                       External Interface declarations
02440 //===----------------------------------------------------------------------===//
02441 
02442 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
02443   SlotTracker SlotTable(this);
02444   formatted_raw_ostream OS(ROS);
02445   AssemblyWriter W(OS, SlotTable, this, AAW);
02446   W.printModule(this);
02447 }
02448 
02449 void NamedMDNode::print(raw_ostream &ROS) const {
02450   SlotTracker SlotTable(getParent());
02451   formatted_raw_ostream OS(ROS);
02452   AssemblyWriter W(OS, SlotTable, getParent(), nullptr);
02453   W.printNamedMDNode(this);
02454 }
02455 
02456 void Comdat::print(raw_ostream &ROS) const {
02457   PrintLLVMName(ROS, getName(), ComdatPrefix);
02458   ROS << " = comdat ";
02459 
02460   switch (getSelectionKind()) {
02461   case Comdat::Any:
02462     ROS << "any";
02463     break;
02464   case Comdat::ExactMatch:
02465     ROS << "exactmatch";
02466     break;
02467   case Comdat::Largest:
02468     ROS << "largest";
02469     break;
02470   case Comdat::NoDuplicates:
02471     ROS << "noduplicates";
02472     break;
02473   case Comdat::SameSize:
02474     ROS << "samesize";
02475     break;
02476   }
02477 
02478   ROS << '\n';
02479 }
02480 
02481 void Type::print(raw_ostream &OS) const {
02482   TypePrinting TP;
02483   TP.print(const_cast<Type*>(this), OS);
02484 
02485   // If the type is a named struct type, print the body as well.
02486   if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
02487     if (!STy->isLiteral()) {
02488       OS << " = type ";
02489       TP.printStructBody(STy, OS);
02490     }
02491 }
02492 
02493 void Value::print(raw_ostream &ROS) const {
02494   formatted_raw_ostream OS(ROS);
02495   if (const Instruction *I = dyn_cast<Instruction>(this)) {
02496     const Function *F = I->getParent() ? I->getParent()->getParent() : nullptr;
02497     SlotTracker SlotTable(F);
02498     AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr);
02499     W.printInstruction(*I);
02500   } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
02501     SlotTracker SlotTable(BB->getParent());
02502     AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr);
02503     W.printBasicBlock(BB);
02504   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
02505     SlotTracker SlotTable(GV->getParent());
02506     AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr);
02507     if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
02508       W.printGlobal(V);
02509     else if (const Function *F = dyn_cast<Function>(GV))
02510       W.printFunction(F);
02511     else
02512       W.printAlias(cast<GlobalAlias>(GV));
02513   } else if (const MDNode *N = dyn_cast<MDNode>(this)) {
02514     const Function *F = N->getFunction();
02515     SlotTracker SlotTable(F);
02516     AssemblyWriter W(OS, SlotTable, F ? F->getParent() : nullptr, nullptr);
02517     W.printMDNodeBody(N);
02518   } else if (const Constant *C = dyn_cast<Constant>(this)) {
02519     TypePrinting TypePrinter;
02520     TypePrinter.print(C->getType(), OS);
02521     OS << ' ';
02522     WriteConstantInternal(OS, C, TypePrinter, nullptr, nullptr);
02523   } else if (isa<InlineAsm>(this) || isa<MDString>(this) ||
02524              isa<Argument>(this)) {
02525     this->printAsOperand(OS);
02526   } else {
02527     llvm_unreachable("Unknown value to print out!");
02528   }
02529 }
02530 
02531 void Value::printAsOperand(raw_ostream &O, bool PrintType, const Module *M) const {
02532   // Fast path: Don't construct and populate a TypePrinting object if we
02533   // won't be needing any types printed.
02534   if (!PrintType &&
02535       ((!isa<Constant>(this) && !isa<MDNode>(this)) ||
02536        hasName() || isa<GlobalValue>(this))) {
02537     WriteAsOperandInternal(O, this, nullptr, nullptr, M);
02538     return;
02539   }
02540 
02541   if (!M)
02542     M = getModuleFromVal(this);
02543 
02544   TypePrinting TypePrinter;
02545   if (M)
02546     TypePrinter.incorporateTypes(*M);
02547   if (PrintType) {
02548     TypePrinter.print(getType(), O);
02549     O << ' ';
02550   }
02551 
02552   WriteAsOperandInternal(O, this, &TypePrinter, nullptr, M);
02553 }
02554 
02555 // Value::dump - allow easy printing of Values from the debugger.
02556 void Value::dump() const { print(dbgs()); dbgs() << '\n'; }
02557 
02558 // Type::dump - allow easy printing of Types from the debugger.
02559 void Type::dump() const { print(dbgs()); dbgs() << '\n'; }
02560 
02561 // Module::dump() - Allow printing of Modules from the debugger.
02562 void Module::dump() const { print(dbgs(), nullptr); }
02563 
02564 // \brief Allow printing of Comdats from the debugger.
02565 void Comdat::dump() const { print(dbgs()); }
02566 
02567 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
02568 void NamedMDNode::dump() const { print(dbgs()); }