LLVM API Documentation
00001 //===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file implements the BasicBlock class for the IR library. 00011 // 00012 //===----------------------------------------------------------------------===// 00013 00014 #include "llvm/IR/BasicBlock.h" 00015 #include "SymbolTableListTraitsImpl.h" 00016 #include "llvm/ADT/STLExtras.h" 00017 #include "llvm/IR/CFG.h" 00018 #include "llvm/IR/Constants.h" 00019 #include "llvm/IR/Instructions.h" 00020 #include "llvm/IR/IntrinsicInst.h" 00021 #include "llvm/IR/LLVMContext.h" 00022 #include "llvm/IR/LeakDetector.h" 00023 #include "llvm/IR/Type.h" 00024 #include <algorithm> 00025 using namespace llvm; 00026 00027 ValueSymbolTable *BasicBlock::getValueSymbolTable() { 00028 if (Function *F = getParent()) 00029 return &F->getValueSymbolTable(); 00030 return nullptr; 00031 } 00032 00033 const DataLayout *BasicBlock::getDataLayout() const { 00034 return getParent()->getDataLayout(); 00035 } 00036 00037 LLVMContext &BasicBlock::getContext() const { 00038 return getType()->getContext(); 00039 } 00040 00041 // Explicit instantiation of SymbolTableListTraits since some of the methods 00042 // are not in the public header file... 00043 template class llvm::SymbolTableListTraits<Instruction, BasicBlock>; 00044 00045 00046 BasicBlock::BasicBlock(LLVMContext &C, const Twine &Name, Function *NewParent, 00047 BasicBlock *InsertBefore) 00048 : Value(Type::getLabelTy(C), Value::BasicBlockVal), Parent(nullptr) { 00049 00050 // Make sure that we get added to a function 00051 LeakDetector::addGarbageObject(this); 00052 00053 if (NewParent) 00054 insertInto(NewParent, InsertBefore); 00055 else 00056 assert(!InsertBefore && 00057 "Cannot insert block before another block with no function!"); 00058 00059 setName(Name); 00060 } 00061 00062 void BasicBlock::insertInto(Function *NewParent, BasicBlock *InsertBefore) { 00063 assert(NewParent && "Expected a parent"); 00064 assert(!Parent && "Already has a parent"); 00065 00066 if (InsertBefore) 00067 NewParent->getBasicBlockList().insert(InsertBefore, this); 00068 else 00069 NewParent->getBasicBlockList().push_back(this); 00070 } 00071 00072 BasicBlock::~BasicBlock() { 00073 // If the address of the block is taken and it is being deleted (e.g. because 00074 // it is dead), this means that there is either a dangling constant expr 00075 // hanging off the block, or an undefined use of the block (source code 00076 // expecting the address of a label to keep the block alive even though there 00077 // is no indirect branch). Handle these cases by zapping the BlockAddress 00078 // nodes. There are no other possible uses at this point. 00079 if (hasAddressTaken()) { 00080 assert(!use_empty() && "There should be at least one blockaddress!"); 00081 Constant *Replacement = 00082 ConstantInt::get(llvm::Type::getInt32Ty(getContext()), 1); 00083 while (!use_empty()) { 00084 BlockAddress *BA = cast<BlockAddress>(user_back()); 00085 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 00086 BA->getType())); 00087 BA->destroyConstant(); 00088 } 00089 } 00090 00091 assert(getParent() == nullptr && "BasicBlock still linked into the program!"); 00092 dropAllReferences(); 00093 InstList.clear(); 00094 } 00095 00096 void BasicBlock::setParent(Function *parent) { 00097 if (getParent()) 00098 LeakDetector::addGarbageObject(this); 00099 00100 // Set Parent=parent, updating instruction symtab entries as appropriate. 00101 InstList.setSymTabObject(&Parent, parent); 00102 00103 if (getParent()) 00104 LeakDetector::removeGarbageObject(this); 00105 } 00106 00107 void BasicBlock::removeFromParent() { 00108 getParent()->getBasicBlockList().remove(this); 00109 } 00110 00111 void BasicBlock::eraseFromParent() { 00112 getParent()->getBasicBlockList().erase(this); 00113 } 00114 00115 /// moveBefore - Unlink this basic block from its current function and 00116 /// insert it into the function that MovePos lives in, right before MovePos. 00117 void BasicBlock::moveBefore(BasicBlock *MovePos) { 00118 MovePos->getParent()->getBasicBlockList().splice(MovePos, 00119 getParent()->getBasicBlockList(), this); 00120 } 00121 00122 /// moveAfter - Unlink this basic block from its current function and 00123 /// insert it into the function that MovePos lives in, right after MovePos. 00124 void BasicBlock::moveAfter(BasicBlock *MovePos) { 00125 Function::iterator I = MovePos; 00126 MovePos->getParent()->getBasicBlockList().splice(++I, 00127 getParent()->getBasicBlockList(), this); 00128 } 00129 00130 00131 TerminatorInst *BasicBlock::getTerminator() { 00132 if (InstList.empty()) return nullptr; 00133 return dyn_cast<TerminatorInst>(&InstList.back()); 00134 } 00135 00136 const TerminatorInst *BasicBlock::getTerminator() const { 00137 if (InstList.empty()) return nullptr; 00138 return dyn_cast<TerminatorInst>(&InstList.back()); 00139 } 00140 00141 CallInst *BasicBlock::getTerminatingMustTailCall() { 00142 if (InstList.empty()) 00143 return nullptr; 00144 ReturnInst *RI = dyn_cast<ReturnInst>(&InstList.back()); 00145 if (!RI || RI == &InstList.front()) 00146 return nullptr; 00147 00148 Instruction *Prev = RI->getPrevNode(); 00149 if (!Prev) 00150 return nullptr; 00151 00152 if (Value *RV = RI->getReturnValue()) { 00153 if (RV != Prev) 00154 return nullptr; 00155 00156 // Look through the optional bitcast. 00157 if (auto *BI = dyn_cast<BitCastInst>(Prev)) { 00158 RV = BI->getOperand(0); 00159 Prev = BI->getPrevNode(); 00160 if (!Prev || RV != Prev) 00161 return nullptr; 00162 } 00163 } 00164 00165 if (auto *CI = dyn_cast<CallInst>(Prev)) { 00166 if (CI->isMustTailCall()) 00167 return CI; 00168 } 00169 return nullptr; 00170 } 00171 00172 Instruction* BasicBlock::getFirstNonPHI() { 00173 BasicBlock::iterator i = begin(); 00174 // All valid basic blocks should have a terminator, 00175 // which is not a PHINode. If we have an invalid basic 00176 // block we'll get an assertion failure when dereferencing 00177 // a past-the-end iterator. 00178 while (isa<PHINode>(i)) ++i; 00179 return &*i; 00180 } 00181 00182 Instruction* BasicBlock::getFirstNonPHIOrDbg() { 00183 BasicBlock::iterator i = begin(); 00184 // All valid basic blocks should have a terminator, 00185 // which is not a PHINode. If we have an invalid basic 00186 // block we'll get an assertion failure when dereferencing 00187 // a past-the-end iterator. 00188 while (isa<PHINode>(i) || isa<DbgInfoIntrinsic>(i)) ++i; 00189 return &*i; 00190 } 00191 00192 Instruction* BasicBlock::getFirstNonPHIOrDbgOrLifetime() { 00193 // All valid basic blocks should have a terminator, 00194 // which is not a PHINode. If we have an invalid basic 00195 // block we'll get an assertion failure when dereferencing 00196 // a past-the-end iterator. 00197 BasicBlock::iterator i = begin(); 00198 for (;; ++i) { 00199 if (isa<PHINode>(i) || isa<DbgInfoIntrinsic>(i)) 00200 continue; 00201 00202 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(i); 00203 if (!II) 00204 break; 00205 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 00206 II->getIntrinsicID() != Intrinsic::lifetime_end) 00207 break; 00208 } 00209 return &*i; 00210 } 00211 00212 BasicBlock::iterator BasicBlock::getFirstInsertionPt() { 00213 iterator InsertPt = getFirstNonPHI(); 00214 if (isa<LandingPadInst>(InsertPt)) ++InsertPt; 00215 return InsertPt; 00216 } 00217 00218 void BasicBlock::dropAllReferences() { 00219 for(iterator I = begin(), E = end(); I != E; ++I) 00220 I->dropAllReferences(); 00221 } 00222 00223 /// getSinglePredecessor - If this basic block has a single predecessor block, 00224 /// return the block, otherwise return a null pointer. 00225 BasicBlock *BasicBlock::getSinglePredecessor() { 00226 pred_iterator PI = pred_begin(this), E = pred_end(this); 00227 if (PI == E) return nullptr; // No preds. 00228 BasicBlock *ThePred = *PI; 00229 ++PI; 00230 return (PI == E) ? ThePred : nullptr /*multiple preds*/; 00231 } 00232 00233 /// getUniquePredecessor - If this basic block has a unique predecessor block, 00234 /// return the block, otherwise return a null pointer. 00235 /// Note that unique predecessor doesn't mean single edge, there can be 00236 /// multiple edges from the unique predecessor to this block (for example 00237 /// a switch statement with multiple cases having the same destination). 00238 BasicBlock *BasicBlock::getUniquePredecessor() { 00239 pred_iterator PI = pred_begin(this), E = pred_end(this); 00240 if (PI == E) return nullptr; // No preds. 00241 BasicBlock *PredBB = *PI; 00242 ++PI; 00243 for (;PI != E; ++PI) { 00244 if (*PI != PredBB) 00245 return nullptr; 00246 // The same predecessor appears multiple times in the predecessor list. 00247 // This is OK. 00248 } 00249 return PredBB; 00250 } 00251 00252 /// removePredecessor - This method is used to notify a BasicBlock that the 00253 /// specified Predecessor of the block is no longer able to reach it. This is 00254 /// actually not used to update the Predecessor list, but is actually used to 00255 /// update the PHI nodes that reside in the block. Note that this should be 00256 /// called while the predecessor still refers to this block. 00257 /// 00258 void BasicBlock::removePredecessor(BasicBlock *Pred, 00259 bool DontDeleteUselessPHIs) { 00260 assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs. 00261 find(pred_begin(this), pred_end(this), Pred) != pred_end(this)) && 00262 "removePredecessor: BB is not a predecessor!"); 00263 00264 if (InstList.empty()) return; 00265 PHINode *APN = dyn_cast<PHINode>(&front()); 00266 if (!APN) return; // Quick exit. 00267 00268 // If there are exactly two predecessors, then we want to nuke the PHI nodes 00269 // altogether. However, we cannot do this, if this in this case: 00270 // 00271 // Loop: 00272 // %x = phi [X, Loop] 00273 // %x2 = add %x, 1 ;; This would become %x2 = add %x2, 1 00274 // br Loop ;; %x2 does not dominate all uses 00275 // 00276 // This is because the PHI node input is actually taken from the predecessor 00277 // basic block. The only case this can happen is with a self loop, so we 00278 // check for this case explicitly now. 00279 // 00280 unsigned max_idx = APN->getNumIncomingValues(); 00281 assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!"); 00282 if (max_idx == 2) { 00283 BasicBlock *Other = APN->getIncomingBlock(APN->getIncomingBlock(0) == Pred); 00284 00285 // Disable PHI elimination! 00286 if (this == Other) max_idx = 3; 00287 } 00288 00289 // <= Two predecessors BEFORE I remove one? 00290 if (max_idx <= 2 && !DontDeleteUselessPHIs) { 00291 // Yup, loop through and nuke the PHI nodes 00292 while (PHINode *PN = dyn_cast<PHINode>(&front())) { 00293 // Remove the predecessor first. 00294 PN->removeIncomingValue(Pred, !DontDeleteUselessPHIs); 00295 00296 // If the PHI _HAD_ two uses, replace PHI node with its now *single* value 00297 if (max_idx == 2) { 00298 if (PN->getIncomingValue(0) != PN) 00299 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 00300 else 00301 // We are left with an infinite loop with no entries: kill the PHI. 00302 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 00303 getInstList().pop_front(); // Remove the PHI node 00304 } 00305 00306 // If the PHI node already only had one entry, it got deleted by 00307 // removeIncomingValue. 00308 } 00309 } else { 00310 // Okay, now we know that we need to remove predecessor #pred_idx from all 00311 // PHI nodes. Iterate over each PHI node fixing them up 00312 PHINode *PN; 00313 for (iterator II = begin(); (PN = dyn_cast<PHINode>(II)); ) { 00314 ++II; 00315 PN->removeIncomingValue(Pred, false); 00316 // If all incoming values to the Phi are the same, we can replace the Phi 00317 // with that value. 00318 Value* PNV = nullptr; 00319 if (!DontDeleteUselessPHIs && (PNV = PN->hasConstantValue())) 00320 if (PNV != PN) { 00321 PN->replaceAllUsesWith(PNV); 00322 PN->eraseFromParent(); 00323 } 00324 } 00325 } 00326 } 00327 00328 00329 /// splitBasicBlock - This splits a basic block into two at the specified 00330 /// instruction. Note that all instructions BEFORE the specified iterator stay 00331 /// as part of the original basic block, an unconditional branch is added to 00332 /// the new BB, and the rest of the instructions in the BB are moved to the new 00333 /// BB, including the old terminator. This invalidates the iterator. 00334 /// 00335 /// Note that this only works on well formed basic blocks (must have a 00336 /// terminator), and 'I' must not be the end of instruction list (which would 00337 /// cause a degenerate basic block to be formed, having a terminator inside of 00338 /// the basic block). 00339 /// 00340 BasicBlock *BasicBlock::splitBasicBlock(iterator I, const Twine &BBName) { 00341 assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!"); 00342 assert(I != InstList.end() && 00343 "Trying to get me to create degenerate basic block!"); 00344 00345 BasicBlock *InsertBefore = std::next(Function::iterator(this)) 00346 .getNodePtrUnchecked(); 00347 BasicBlock *New = BasicBlock::Create(getContext(), BBName, 00348 getParent(), InsertBefore); 00349 00350 // Move all of the specified instructions from the original basic block into 00351 // the new basic block. 00352 New->getInstList().splice(New->end(), this->getInstList(), I, end()); 00353 00354 // Add a branch instruction to the newly formed basic block. 00355 BranchInst::Create(New, this); 00356 00357 // Now we must loop through all of the successors of the New block (which 00358 // _were_ the successors of the 'this' block), and update any PHI nodes in 00359 // successors. If there were PHI nodes in the successors, then they need to 00360 // know that incoming branches will be from New, not from Old. 00361 // 00362 for (succ_iterator I = succ_begin(New), E = succ_end(New); I != E; ++I) { 00363 // Loop over any phi nodes in the basic block, updating the BB field of 00364 // incoming values... 00365 BasicBlock *Successor = *I; 00366 PHINode *PN; 00367 for (BasicBlock::iterator II = Successor->begin(); 00368 (PN = dyn_cast<PHINode>(II)); ++II) { 00369 int IDX = PN->getBasicBlockIndex(this); 00370 while (IDX != -1) { 00371 PN->setIncomingBlock((unsigned)IDX, New); 00372 IDX = PN->getBasicBlockIndex(this); 00373 } 00374 } 00375 } 00376 return New; 00377 } 00378 00379 void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *New) { 00380 TerminatorInst *TI = getTerminator(); 00381 if (!TI) 00382 // Cope with being called on a BasicBlock that doesn't have a terminator 00383 // yet. Clang's CodeGenFunction::EmitReturnBlock() likes to do this. 00384 return; 00385 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 00386 BasicBlock *Succ = TI->getSuccessor(i); 00387 // N.B. Succ might not be a complete BasicBlock, so don't assume 00388 // that it ends with a non-phi instruction. 00389 for (iterator II = Succ->begin(), IE = Succ->end(); II != IE; ++II) { 00390 PHINode *PN = dyn_cast<PHINode>(II); 00391 if (!PN) 00392 break; 00393 int i; 00394 while ((i = PN->getBasicBlockIndex(this)) >= 0) 00395 PN->setIncomingBlock(i, New); 00396 } 00397 } 00398 } 00399 00400 /// isLandingPad - Return true if this basic block is a landing pad. I.e., it's 00401 /// the destination of the 'unwind' edge of an invoke instruction. 00402 bool BasicBlock::isLandingPad() const { 00403 return isa<LandingPadInst>(getFirstNonPHI()); 00404 } 00405 00406 /// getLandingPadInst() - Return the landingpad instruction associated with 00407 /// the landing pad. 00408 LandingPadInst *BasicBlock::getLandingPadInst() { 00409 return dyn_cast<LandingPadInst>(getFirstNonPHI()); 00410 } 00411 const LandingPadInst *BasicBlock::getLandingPadInst() const { 00412 return dyn_cast<LandingPadInst>(getFirstNonPHI()); 00413 }