LLVM API Documentation
00001 //===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file implements the BitVector class. 00011 // 00012 //===----------------------------------------------------------------------===// 00013 00014 #ifndef LLVM_ADT_BITVECTOR_H 00015 #define LLVM_ADT_BITVECTOR_H 00016 00017 #include "llvm/Support/Compiler.h" 00018 #include "llvm/Support/ErrorHandling.h" 00019 #include "llvm/Support/MathExtras.h" 00020 #include <algorithm> 00021 #include <cassert> 00022 #include <climits> 00023 #include <cstdlib> 00024 00025 namespace llvm { 00026 00027 class BitVector { 00028 typedef unsigned long BitWord; 00029 00030 enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT }; 00031 00032 BitWord *Bits; // Actual bits. 00033 unsigned Size; // Size of bitvector in bits. 00034 unsigned Capacity; // Size of allocated memory in BitWord. 00035 00036 public: 00037 typedef unsigned size_type; 00038 // Encapsulation of a single bit. 00039 class reference { 00040 friend class BitVector; 00041 00042 BitWord *WordRef; 00043 unsigned BitPos; 00044 00045 reference(); // Undefined 00046 00047 public: 00048 reference(BitVector &b, unsigned Idx) { 00049 WordRef = &b.Bits[Idx / BITWORD_SIZE]; 00050 BitPos = Idx % BITWORD_SIZE; 00051 } 00052 00053 ~reference() {} 00054 00055 reference &operator=(reference t) { 00056 *this = bool(t); 00057 return *this; 00058 } 00059 00060 reference& operator=(bool t) { 00061 if (t) 00062 *WordRef |= BitWord(1) << BitPos; 00063 else 00064 *WordRef &= ~(BitWord(1) << BitPos); 00065 return *this; 00066 } 00067 00068 operator bool() const { 00069 return ((*WordRef) & (BitWord(1) << BitPos)) ? true : false; 00070 } 00071 }; 00072 00073 00074 /// BitVector default ctor - Creates an empty bitvector. 00075 BitVector() : Size(0), Capacity(0) { 00076 Bits = nullptr; 00077 } 00078 00079 /// BitVector ctor - Creates a bitvector of specified number of bits. All 00080 /// bits are initialized to the specified value. 00081 explicit BitVector(unsigned s, bool t = false) : Size(s) { 00082 Capacity = NumBitWords(s); 00083 Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord)); 00084 init_words(Bits, Capacity, t); 00085 if (t) 00086 clear_unused_bits(); 00087 } 00088 00089 /// BitVector copy ctor. 00090 BitVector(const BitVector &RHS) : Size(RHS.size()) { 00091 if (Size == 0) { 00092 Bits = nullptr; 00093 Capacity = 0; 00094 return; 00095 } 00096 00097 Capacity = NumBitWords(RHS.size()); 00098 Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord)); 00099 std::memcpy(Bits, RHS.Bits, Capacity * sizeof(BitWord)); 00100 } 00101 00102 BitVector(BitVector &&RHS) 00103 : Bits(RHS.Bits), Size(RHS.Size), Capacity(RHS.Capacity) { 00104 RHS.Bits = nullptr; 00105 } 00106 00107 ~BitVector() { 00108 std::free(Bits); 00109 } 00110 00111 /// empty - Tests whether there are no bits in this bitvector. 00112 bool empty() const { return Size == 0; } 00113 00114 /// size - Returns the number of bits in this bitvector. 00115 size_type size() const { return Size; } 00116 00117 /// count - Returns the number of bits which are set. 00118 size_type count() const { 00119 unsigned NumBits = 0; 00120 for (unsigned i = 0; i < NumBitWords(size()); ++i) 00121 if (sizeof(BitWord) == 4) 00122 NumBits += CountPopulation_32((uint32_t)Bits[i]); 00123 else if (sizeof(BitWord) == 8) 00124 NumBits += CountPopulation_64(Bits[i]); 00125 else 00126 llvm_unreachable("Unsupported!"); 00127 return NumBits; 00128 } 00129 00130 /// any - Returns true if any bit is set. 00131 bool any() const { 00132 for (unsigned i = 0; i < NumBitWords(size()); ++i) 00133 if (Bits[i] != 0) 00134 return true; 00135 return false; 00136 } 00137 00138 /// all - Returns true if all bits are set. 00139 bool all() const { 00140 for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i) 00141 if (Bits[i] != ~0UL) 00142 return false; 00143 00144 // If bits remain check that they are ones. The unused bits are always zero. 00145 if (unsigned Remainder = Size % BITWORD_SIZE) 00146 return Bits[Size / BITWORD_SIZE] == (1UL << Remainder) - 1; 00147 00148 return true; 00149 } 00150 00151 /// none - Returns true if none of the bits are set. 00152 bool none() const { 00153 return !any(); 00154 } 00155 00156 /// find_first - Returns the index of the first set bit, -1 if none 00157 /// of the bits are set. 00158 int find_first() const { 00159 for (unsigned i = 0; i < NumBitWords(size()); ++i) 00160 if (Bits[i] != 0) { 00161 if (sizeof(BitWord) == 4) 00162 return i * BITWORD_SIZE + countTrailingZeros((uint32_t)Bits[i]); 00163 if (sizeof(BitWord) == 8) 00164 return i * BITWORD_SIZE + countTrailingZeros(Bits[i]); 00165 llvm_unreachable("Unsupported!"); 00166 } 00167 return -1; 00168 } 00169 00170 /// find_next - Returns the index of the next set bit following the 00171 /// "Prev" bit. Returns -1 if the next set bit is not found. 00172 int find_next(unsigned Prev) const { 00173 ++Prev; 00174 if (Prev >= Size) 00175 return -1; 00176 00177 unsigned WordPos = Prev / BITWORD_SIZE; 00178 unsigned BitPos = Prev % BITWORD_SIZE; 00179 BitWord Copy = Bits[WordPos]; 00180 // Mask off previous bits. 00181 Copy &= ~0UL << BitPos; 00182 00183 if (Copy != 0) { 00184 if (sizeof(BitWord) == 4) 00185 return WordPos * BITWORD_SIZE + countTrailingZeros((uint32_t)Copy); 00186 if (sizeof(BitWord) == 8) 00187 return WordPos * BITWORD_SIZE + countTrailingZeros(Copy); 00188 llvm_unreachable("Unsupported!"); 00189 } 00190 00191 // Check subsequent words. 00192 for (unsigned i = WordPos+1; i < NumBitWords(size()); ++i) 00193 if (Bits[i] != 0) { 00194 if (sizeof(BitWord) == 4) 00195 return i * BITWORD_SIZE + countTrailingZeros((uint32_t)Bits[i]); 00196 if (sizeof(BitWord) == 8) 00197 return i * BITWORD_SIZE + countTrailingZeros(Bits[i]); 00198 llvm_unreachable("Unsupported!"); 00199 } 00200 return -1; 00201 } 00202 00203 /// clear - Clear all bits. 00204 void clear() { 00205 Size = 0; 00206 } 00207 00208 /// resize - Grow or shrink the bitvector. 00209 void resize(unsigned N, bool t = false) { 00210 if (N > Capacity * BITWORD_SIZE) { 00211 unsigned OldCapacity = Capacity; 00212 grow(N); 00213 init_words(&Bits[OldCapacity], (Capacity-OldCapacity), t); 00214 } 00215 00216 // Set any old unused bits that are now included in the BitVector. This 00217 // may set bits that are not included in the new vector, but we will clear 00218 // them back out below. 00219 if (N > Size) 00220 set_unused_bits(t); 00221 00222 // Update the size, and clear out any bits that are now unused 00223 unsigned OldSize = Size; 00224 Size = N; 00225 if (t || N < OldSize) 00226 clear_unused_bits(); 00227 } 00228 00229 void reserve(unsigned N) { 00230 if (N > Capacity * BITWORD_SIZE) 00231 grow(N); 00232 } 00233 00234 // Set, reset, flip 00235 BitVector &set() { 00236 init_words(Bits, Capacity, true); 00237 clear_unused_bits(); 00238 return *this; 00239 } 00240 00241 BitVector &set(unsigned Idx) { 00242 Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE); 00243 return *this; 00244 } 00245 00246 /// set - Efficiently set a range of bits in [I, E) 00247 BitVector &set(unsigned I, unsigned E) { 00248 assert(I <= E && "Attempted to set backwards range!"); 00249 assert(E <= size() && "Attempted to set out-of-bounds range!"); 00250 00251 if (I == E) return *this; 00252 00253 if (I / BITWORD_SIZE == E / BITWORD_SIZE) { 00254 BitWord EMask = 1UL << (E % BITWORD_SIZE); 00255 BitWord IMask = 1UL << (I % BITWORD_SIZE); 00256 BitWord Mask = EMask - IMask; 00257 Bits[I / BITWORD_SIZE] |= Mask; 00258 return *this; 00259 } 00260 00261 BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE); 00262 Bits[I / BITWORD_SIZE] |= PrefixMask; 00263 I = RoundUpToAlignment(I, BITWORD_SIZE); 00264 00265 for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) 00266 Bits[I / BITWORD_SIZE] = ~0UL; 00267 00268 BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1; 00269 if (I < E) 00270 Bits[I / BITWORD_SIZE] |= PostfixMask; 00271 00272 return *this; 00273 } 00274 00275 BitVector &reset() { 00276 init_words(Bits, Capacity, false); 00277 return *this; 00278 } 00279 00280 BitVector &reset(unsigned Idx) { 00281 Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE)); 00282 return *this; 00283 } 00284 00285 /// reset - Efficiently reset a range of bits in [I, E) 00286 BitVector &reset(unsigned I, unsigned E) { 00287 assert(I <= E && "Attempted to reset backwards range!"); 00288 assert(E <= size() && "Attempted to reset out-of-bounds range!"); 00289 00290 if (I == E) return *this; 00291 00292 if (I / BITWORD_SIZE == E / BITWORD_SIZE) { 00293 BitWord EMask = 1UL << (E % BITWORD_SIZE); 00294 BitWord IMask = 1UL << (I % BITWORD_SIZE); 00295 BitWord Mask = EMask - IMask; 00296 Bits[I / BITWORD_SIZE] &= ~Mask; 00297 return *this; 00298 } 00299 00300 BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE); 00301 Bits[I / BITWORD_SIZE] &= ~PrefixMask; 00302 I = RoundUpToAlignment(I, BITWORD_SIZE); 00303 00304 for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) 00305 Bits[I / BITWORD_SIZE] = 0UL; 00306 00307 BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1; 00308 if (I < E) 00309 Bits[I / BITWORD_SIZE] &= ~PostfixMask; 00310 00311 return *this; 00312 } 00313 00314 BitVector &flip() { 00315 for (unsigned i = 0; i < NumBitWords(size()); ++i) 00316 Bits[i] = ~Bits[i]; 00317 clear_unused_bits(); 00318 return *this; 00319 } 00320 00321 BitVector &flip(unsigned Idx) { 00322 Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE); 00323 return *this; 00324 } 00325 00326 // Indexing. 00327 reference operator[](unsigned Idx) { 00328 assert (Idx < Size && "Out-of-bounds Bit access."); 00329 return reference(*this, Idx); 00330 } 00331 00332 bool operator[](unsigned Idx) const { 00333 assert (Idx < Size && "Out-of-bounds Bit access."); 00334 BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE); 00335 return (Bits[Idx / BITWORD_SIZE] & Mask) != 0; 00336 } 00337 00338 bool test(unsigned Idx) const { 00339 return (*this)[Idx]; 00340 } 00341 00342 /// Test if any common bits are set. 00343 bool anyCommon(const BitVector &RHS) const { 00344 unsigned ThisWords = NumBitWords(size()); 00345 unsigned RHSWords = NumBitWords(RHS.size()); 00346 for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i) 00347 if (Bits[i] & RHS.Bits[i]) 00348 return true; 00349 return false; 00350 } 00351 00352 // Comparison operators. 00353 bool operator==(const BitVector &RHS) const { 00354 unsigned ThisWords = NumBitWords(size()); 00355 unsigned RHSWords = NumBitWords(RHS.size()); 00356 unsigned i; 00357 for (i = 0; i != std::min(ThisWords, RHSWords); ++i) 00358 if (Bits[i] != RHS.Bits[i]) 00359 return false; 00360 00361 // Verify that any extra words are all zeros. 00362 if (i != ThisWords) { 00363 for (; i != ThisWords; ++i) 00364 if (Bits[i]) 00365 return false; 00366 } else if (i != RHSWords) { 00367 for (; i != RHSWords; ++i) 00368 if (RHS.Bits[i]) 00369 return false; 00370 } 00371 return true; 00372 } 00373 00374 bool operator!=(const BitVector &RHS) const { 00375 return !(*this == RHS); 00376 } 00377 00378 /// Intersection, union, disjoint union. 00379 BitVector &operator&=(const BitVector &RHS) { 00380 unsigned ThisWords = NumBitWords(size()); 00381 unsigned RHSWords = NumBitWords(RHS.size()); 00382 unsigned i; 00383 for (i = 0; i != std::min(ThisWords, RHSWords); ++i) 00384 Bits[i] &= RHS.Bits[i]; 00385 00386 // Any bits that are just in this bitvector become zero, because they aren't 00387 // in the RHS bit vector. Any words only in RHS are ignored because they 00388 // are already zero in the LHS. 00389 for (; i != ThisWords; ++i) 00390 Bits[i] = 0; 00391 00392 return *this; 00393 } 00394 00395 /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS. 00396 BitVector &reset(const BitVector &RHS) { 00397 unsigned ThisWords = NumBitWords(size()); 00398 unsigned RHSWords = NumBitWords(RHS.size()); 00399 unsigned i; 00400 for (i = 0; i != std::min(ThisWords, RHSWords); ++i) 00401 Bits[i] &= ~RHS.Bits[i]; 00402 return *this; 00403 } 00404 00405 /// test - Check if (This - RHS) is zero. 00406 /// This is the same as reset(RHS) and any(). 00407 bool test(const BitVector &RHS) const { 00408 unsigned ThisWords = NumBitWords(size()); 00409 unsigned RHSWords = NumBitWords(RHS.size()); 00410 unsigned i; 00411 for (i = 0; i != std::min(ThisWords, RHSWords); ++i) 00412 if ((Bits[i] & ~RHS.Bits[i]) != 0) 00413 return true; 00414 00415 for (; i != ThisWords ; ++i) 00416 if (Bits[i] != 0) 00417 return true; 00418 00419 return false; 00420 } 00421 00422 BitVector &operator|=(const BitVector &RHS) { 00423 if (size() < RHS.size()) 00424 resize(RHS.size()); 00425 for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i) 00426 Bits[i] |= RHS.Bits[i]; 00427 return *this; 00428 } 00429 00430 BitVector &operator^=(const BitVector &RHS) { 00431 if (size() < RHS.size()) 00432 resize(RHS.size()); 00433 for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i) 00434 Bits[i] ^= RHS.Bits[i]; 00435 return *this; 00436 } 00437 00438 // Assignment operator. 00439 const BitVector &operator=(const BitVector &RHS) { 00440 if (this == &RHS) return *this; 00441 00442 Size = RHS.size(); 00443 unsigned RHSWords = NumBitWords(Size); 00444 if (Size <= Capacity * BITWORD_SIZE) { 00445 if (Size) 00446 std::memcpy(Bits, RHS.Bits, RHSWords * sizeof(BitWord)); 00447 clear_unused_bits(); 00448 return *this; 00449 } 00450 00451 // Grow the bitvector to have enough elements. 00452 Capacity = RHSWords; 00453 BitWord *NewBits = (BitWord *)std::malloc(Capacity * sizeof(BitWord)); 00454 std::memcpy(NewBits, RHS.Bits, Capacity * sizeof(BitWord)); 00455 00456 // Destroy the old bits. 00457 std::free(Bits); 00458 Bits = NewBits; 00459 00460 return *this; 00461 } 00462 00463 const BitVector &operator=(BitVector &&RHS) { 00464 if (this == &RHS) return *this; 00465 00466 std::free(Bits); 00467 Bits = RHS.Bits; 00468 Size = RHS.Size; 00469 Capacity = RHS.Capacity; 00470 00471 RHS.Bits = nullptr; 00472 00473 return *this; 00474 } 00475 00476 void swap(BitVector &RHS) { 00477 std::swap(Bits, RHS.Bits); 00478 std::swap(Size, RHS.Size); 00479 std::swap(Capacity, RHS.Capacity); 00480 } 00481 00482 //===--------------------------------------------------------------------===// 00483 // Portable bit mask operations. 00484 //===--------------------------------------------------------------------===// 00485 // 00486 // These methods all operate on arrays of uint32_t, each holding 32 bits. The 00487 // fixed word size makes it easier to work with literal bit vector constants 00488 // in portable code. 00489 // 00490 // The LSB in each word is the lowest numbered bit. The size of a portable 00491 // bit mask is always a whole multiple of 32 bits. If no bit mask size is 00492 // given, the bit mask is assumed to cover the entire BitVector. 00493 00494 /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize. 00495 /// This computes "*this |= Mask". 00496 void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { 00497 applyMask<true, false>(Mask, MaskWords); 00498 } 00499 00500 /// clearBitsInMask - Clear any bits in this vector that are set in Mask. 00501 /// Don't resize. This computes "*this &= ~Mask". 00502 void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { 00503 applyMask<false, false>(Mask, MaskWords); 00504 } 00505 00506 /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask. 00507 /// Don't resize. This computes "*this |= ~Mask". 00508 void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { 00509 applyMask<true, true>(Mask, MaskWords); 00510 } 00511 00512 /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask. 00513 /// Don't resize. This computes "*this &= Mask". 00514 void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { 00515 applyMask<false, true>(Mask, MaskWords); 00516 } 00517 00518 private: 00519 unsigned NumBitWords(unsigned S) const { 00520 return (S + BITWORD_SIZE-1) / BITWORD_SIZE; 00521 } 00522 00523 // Set the unused bits in the high words. 00524 void set_unused_bits(bool t = true) { 00525 // Set high words first. 00526 unsigned UsedWords = NumBitWords(Size); 00527 if (Capacity > UsedWords) 00528 init_words(&Bits[UsedWords], (Capacity-UsedWords), t); 00529 00530 // Then set any stray high bits of the last used word. 00531 unsigned ExtraBits = Size % BITWORD_SIZE; 00532 if (ExtraBits) { 00533 BitWord ExtraBitMask = ~0UL << ExtraBits; 00534 if (t) 00535 Bits[UsedWords-1] |= ExtraBitMask; 00536 else 00537 Bits[UsedWords-1] &= ~ExtraBitMask; 00538 } 00539 } 00540 00541 // Clear the unused bits in the high words. 00542 void clear_unused_bits() { 00543 set_unused_bits(false); 00544 } 00545 00546 void grow(unsigned NewSize) { 00547 Capacity = std::max(NumBitWords(NewSize), Capacity * 2); 00548 Bits = (BitWord *)std::realloc(Bits, Capacity * sizeof(BitWord)); 00549 00550 clear_unused_bits(); 00551 } 00552 00553 void init_words(BitWord *B, unsigned NumWords, bool t) { 00554 memset(B, 0 - (int)t, NumWords*sizeof(BitWord)); 00555 } 00556 00557 template<bool AddBits, bool InvertMask> 00558 void applyMask(const uint32_t *Mask, unsigned MaskWords) { 00559 assert(BITWORD_SIZE % 32 == 0 && "Unsupported BitWord size."); 00560 MaskWords = std::min(MaskWords, (size() + 31) / 32); 00561 const unsigned Scale = BITWORD_SIZE / 32; 00562 unsigned i; 00563 for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) { 00564 BitWord BW = Bits[i]; 00565 // This inner loop should unroll completely when BITWORD_SIZE > 32. 00566 for (unsigned b = 0; b != BITWORD_SIZE; b += 32) { 00567 uint32_t M = *Mask++; 00568 if (InvertMask) M = ~M; 00569 if (AddBits) BW |= BitWord(M) << b; 00570 else BW &= ~(BitWord(M) << b); 00571 } 00572 Bits[i] = BW; 00573 } 00574 for (unsigned b = 0; MaskWords; b += 32, --MaskWords) { 00575 uint32_t M = *Mask++; 00576 if (InvertMask) M = ~M; 00577 if (AddBits) Bits[i] |= BitWord(M) << b; 00578 else Bits[i] &= ~(BitWord(M) << b); 00579 } 00580 if (AddBits) 00581 clear_unused_bits(); 00582 } 00583 }; 00584 00585 } // End llvm namespace 00586 00587 namespace std { 00588 /// Implement std::swap in terms of BitVector swap. 00589 inline void 00590 swap(llvm::BitVector &LHS, llvm::BitVector &RHS) { 00591 LHS.swap(RHS); 00592 } 00593 } 00594 00595 #endif