LLVM API Documentation

CorrelatedValuePropagation.cpp
Go to the documentation of this file.
00001 //===- CorrelatedValuePropagation.cpp - Propagate CFG-derived info --------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This file implements the Correlated Value Propagation pass.
00011 //
00012 //===----------------------------------------------------------------------===//
00013 
00014 #include "llvm/Transforms/Scalar.h"
00015 #include "llvm/ADT/Statistic.h"
00016 #include "llvm/Analysis/InstructionSimplify.h"
00017 #include "llvm/Analysis/LazyValueInfo.h"
00018 #include "llvm/IR/CFG.h"
00019 #include "llvm/IR/Constants.h"
00020 #include "llvm/IR/Function.h"
00021 #include "llvm/IR/Instructions.h"
00022 #include "llvm/Pass.h"
00023 #include "llvm/Support/Debug.h"
00024 #include "llvm/Support/raw_ostream.h"
00025 #include "llvm/Transforms/Utils/Local.h"
00026 using namespace llvm;
00027 
00028 #define DEBUG_TYPE "correlated-value-propagation"
00029 
00030 STATISTIC(NumPhis,      "Number of phis propagated");
00031 STATISTIC(NumSelects,   "Number of selects propagated");
00032 STATISTIC(NumMemAccess, "Number of memory access targets propagated");
00033 STATISTIC(NumCmps,      "Number of comparisons propagated");
00034 STATISTIC(NumDeadCases, "Number of switch cases removed");
00035 
00036 namespace {
00037   class CorrelatedValuePropagation : public FunctionPass {
00038     LazyValueInfo *LVI;
00039 
00040     bool processSelect(SelectInst *SI);
00041     bool processPHI(PHINode *P);
00042     bool processMemAccess(Instruction *I);
00043     bool processCmp(CmpInst *C);
00044     bool processSwitch(SwitchInst *SI);
00045 
00046   public:
00047     static char ID;
00048     CorrelatedValuePropagation(): FunctionPass(ID) {
00049      initializeCorrelatedValuePropagationPass(*PassRegistry::getPassRegistry());
00050     }
00051 
00052     bool runOnFunction(Function &F) override;
00053 
00054     void getAnalysisUsage(AnalysisUsage &AU) const override {
00055       AU.addRequired<LazyValueInfo>();
00056     }
00057   };
00058 }
00059 
00060 char CorrelatedValuePropagation::ID = 0;
00061 INITIALIZE_PASS_BEGIN(CorrelatedValuePropagation, "correlated-propagation",
00062                 "Value Propagation", false, false)
00063 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo)
00064 INITIALIZE_PASS_END(CorrelatedValuePropagation, "correlated-propagation",
00065                 "Value Propagation", false, false)
00066 
00067 // Public interface to the Value Propagation pass
00068 Pass *llvm::createCorrelatedValuePropagationPass() {
00069   return new CorrelatedValuePropagation();
00070 }
00071 
00072 bool CorrelatedValuePropagation::processSelect(SelectInst *S) {
00073   if (S->getType()->isVectorTy()) return false;
00074   if (isa<Constant>(S->getOperand(0))) return false;
00075 
00076   Constant *C = LVI->getConstant(S->getOperand(0), S->getParent(), S);
00077   if (!C) return false;
00078 
00079   ConstantInt *CI = dyn_cast<ConstantInt>(C);
00080   if (!CI) return false;
00081 
00082   Value *ReplaceWith = S->getOperand(1);
00083   Value *Other = S->getOperand(2);
00084   if (!CI->isOne()) std::swap(ReplaceWith, Other);
00085   if (ReplaceWith == S) ReplaceWith = UndefValue::get(S->getType());
00086 
00087   S->replaceAllUsesWith(ReplaceWith);
00088   S->eraseFromParent();
00089 
00090   ++NumSelects;
00091 
00092   return true;
00093 }
00094 
00095 bool CorrelatedValuePropagation::processPHI(PHINode *P) {
00096   bool Changed = false;
00097 
00098   BasicBlock *BB = P->getParent();
00099   for (unsigned i = 0, e = P->getNumIncomingValues(); i < e; ++i) {
00100     Value *Incoming = P->getIncomingValue(i);
00101     if (isa<Constant>(Incoming)) continue;
00102 
00103     Value *V = LVI->getConstantOnEdge(Incoming, P->getIncomingBlock(i), BB, P);
00104 
00105     // Look if the incoming value is a select with a constant but LVI tells us
00106     // that the incoming value can never be that constant. In that case replace
00107     // the incoming value with the other value of the select. This often allows
00108     // us to remove the select later.
00109     if (!V) {
00110       SelectInst *SI = dyn_cast<SelectInst>(Incoming);
00111       if (!SI) continue;
00112 
00113       Constant *C = dyn_cast<Constant>(SI->getFalseValue());
00114       if (!C) continue;
00115 
00116       if (LVI->getPredicateOnEdge(ICmpInst::ICMP_EQ, SI, C,
00117                                   P->getIncomingBlock(i), BB, P) !=
00118           LazyValueInfo::False)
00119         continue;
00120 
00121       DEBUG(dbgs() << "CVP: Threading PHI over " << *SI << '\n');
00122       V = SI->getTrueValue();
00123     }
00124 
00125     P->setIncomingValue(i, V);
00126     Changed = true;
00127   }
00128 
00129   // FIXME: Provide DL, TLI, DT, AT to SimplifyInstruction.
00130   if (Value *V = SimplifyInstruction(P)) {
00131     P->replaceAllUsesWith(V);
00132     P->eraseFromParent();
00133     Changed = true;
00134   }
00135 
00136   if (Changed)
00137     ++NumPhis;
00138 
00139   return Changed;
00140 }
00141 
00142 bool CorrelatedValuePropagation::processMemAccess(Instruction *I) {
00143   Value *Pointer = nullptr;
00144   if (LoadInst *L = dyn_cast<LoadInst>(I))
00145     Pointer = L->getPointerOperand();
00146   else
00147     Pointer = cast<StoreInst>(I)->getPointerOperand();
00148 
00149   if (isa<Constant>(Pointer)) return false;
00150 
00151   Constant *C = LVI->getConstant(Pointer, I->getParent(), I);
00152   if (!C) return false;
00153 
00154   ++NumMemAccess;
00155   I->replaceUsesOfWith(Pointer, C);
00156   return true;
00157 }
00158 
00159 /// processCmp - If the value of this comparison could be determined locally,
00160 /// constant propagation would already have figured it out.  Instead, walk
00161 /// the predecessors and statically evaluate the comparison based on information
00162 /// available on that edge.  If a given static evaluation is true on ALL
00163 /// incoming edges, then it's true universally and we can simplify the compare.
00164 bool CorrelatedValuePropagation::processCmp(CmpInst *C) {
00165   Value *Op0 = C->getOperand(0);
00166   if (isa<Instruction>(Op0) &&
00167       cast<Instruction>(Op0)->getParent() == C->getParent())
00168     return false;
00169 
00170   Constant *Op1 = dyn_cast<Constant>(C->getOperand(1));
00171   if (!Op1) return false;
00172 
00173   pred_iterator PI = pred_begin(C->getParent()), PE = pred_end(C->getParent());
00174   if (PI == PE) return false;
00175 
00176   LazyValueInfo::Tristate Result = LVI->getPredicateOnEdge(C->getPredicate(),
00177                                     C->getOperand(0), Op1, *PI,
00178                                     C->getParent(), C);
00179   if (Result == LazyValueInfo::Unknown) return false;
00180 
00181   ++PI;
00182   while (PI != PE) {
00183     LazyValueInfo::Tristate Res = LVI->getPredicateOnEdge(C->getPredicate(),
00184                                     C->getOperand(0), Op1, *PI,
00185                                     C->getParent(), C);
00186     if (Res != Result) return false;
00187     ++PI;
00188   }
00189 
00190   ++NumCmps;
00191 
00192   if (Result == LazyValueInfo::True)
00193     C->replaceAllUsesWith(ConstantInt::getTrue(C->getContext()));
00194   else
00195     C->replaceAllUsesWith(ConstantInt::getFalse(C->getContext()));
00196 
00197   C->eraseFromParent();
00198 
00199   return true;
00200 }
00201 
00202 /// processSwitch - Simplify a switch instruction by removing cases which can
00203 /// never fire.  If the uselessness of a case could be determined locally then
00204 /// constant propagation would already have figured it out.  Instead, walk the
00205 /// predecessors and statically evaluate cases based on information available
00206 /// on that edge.  Cases that cannot fire no matter what the incoming edge can
00207 /// safely be removed.  If a case fires on every incoming edge then the entire
00208 /// switch can be removed and replaced with a branch to the case destination.
00209 bool CorrelatedValuePropagation::processSwitch(SwitchInst *SI) {
00210   Value *Cond = SI->getCondition();
00211   BasicBlock *BB = SI->getParent();
00212 
00213   // If the condition was defined in same block as the switch then LazyValueInfo
00214   // currently won't say anything useful about it, though in theory it could.
00215   if (isa<Instruction>(Cond) && cast<Instruction>(Cond)->getParent() == BB)
00216     return false;
00217 
00218   // If the switch is unreachable then trying to improve it is a waste of time.
00219   pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
00220   if (PB == PE) return false;
00221 
00222   // Analyse each switch case in turn.  This is done in reverse order so that
00223   // removing a case doesn't cause trouble for the iteration.
00224   bool Changed = false;
00225   for (SwitchInst::CaseIt CI = SI->case_end(), CE = SI->case_begin(); CI-- != CE;
00226        ) {
00227     ConstantInt *Case = CI.getCaseValue();
00228 
00229     // Check to see if the switch condition is equal to/not equal to the case
00230     // value on every incoming edge, equal/not equal being the same each time.
00231     LazyValueInfo::Tristate State = LazyValueInfo::Unknown;
00232     for (pred_iterator PI = PB; PI != PE; ++PI) {
00233       // Is the switch condition equal to the case value?
00234       LazyValueInfo::Tristate Value = LVI->getPredicateOnEdge(CmpInst::ICMP_EQ,
00235                                                               Cond, Case, *PI,
00236                                                               BB, SI);
00237       // Give up on this case if nothing is known.
00238       if (Value == LazyValueInfo::Unknown) {
00239         State = LazyValueInfo::Unknown;
00240         break;
00241       }
00242 
00243       // If this was the first edge to be visited, record that all other edges
00244       // need to give the same result.
00245       if (PI == PB) {
00246         State = Value;
00247         continue;
00248       }
00249 
00250       // If this case is known to fire for some edges and known not to fire for
00251       // others then there is nothing we can do - give up.
00252       if (Value != State) {
00253         State = LazyValueInfo::Unknown;
00254         break;
00255       }
00256     }
00257 
00258     if (State == LazyValueInfo::False) {
00259       // This case never fires - remove it.
00260       CI.getCaseSuccessor()->removePredecessor(BB);
00261       SI->removeCase(CI); // Does not invalidate the iterator.
00262 
00263       // The condition can be modified by removePredecessor's PHI simplification
00264       // logic.
00265       Cond = SI->getCondition();
00266 
00267       ++NumDeadCases;
00268       Changed = true;
00269     } else if (State == LazyValueInfo::True) {
00270       // This case always fires.  Arrange for the switch to be turned into an
00271       // unconditional branch by replacing the switch condition with the case
00272       // value.
00273       SI->setCondition(Case);
00274       NumDeadCases += SI->getNumCases();
00275       Changed = true;
00276       break;
00277     }
00278   }
00279 
00280   if (Changed)
00281     // If the switch has been simplified to the point where it can be replaced
00282     // by a branch then do so now.
00283     ConstantFoldTerminator(BB);
00284 
00285   return Changed;
00286 }
00287 
00288 bool CorrelatedValuePropagation::runOnFunction(Function &F) {
00289   if (skipOptnoneFunction(F))
00290     return false;
00291 
00292   LVI = &getAnalysis<LazyValueInfo>();
00293 
00294   bool FnChanged = false;
00295 
00296   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
00297     bool BBChanged = false;
00298     for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ) {
00299       Instruction *II = BI++;
00300       switch (II->getOpcode()) {
00301       case Instruction::Select:
00302         BBChanged |= processSelect(cast<SelectInst>(II));
00303         break;
00304       case Instruction::PHI:
00305         BBChanged |= processPHI(cast<PHINode>(II));
00306         break;
00307       case Instruction::ICmp:
00308       case Instruction::FCmp:
00309         BBChanged |= processCmp(cast<CmpInst>(II));
00310         break;
00311       case Instruction::Load:
00312       case Instruction::Store:
00313         BBChanged |= processMemAccess(II);
00314         break;
00315       }
00316     }
00317 
00318     Instruction *Term = FI->getTerminator();
00319     switch (Term->getOpcode()) {
00320     case Instruction::Switch:
00321       BBChanged |= processSwitch(cast<SwitchInst>(Term));
00322       break;
00323     }
00324 
00325     FnChanged |= BBChanged;
00326   }
00327 
00328   return FnChanged;
00329 }