LLVM API Documentation
00001 //===-- llvm/CodeGen/DIEHash.cpp - Dwarf Hashing Framework ----------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file contains support for DWARF4 hashing of DIEs. 00011 // 00012 //===----------------------------------------------------------------------===// 00013 00014 #include "ByteStreamer.h" 00015 #include "DIEHash.h" 00016 #include "DIE.h" 00017 #include "DwarfDebug.h" 00018 #include "llvm/ADT/ArrayRef.h" 00019 #include "llvm/ADT/StringRef.h" 00020 #include "llvm/CodeGen/AsmPrinter.h" 00021 #include "llvm/Support/Debug.h" 00022 #include "llvm/Support/Dwarf.h" 00023 #include "llvm/Support/Endian.h" 00024 #include "llvm/Support/MD5.h" 00025 #include "llvm/Support/raw_ostream.h" 00026 00027 using namespace llvm; 00028 00029 #define DEBUG_TYPE "dwarfdebug" 00030 00031 /// \brief Grabs the string in whichever attribute is passed in and returns 00032 /// a reference to it. 00033 static StringRef getDIEStringAttr(const DIE &Die, uint16_t Attr) { 00034 const SmallVectorImpl<DIEValue *> &Values = Die.getValues(); 00035 const DIEAbbrev &Abbrevs = Die.getAbbrev(); 00036 00037 // Iterate through all the attributes until we find the one we're 00038 // looking for, if we can't find it return an empty string. 00039 for (size_t i = 0; i < Values.size(); ++i) { 00040 if (Abbrevs.getData()[i].getAttribute() == Attr) { 00041 DIEValue *V = Values[i]; 00042 assert(isa<DIEString>(V) && "String requested. Not a string."); 00043 DIEString *S = cast<DIEString>(V); 00044 return S->getString(); 00045 } 00046 } 00047 return StringRef(""); 00048 } 00049 00050 /// \brief Adds the string in \p Str to the hash. This also hashes 00051 /// a trailing NULL with the string. 00052 void DIEHash::addString(StringRef Str) { 00053 DEBUG(dbgs() << "Adding string " << Str << " to hash.\n"); 00054 Hash.update(Str); 00055 Hash.update(makeArrayRef((uint8_t)'\0')); 00056 } 00057 00058 // FIXME: The LEB128 routines are copied and only slightly modified out of 00059 // LEB128.h. 00060 00061 /// \brief Adds the unsigned in \p Value to the hash encoded as a ULEB128. 00062 void DIEHash::addULEB128(uint64_t Value) { 00063 DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n"); 00064 do { 00065 uint8_t Byte = Value & 0x7f; 00066 Value >>= 7; 00067 if (Value != 0) 00068 Byte |= 0x80; // Mark this byte to show that more bytes will follow. 00069 Hash.update(Byte); 00070 } while (Value != 0); 00071 } 00072 00073 void DIEHash::addSLEB128(int64_t Value) { 00074 DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n"); 00075 bool More; 00076 do { 00077 uint8_t Byte = Value & 0x7f; 00078 Value >>= 7; 00079 More = !((((Value == 0) && ((Byte & 0x40) == 0)) || 00080 ((Value == -1) && ((Byte & 0x40) != 0)))); 00081 if (More) 00082 Byte |= 0x80; // Mark this byte to show that more bytes will follow. 00083 Hash.update(Byte); 00084 } while (More); 00085 } 00086 00087 /// \brief Including \p Parent adds the context of Parent to the hash.. 00088 void DIEHash::addParentContext(const DIE &Parent) { 00089 00090 DEBUG(dbgs() << "Adding parent context to hash...\n"); 00091 00092 // [7.27.2] For each surrounding type or namespace beginning with the 00093 // outermost such construct... 00094 SmallVector<const DIE *, 1> Parents; 00095 const DIE *Cur = &Parent; 00096 while (Cur->getParent()) { 00097 Parents.push_back(Cur); 00098 Cur = Cur->getParent(); 00099 } 00100 assert(Cur->getTag() == dwarf::DW_TAG_compile_unit || 00101 Cur->getTag() == dwarf::DW_TAG_type_unit); 00102 00103 // Reverse iterate over our list to go from the outermost construct to the 00104 // innermost. 00105 for (SmallVectorImpl<const DIE *>::reverse_iterator I = Parents.rbegin(), 00106 E = Parents.rend(); 00107 I != E; ++I) { 00108 const DIE &Die = **I; 00109 00110 // ... Append the letter "C" to the sequence... 00111 addULEB128('C'); 00112 00113 // ... Followed by the DWARF tag of the construct... 00114 addULEB128(Die.getTag()); 00115 00116 // ... Then the name, taken from the DW_AT_name attribute. 00117 StringRef Name = getDIEStringAttr(Die, dwarf::DW_AT_name); 00118 DEBUG(dbgs() << "... adding context: " << Name << "\n"); 00119 if (!Name.empty()) 00120 addString(Name); 00121 } 00122 } 00123 00124 // Collect all of the attributes for a particular DIE in single structure. 00125 void DIEHash::collectAttributes(const DIE &Die, DIEAttrs &Attrs) { 00126 const SmallVectorImpl<DIEValue *> &Values = Die.getValues(); 00127 const DIEAbbrev &Abbrevs = Die.getAbbrev(); 00128 00129 #define COLLECT_ATTR(NAME) \ 00130 case dwarf::NAME: \ 00131 Attrs.NAME.Val = Values[i]; \ 00132 Attrs.NAME.Desc = &Abbrevs.getData()[i]; \ 00133 break 00134 00135 for (size_t i = 0, e = Values.size(); i != e; ++i) { 00136 DEBUG(dbgs() << "Attribute: " 00137 << dwarf::AttributeString(Abbrevs.getData()[i].getAttribute()) 00138 << " added.\n"); 00139 switch (Abbrevs.getData()[i].getAttribute()) { 00140 COLLECT_ATTR(DW_AT_name); 00141 COLLECT_ATTR(DW_AT_accessibility); 00142 COLLECT_ATTR(DW_AT_address_class); 00143 COLLECT_ATTR(DW_AT_allocated); 00144 COLLECT_ATTR(DW_AT_artificial); 00145 COLLECT_ATTR(DW_AT_associated); 00146 COLLECT_ATTR(DW_AT_binary_scale); 00147 COLLECT_ATTR(DW_AT_bit_offset); 00148 COLLECT_ATTR(DW_AT_bit_size); 00149 COLLECT_ATTR(DW_AT_bit_stride); 00150 COLLECT_ATTR(DW_AT_byte_size); 00151 COLLECT_ATTR(DW_AT_byte_stride); 00152 COLLECT_ATTR(DW_AT_const_expr); 00153 COLLECT_ATTR(DW_AT_const_value); 00154 COLLECT_ATTR(DW_AT_containing_type); 00155 COLLECT_ATTR(DW_AT_count); 00156 COLLECT_ATTR(DW_AT_data_bit_offset); 00157 COLLECT_ATTR(DW_AT_data_location); 00158 COLLECT_ATTR(DW_AT_data_member_location); 00159 COLLECT_ATTR(DW_AT_decimal_scale); 00160 COLLECT_ATTR(DW_AT_decimal_sign); 00161 COLLECT_ATTR(DW_AT_default_value); 00162 COLLECT_ATTR(DW_AT_digit_count); 00163 COLLECT_ATTR(DW_AT_discr); 00164 COLLECT_ATTR(DW_AT_discr_list); 00165 COLLECT_ATTR(DW_AT_discr_value); 00166 COLLECT_ATTR(DW_AT_encoding); 00167 COLLECT_ATTR(DW_AT_enum_class); 00168 COLLECT_ATTR(DW_AT_endianity); 00169 COLLECT_ATTR(DW_AT_explicit); 00170 COLLECT_ATTR(DW_AT_is_optional); 00171 COLLECT_ATTR(DW_AT_location); 00172 COLLECT_ATTR(DW_AT_lower_bound); 00173 COLLECT_ATTR(DW_AT_mutable); 00174 COLLECT_ATTR(DW_AT_ordering); 00175 COLLECT_ATTR(DW_AT_picture_string); 00176 COLLECT_ATTR(DW_AT_prototyped); 00177 COLLECT_ATTR(DW_AT_small); 00178 COLLECT_ATTR(DW_AT_segment); 00179 COLLECT_ATTR(DW_AT_string_length); 00180 COLLECT_ATTR(DW_AT_threads_scaled); 00181 COLLECT_ATTR(DW_AT_upper_bound); 00182 COLLECT_ATTR(DW_AT_use_location); 00183 COLLECT_ATTR(DW_AT_use_UTF8); 00184 COLLECT_ATTR(DW_AT_variable_parameter); 00185 COLLECT_ATTR(DW_AT_virtuality); 00186 COLLECT_ATTR(DW_AT_visibility); 00187 COLLECT_ATTR(DW_AT_vtable_elem_location); 00188 COLLECT_ATTR(DW_AT_type); 00189 default: 00190 break; 00191 } 00192 } 00193 } 00194 00195 void DIEHash::hashShallowTypeReference(dwarf::Attribute Attribute, 00196 const DIE &Entry, StringRef Name) { 00197 // append the letter 'N' 00198 addULEB128('N'); 00199 00200 // the DWARF attribute code (DW_AT_type or DW_AT_friend), 00201 addULEB128(Attribute); 00202 00203 // the context of the tag, 00204 if (const DIE *Parent = Entry.getParent()) 00205 addParentContext(*Parent); 00206 00207 // the letter 'E', 00208 addULEB128('E'); 00209 00210 // and the name of the type. 00211 addString(Name); 00212 00213 // Currently DW_TAG_friends are not used by Clang, but if they do become so, 00214 // here's the relevant spec text to implement: 00215 // 00216 // For DW_TAG_friend, if the referenced entry is the DW_TAG_subprogram, 00217 // the context is omitted and the name to be used is the ABI-specific name 00218 // of the subprogram (e.g., the mangled linker name). 00219 } 00220 00221 void DIEHash::hashRepeatedTypeReference(dwarf::Attribute Attribute, 00222 unsigned DieNumber) { 00223 // a) If T is in the list of [previously hashed types], use the letter 00224 // 'R' as the marker 00225 addULEB128('R'); 00226 00227 addULEB128(Attribute); 00228 00229 // and use the unsigned LEB128 encoding of [the index of T in the 00230 // list] as the attribute value; 00231 addULEB128(DieNumber); 00232 } 00233 00234 void DIEHash::hashDIEEntry(dwarf::Attribute Attribute, dwarf::Tag Tag, 00235 const DIE &Entry) { 00236 assert(Tag != dwarf::DW_TAG_friend && "No current LLVM clients emit friend " 00237 "tags. Add support here when there's " 00238 "a use case"); 00239 // Step 5 00240 // If the tag in Step 3 is one of [the below tags] 00241 if ((Tag == dwarf::DW_TAG_pointer_type || 00242 Tag == dwarf::DW_TAG_reference_type || 00243 Tag == dwarf::DW_TAG_rvalue_reference_type || 00244 Tag == dwarf::DW_TAG_ptr_to_member_type) && 00245 // and the referenced type (via the [below attributes]) 00246 // FIXME: This seems overly restrictive, and causes hash mismatches 00247 // there's a decl/def difference in the containing type of a 00248 // ptr_to_member_type, but it's what DWARF says, for some reason. 00249 Attribute == dwarf::DW_AT_type) { 00250 // ... has a DW_AT_name attribute, 00251 StringRef Name = getDIEStringAttr(Entry, dwarf::DW_AT_name); 00252 if (!Name.empty()) { 00253 hashShallowTypeReference(Attribute, Entry, Name); 00254 return; 00255 } 00256 } 00257 00258 unsigned &DieNumber = Numbering[&Entry]; 00259 if (DieNumber) { 00260 hashRepeatedTypeReference(Attribute, DieNumber); 00261 return; 00262 } 00263 00264 // otherwise, b) use the letter 'T' as the marker, ... 00265 addULEB128('T'); 00266 00267 addULEB128(Attribute); 00268 00269 // ... process the type T recursively by performing Steps 2 through 7, and 00270 // use the result as the attribute value. 00271 DieNumber = Numbering.size(); 00272 computeHash(Entry); 00273 } 00274 00275 // Hash all of the values in a block like set of values. This assumes that 00276 // all of the data is going to be added as integers. 00277 void DIEHash::hashBlockData(const SmallVectorImpl<DIEValue *> &Values) { 00278 for (SmallVectorImpl<DIEValue *>::const_iterator I = Values.begin(), 00279 E = Values.end(); 00280 I != E; ++I) 00281 Hash.update((uint64_t)cast<DIEInteger>(*I)->getValue()); 00282 } 00283 00284 // Hash the contents of a loclistptr class. 00285 void DIEHash::hashLocList(const DIELocList &LocList) { 00286 HashingByteStreamer Streamer(*this); 00287 DwarfDebug &DD = *AP->getDwarfDebug(); 00288 for (const auto &Entry : 00289 DD.getDebugLocEntries()[LocList.getValue()].List) 00290 DD.emitDebugLocEntry(Streamer, Entry); 00291 } 00292 00293 // Hash an individual attribute \param Attr based on the type of attribute and 00294 // the form. 00295 void DIEHash::hashAttribute(AttrEntry Attr, dwarf::Tag Tag) { 00296 const DIEValue *Value = Attr.Val; 00297 const DIEAbbrevData *Desc = Attr.Desc; 00298 dwarf::Attribute Attribute = Desc->getAttribute(); 00299 00300 // Other attribute values use the letter 'A' as the marker, and the value 00301 // consists of the form code (encoded as an unsigned LEB128 value) followed by 00302 // the encoding of the value according to the form code. To ensure 00303 // reproducibility of the signature, the set of forms used in the signature 00304 // computation is limited to the following: DW_FORM_sdata, DW_FORM_flag, 00305 // DW_FORM_string, and DW_FORM_block. 00306 00307 switch (Value->getType()) { 00308 // 7.27 Step 3 00309 // ... An attribute that refers to another type entry T is processed as 00310 // follows: 00311 case DIEValue::isEntry: 00312 hashDIEEntry(Attribute, Tag, cast<DIEEntry>(Value)->getEntry()); 00313 break; 00314 case DIEValue::isInteger: { 00315 addULEB128('A'); 00316 addULEB128(Attribute); 00317 switch (Desc->getForm()) { 00318 case dwarf::DW_FORM_data1: 00319 case dwarf::DW_FORM_data2: 00320 case dwarf::DW_FORM_data4: 00321 case dwarf::DW_FORM_data8: 00322 case dwarf::DW_FORM_udata: 00323 case dwarf::DW_FORM_sdata: 00324 addULEB128(dwarf::DW_FORM_sdata); 00325 addSLEB128((int64_t)cast<DIEInteger>(Value)->getValue()); 00326 break; 00327 // DW_FORM_flag_present is just flag with a value of one. We still give it a 00328 // value so just use the value. 00329 case dwarf::DW_FORM_flag_present: 00330 case dwarf::DW_FORM_flag: 00331 addULEB128(dwarf::DW_FORM_flag); 00332 addULEB128((int64_t)cast<DIEInteger>(Value)->getValue()); 00333 break; 00334 default: 00335 llvm_unreachable("Unknown integer form!"); 00336 } 00337 break; 00338 } 00339 case DIEValue::isString: 00340 addULEB128('A'); 00341 addULEB128(Attribute); 00342 addULEB128(dwarf::DW_FORM_string); 00343 addString(cast<DIEString>(Value)->getString()); 00344 break; 00345 case DIEValue::isBlock: 00346 case DIEValue::isLoc: 00347 case DIEValue::isLocList: 00348 addULEB128('A'); 00349 addULEB128(Attribute); 00350 addULEB128(dwarf::DW_FORM_block); 00351 if (isa<DIEBlock>(Value)) { 00352 addULEB128(cast<DIEBlock>(Value)->ComputeSize(AP)); 00353 hashBlockData(cast<DIEBlock>(Value)->getValues()); 00354 } else if (isa<DIELoc>(Value)) { 00355 addULEB128(cast<DIELoc>(Value)->ComputeSize(AP)); 00356 hashBlockData(cast<DIELoc>(Value)->getValues()); 00357 } else { 00358 // We could add the block length, but that would take 00359 // a bit of work and not add a lot of uniqueness 00360 // to the hash in some way we could test. 00361 hashLocList(*cast<DIELocList>(Value)); 00362 } 00363 break; 00364 // FIXME: It's uncertain whether or not we should handle this at the moment. 00365 case DIEValue::isExpr: 00366 case DIEValue::isLabel: 00367 case DIEValue::isDelta: 00368 case DIEValue::isTypeSignature: 00369 llvm_unreachable("Add support for additional value types."); 00370 } 00371 } 00372 00373 // Go through the attributes from \param Attrs in the order specified in 7.27.4 00374 // and hash them. 00375 void DIEHash::hashAttributes(const DIEAttrs &Attrs, dwarf::Tag Tag) { 00376 #define ADD_ATTR(ATTR) \ 00377 { \ 00378 if (ATTR.Val != 0) \ 00379 hashAttribute(ATTR, Tag); \ 00380 } 00381 00382 ADD_ATTR(Attrs.DW_AT_name); 00383 ADD_ATTR(Attrs.DW_AT_accessibility); 00384 ADD_ATTR(Attrs.DW_AT_address_class); 00385 ADD_ATTR(Attrs.DW_AT_allocated); 00386 ADD_ATTR(Attrs.DW_AT_artificial); 00387 ADD_ATTR(Attrs.DW_AT_associated); 00388 ADD_ATTR(Attrs.DW_AT_binary_scale); 00389 ADD_ATTR(Attrs.DW_AT_bit_offset); 00390 ADD_ATTR(Attrs.DW_AT_bit_size); 00391 ADD_ATTR(Attrs.DW_AT_bit_stride); 00392 ADD_ATTR(Attrs.DW_AT_byte_size); 00393 ADD_ATTR(Attrs.DW_AT_byte_stride); 00394 ADD_ATTR(Attrs.DW_AT_const_expr); 00395 ADD_ATTR(Attrs.DW_AT_const_value); 00396 ADD_ATTR(Attrs.DW_AT_containing_type); 00397 ADD_ATTR(Attrs.DW_AT_count); 00398 ADD_ATTR(Attrs.DW_AT_data_bit_offset); 00399 ADD_ATTR(Attrs.DW_AT_data_location); 00400 ADD_ATTR(Attrs.DW_AT_data_member_location); 00401 ADD_ATTR(Attrs.DW_AT_decimal_scale); 00402 ADD_ATTR(Attrs.DW_AT_decimal_sign); 00403 ADD_ATTR(Attrs.DW_AT_default_value); 00404 ADD_ATTR(Attrs.DW_AT_digit_count); 00405 ADD_ATTR(Attrs.DW_AT_discr); 00406 ADD_ATTR(Attrs.DW_AT_discr_list); 00407 ADD_ATTR(Attrs.DW_AT_discr_value); 00408 ADD_ATTR(Attrs.DW_AT_encoding); 00409 ADD_ATTR(Attrs.DW_AT_enum_class); 00410 ADD_ATTR(Attrs.DW_AT_endianity); 00411 ADD_ATTR(Attrs.DW_AT_explicit); 00412 ADD_ATTR(Attrs.DW_AT_is_optional); 00413 ADD_ATTR(Attrs.DW_AT_location); 00414 ADD_ATTR(Attrs.DW_AT_lower_bound); 00415 ADD_ATTR(Attrs.DW_AT_mutable); 00416 ADD_ATTR(Attrs.DW_AT_ordering); 00417 ADD_ATTR(Attrs.DW_AT_picture_string); 00418 ADD_ATTR(Attrs.DW_AT_prototyped); 00419 ADD_ATTR(Attrs.DW_AT_small); 00420 ADD_ATTR(Attrs.DW_AT_segment); 00421 ADD_ATTR(Attrs.DW_AT_string_length); 00422 ADD_ATTR(Attrs.DW_AT_threads_scaled); 00423 ADD_ATTR(Attrs.DW_AT_upper_bound); 00424 ADD_ATTR(Attrs.DW_AT_use_location); 00425 ADD_ATTR(Attrs.DW_AT_use_UTF8); 00426 ADD_ATTR(Attrs.DW_AT_variable_parameter); 00427 ADD_ATTR(Attrs.DW_AT_virtuality); 00428 ADD_ATTR(Attrs.DW_AT_visibility); 00429 ADD_ATTR(Attrs.DW_AT_vtable_elem_location); 00430 ADD_ATTR(Attrs.DW_AT_type); 00431 00432 // FIXME: Add the extended attributes. 00433 } 00434 00435 // Add all of the attributes for \param Die to the hash. 00436 void DIEHash::addAttributes(const DIE &Die) { 00437 DIEAttrs Attrs = {}; 00438 collectAttributes(Die, Attrs); 00439 hashAttributes(Attrs, Die.getTag()); 00440 } 00441 00442 void DIEHash::hashNestedType(const DIE &Die, StringRef Name) { 00443 // 7.27 Step 7 00444 // ... append the letter 'S', 00445 addULEB128('S'); 00446 00447 // the tag of C, 00448 addULEB128(Die.getTag()); 00449 00450 // and the name. 00451 addString(Name); 00452 } 00453 00454 // Compute the hash of a DIE. This is based on the type signature computation 00455 // given in section 7.27 of the DWARF4 standard. It is the md5 hash of a 00456 // flattened description of the DIE. 00457 void DIEHash::computeHash(const DIE &Die) { 00458 // Append the letter 'D', followed by the DWARF tag of the DIE. 00459 addULEB128('D'); 00460 addULEB128(Die.getTag()); 00461 00462 // Add each of the attributes of the DIE. 00463 addAttributes(Die); 00464 00465 // Then hash each of the children of the DIE. 00466 for (auto &C : Die.getChildren()) { 00467 // 7.27 Step 7 00468 // If C is a nested type entry or a member function entry, ... 00469 if (isType(C->getTag()) || C->getTag() == dwarf::DW_TAG_subprogram) { 00470 StringRef Name = getDIEStringAttr(*C, dwarf::DW_AT_name); 00471 // ... and has a DW_AT_name attribute 00472 if (!Name.empty()) { 00473 hashNestedType(*C, Name); 00474 continue; 00475 } 00476 } 00477 computeHash(*C); 00478 } 00479 00480 // Following the last (or if there are no children), append a zero byte. 00481 Hash.update(makeArrayRef((uint8_t)'\0')); 00482 } 00483 00484 /// This is based on the type signature computation given in section 7.27 of the 00485 /// DWARF4 standard. It is the md5 hash of a flattened description of the DIE 00486 /// with the exception that we are hashing only the context and the name of the 00487 /// type. 00488 uint64_t DIEHash::computeDIEODRSignature(const DIE &Die) { 00489 00490 // Add the contexts to the hash. We won't be computing the ODR hash for 00491 // function local types so it's safe to use the generic context hashing 00492 // algorithm here. 00493 // FIXME: If we figure out how to account for linkage in some way we could 00494 // actually do this with a slight modification to the parent hash algorithm. 00495 if (const DIE *Parent = Die.getParent()) 00496 addParentContext(*Parent); 00497 00498 // Add the current DIE information. 00499 00500 // Add the DWARF tag of the DIE. 00501 addULEB128(Die.getTag()); 00502 00503 // Add the name of the type to the hash. 00504 addString(getDIEStringAttr(Die, dwarf::DW_AT_name)); 00505 00506 // Now get the result. 00507 MD5::MD5Result Result; 00508 Hash.final(Result); 00509 00510 // ... take the least significant 8 bytes and return those. Our MD5 00511 // implementation always returns its results in little endian, swap bytes 00512 // appropriately. 00513 return *reinterpret_cast<support::ulittle64_t *>(Result + 8); 00514 } 00515 00516 /// This is based on the type signature computation given in section 7.27 of the 00517 /// DWARF4 standard. It is an md5 hash of the flattened description of the DIE 00518 /// with the inclusion of the full CU and all top level CU entities. 00519 // TODO: Initialize the type chain at 0 instead of 1 for CU signatures. 00520 uint64_t DIEHash::computeCUSignature(const DIE &Die) { 00521 Numbering.clear(); 00522 Numbering[&Die] = 1; 00523 00524 // Hash the DIE. 00525 computeHash(Die); 00526 00527 // Now return the result. 00528 MD5::MD5Result Result; 00529 Hash.final(Result); 00530 00531 // ... take the least significant 8 bytes and return those. Our MD5 00532 // implementation always returns its results in little endian, swap bytes 00533 // appropriately. 00534 return *reinterpret_cast<support::ulittle64_t *>(Result + 8); 00535 } 00536 00537 /// This is based on the type signature computation given in section 7.27 of the 00538 /// DWARF4 standard. It is an md5 hash of the flattened description of the DIE 00539 /// with the inclusion of additional forms not specifically called out in the 00540 /// standard. 00541 uint64_t DIEHash::computeTypeSignature(const DIE &Die) { 00542 Numbering.clear(); 00543 Numbering[&Die] = 1; 00544 00545 if (const DIE *Parent = Die.getParent()) 00546 addParentContext(*Parent); 00547 00548 // Hash the DIE. 00549 computeHash(Die); 00550 00551 // Now return the result. 00552 MD5::MD5Result Result; 00553 Hash.final(Result); 00554 00555 // ... take the least significant 8 bytes and return those. Our MD5 00556 // implementation always returns its results in little endian, swap bytes 00557 // appropriately. 00558 return *reinterpret_cast<support::ulittle64_t *>(Result + 8); 00559 }