LLVM API Documentation
00001 //===--------- llvm/DataLayout.h - Data size & alignment info ---*- C++ -*-===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file defines layout properties related to datatype size/offset/alignment 00011 // information. It uses lazy annotations to cache information about how 00012 // structure types are laid out and used. 00013 // 00014 // This structure should be created once, filled in if the defaults are not 00015 // correct and then passed around by const&. None of the members functions 00016 // require modification to the object. 00017 // 00018 //===----------------------------------------------------------------------===// 00019 00020 #ifndef LLVM_IR_DATALAYOUT_H 00021 #define LLVM_IR_DATALAYOUT_H 00022 00023 #include "llvm/ADT/DenseMap.h" 00024 #include "llvm/ADT/SmallVector.h" 00025 #include "llvm/IR/DerivedTypes.h" 00026 #include "llvm/IR/Type.h" 00027 #include "llvm/Pass.h" 00028 #include "llvm/Support/DataTypes.h" 00029 00030 // this needs to be outside of the namespace, to avoid conflict with llvm-c decl 00031 typedef struct LLVMOpaqueTargetData *LLVMTargetDataRef; 00032 00033 namespace llvm { 00034 00035 class Value; 00036 class Type; 00037 class IntegerType; 00038 class StructType; 00039 class StructLayout; 00040 class Triple; 00041 class GlobalVariable; 00042 class LLVMContext; 00043 template<typename T> 00044 class ArrayRef; 00045 00046 /// Enum used to categorize the alignment types stored by LayoutAlignElem 00047 enum AlignTypeEnum { 00048 INVALID_ALIGN = 0, ///< An invalid alignment 00049 INTEGER_ALIGN = 'i', ///< Integer type alignment 00050 VECTOR_ALIGN = 'v', ///< Vector type alignment 00051 FLOAT_ALIGN = 'f', ///< Floating point type alignment 00052 AGGREGATE_ALIGN = 'a' ///< Aggregate alignment 00053 }; 00054 00055 /// Layout alignment element. 00056 /// 00057 /// Stores the alignment data associated with a given alignment type (integer, 00058 /// vector, float) and type bit width. 00059 /// 00060 /// @note The unusual order of elements in the structure attempts to reduce 00061 /// padding and make the structure slightly more cache friendly. 00062 struct LayoutAlignElem { 00063 unsigned AlignType : 8; ///< Alignment type (AlignTypeEnum) 00064 unsigned TypeBitWidth : 24; ///< Type bit width 00065 unsigned ABIAlign : 16; ///< ABI alignment for this type/bitw 00066 unsigned PrefAlign : 16; ///< Pref. alignment for this type/bitw 00067 00068 /// Initializer 00069 static LayoutAlignElem get(AlignTypeEnum align_type, unsigned abi_align, 00070 unsigned pref_align, uint32_t bit_width); 00071 /// Equality predicate 00072 bool operator==(const LayoutAlignElem &rhs) const; 00073 }; 00074 00075 /// Layout pointer alignment element. 00076 /// 00077 /// Stores the alignment data associated with a given pointer and address space. 00078 /// 00079 /// @note The unusual order of elements in the structure attempts to reduce 00080 /// padding and make the structure slightly more cache friendly. 00081 struct PointerAlignElem { 00082 unsigned ABIAlign; ///< ABI alignment for this type/bitw 00083 unsigned PrefAlign; ///< Pref. alignment for this type/bitw 00084 uint32_t TypeByteWidth; ///< Type byte width 00085 uint32_t AddressSpace; ///< Address space for the pointer type 00086 00087 /// Initializer 00088 static PointerAlignElem get(uint32_t AddressSpace, unsigned ABIAlign, 00089 unsigned PrefAlign, uint32_t TypeByteWidth); 00090 /// Equality predicate 00091 bool operator==(const PointerAlignElem &rhs) const; 00092 }; 00093 00094 /// This class holds a parsed version of the target data layout string in a 00095 /// module and provides methods for querying it. The target data layout string 00096 /// is specified *by the target* - a frontend generating LLVM IR is required to 00097 /// generate the right target data for the target being codegen'd to. 00098 class DataLayout { 00099 private: 00100 bool LittleEndian; ///< Defaults to false 00101 unsigned StackNaturalAlign; ///< Stack natural alignment 00102 00103 enum ManglingModeT { 00104 MM_None, 00105 MM_ELF, 00106 MM_MachO, 00107 MM_WINCOFF, 00108 MM_Mips 00109 }; 00110 ManglingModeT ManglingMode; 00111 00112 SmallVector<unsigned char, 8> LegalIntWidths; ///< Legal Integers. 00113 00114 /// Alignments - Where the primitive type alignment data is stored. 00115 /// 00116 /// @sa reset(). 00117 /// @note Could support multiple size pointer alignments, e.g., 32-bit 00118 /// pointers vs. 64-bit pointers by extending LayoutAlignment, but for now, 00119 /// we don't. 00120 SmallVector<LayoutAlignElem, 16> Alignments; 00121 typedef SmallVector<PointerAlignElem, 8> PointersTy; 00122 PointersTy Pointers; 00123 00124 PointersTy::const_iterator 00125 findPointerLowerBound(uint32_t AddressSpace) const { 00126 return const_cast<DataLayout *>(this)->findPointerLowerBound(AddressSpace); 00127 } 00128 00129 PointersTy::iterator findPointerLowerBound(uint32_t AddressSpace); 00130 00131 /// InvalidAlignmentElem - This member is a signal that a requested alignment 00132 /// type and bit width were not found in the SmallVector. 00133 static const LayoutAlignElem InvalidAlignmentElem; 00134 00135 /// InvalidPointerElem - This member is a signal that a requested pointer 00136 /// type and bit width were not found in the DenseSet. 00137 static const PointerAlignElem InvalidPointerElem; 00138 00139 // The StructType -> StructLayout map. 00140 mutable void *LayoutMap; 00141 00142 //! Set/initialize target alignments 00143 void setAlignment(AlignTypeEnum align_type, unsigned abi_align, 00144 unsigned pref_align, uint32_t bit_width); 00145 unsigned getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width, 00146 bool ABIAlign, Type *Ty) const; 00147 00148 //! Set/initialize pointer alignments 00149 void setPointerAlignment(uint32_t AddrSpace, unsigned ABIAlign, 00150 unsigned PrefAlign, uint32_t TypeByteWidth); 00151 00152 //! Internal helper method that returns requested alignment for type. 00153 unsigned getAlignment(Type *Ty, bool abi_or_pref) const; 00154 00155 /// Valid alignment predicate. 00156 /// 00157 /// Predicate that tests a LayoutAlignElem reference returned by get() against 00158 /// InvalidAlignmentElem. 00159 bool validAlignment(const LayoutAlignElem &align) const { 00160 return &align != &InvalidAlignmentElem; 00161 } 00162 00163 /// Valid pointer predicate. 00164 /// 00165 /// Predicate that tests a PointerAlignElem reference returned by get() against 00166 /// InvalidPointerElem. 00167 bool validPointer(const PointerAlignElem &align) const { 00168 return &align != &InvalidPointerElem; 00169 } 00170 00171 /// Parses a target data specification string. Assert if the string is 00172 /// malformed. 00173 void parseSpecifier(StringRef LayoutDescription); 00174 00175 // Free all internal data structures. 00176 void clear(); 00177 00178 public: 00179 /// Constructs a DataLayout from a specification string. See reset(). 00180 explicit DataLayout(StringRef LayoutDescription) : LayoutMap(nullptr) { 00181 reset(LayoutDescription); 00182 } 00183 00184 /// Initialize target data from properties stored in the module. 00185 explicit DataLayout(const Module *M); 00186 00187 void init(const Module *M); 00188 00189 DataLayout(const DataLayout &DL) : LayoutMap(nullptr) { *this = DL; } 00190 00191 DataLayout &operator=(const DataLayout &DL) { 00192 clear(); 00193 LittleEndian = DL.isLittleEndian(); 00194 StackNaturalAlign = DL.StackNaturalAlign; 00195 ManglingMode = DL.ManglingMode; 00196 LegalIntWidths = DL.LegalIntWidths; 00197 Alignments = DL.Alignments; 00198 Pointers = DL.Pointers; 00199 return *this; 00200 } 00201 00202 bool operator==(const DataLayout &Other) const; 00203 bool operator!=(const DataLayout &Other) const { return !(*this == Other); } 00204 00205 ~DataLayout(); // Not virtual, do not subclass this class 00206 00207 /// Parse a data layout string (with fallback to default values). 00208 void reset(StringRef LayoutDescription); 00209 00210 /// Layout endianness... 00211 bool isLittleEndian() const { return LittleEndian; } 00212 bool isBigEndian() const { return !LittleEndian; } 00213 00214 /// getStringRepresentation - Return the string representation of the 00215 /// DataLayout. This representation is in the same format accepted by the 00216 /// string constructor above. 00217 std::string getStringRepresentation() const; 00218 00219 /// isLegalInteger - This function returns true if the specified type is 00220 /// known to be a native integer type supported by the CPU. For example, 00221 /// i64 is not native on most 32-bit CPUs and i37 is not native on any known 00222 /// one. This returns false if the integer width is not legal. 00223 /// 00224 /// The width is specified in bits. 00225 /// 00226 bool isLegalInteger(unsigned Width) const { 00227 for (unsigned LegalIntWidth : LegalIntWidths) 00228 if (LegalIntWidth == Width) 00229 return true; 00230 return false; 00231 } 00232 00233 bool isIllegalInteger(unsigned Width) const { 00234 return !isLegalInteger(Width); 00235 } 00236 00237 /// Returns true if the given alignment exceeds the natural stack alignment. 00238 bool exceedsNaturalStackAlignment(unsigned Align) const { 00239 return (StackNaturalAlign != 0) && (Align > StackNaturalAlign); 00240 } 00241 00242 bool hasMicrosoftFastStdCallMangling() const { 00243 return ManglingMode == MM_WINCOFF; 00244 } 00245 00246 bool hasLinkerPrivateGlobalPrefix() const { 00247 return ManglingMode == MM_MachO; 00248 } 00249 00250 const char *getLinkerPrivateGlobalPrefix() const { 00251 if (ManglingMode == MM_MachO) 00252 return "l"; 00253 return getPrivateGlobalPrefix(); 00254 } 00255 00256 char getGlobalPrefix() const { 00257 switch (ManglingMode) { 00258 case MM_None: 00259 case MM_ELF: 00260 case MM_Mips: 00261 return '\0'; 00262 case MM_MachO: 00263 case MM_WINCOFF: 00264 return '_'; 00265 } 00266 llvm_unreachable("invalid mangling mode"); 00267 } 00268 00269 const char *getPrivateGlobalPrefix() const { 00270 switch (ManglingMode) { 00271 case MM_None: 00272 return ""; 00273 case MM_ELF: 00274 return ".L"; 00275 case MM_Mips: 00276 return "$"; 00277 case MM_MachO: 00278 case MM_WINCOFF: 00279 return "L"; 00280 } 00281 llvm_unreachable("invalid mangling mode"); 00282 } 00283 00284 static const char *getManglingComponent(const Triple &T); 00285 00286 /// fitsInLegalInteger - This function returns true if the specified type fits 00287 /// in a native integer type supported by the CPU. For example, if the CPU 00288 /// only supports i32 as a native integer type, then i27 fits in a legal 00289 /// integer type but i45 does not. 00290 bool fitsInLegalInteger(unsigned Width) const { 00291 for (unsigned LegalIntWidth : LegalIntWidths) 00292 if (Width <= LegalIntWidth) 00293 return true; 00294 return false; 00295 } 00296 00297 /// Layout pointer alignment 00298 /// FIXME: The defaults need to be removed once all of 00299 /// the backends/clients are updated. 00300 unsigned getPointerABIAlignment(unsigned AS = 0) const; 00301 00302 /// Return target's alignment for stack-based pointers 00303 /// FIXME: The defaults need to be removed once all of 00304 /// the backends/clients are updated. 00305 unsigned getPointerPrefAlignment(unsigned AS = 0) const; 00306 00307 /// Layout pointer size 00308 /// FIXME: The defaults need to be removed once all of 00309 /// the backends/clients are updated. 00310 unsigned getPointerSize(unsigned AS = 0) const; 00311 00312 /// Layout pointer size, in bits 00313 /// FIXME: The defaults need to be removed once all of 00314 /// the backends/clients are updated. 00315 unsigned getPointerSizeInBits(unsigned AS = 0) const { 00316 return getPointerSize(AS) * 8; 00317 } 00318 00319 /// Layout pointer size, in bits, based on the type. If this function is 00320 /// called with a pointer type, then the type size of the pointer is returned. 00321 /// If this function is called with a vector of pointers, then the type size 00322 /// of the pointer is returned. This should only be called with a pointer or 00323 /// vector of pointers. 00324 unsigned getPointerTypeSizeInBits(Type *) const; 00325 00326 unsigned getPointerTypeSize(Type *Ty) const { 00327 return getPointerTypeSizeInBits(Ty) / 8; 00328 } 00329 00330 /// Size examples: 00331 /// 00332 /// Type SizeInBits StoreSizeInBits AllocSizeInBits[*] 00333 /// ---- ---------- --------------- --------------- 00334 /// i1 1 8 8 00335 /// i8 8 8 8 00336 /// i19 19 24 32 00337 /// i32 32 32 32 00338 /// i100 100 104 128 00339 /// i128 128 128 128 00340 /// Float 32 32 32 00341 /// Double 64 64 64 00342 /// X86_FP80 80 80 96 00343 /// 00344 /// [*] The alloc size depends on the alignment, and thus on the target. 00345 /// These values are for x86-32 linux. 00346 00347 /// getTypeSizeInBits - Return the number of bits necessary to hold the 00348 /// specified type. For example, returns 36 for i36 and 80 for x86_fp80. 00349 /// The type passed must have a size (Type::isSized() must return true). 00350 uint64_t getTypeSizeInBits(Type *Ty) const; 00351 00352 /// getTypeStoreSize - Return the maximum number of bytes that may be 00353 /// overwritten by storing the specified type. For example, returns 5 00354 /// for i36 and 10 for x86_fp80. 00355 uint64_t getTypeStoreSize(Type *Ty) const { 00356 return (getTypeSizeInBits(Ty)+7)/8; 00357 } 00358 00359 /// getTypeStoreSizeInBits - Return the maximum number of bits that may be 00360 /// overwritten by storing the specified type; always a multiple of 8. For 00361 /// example, returns 40 for i36 and 80 for x86_fp80. 00362 uint64_t getTypeStoreSizeInBits(Type *Ty) const { 00363 return 8*getTypeStoreSize(Ty); 00364 } 00365 00366 /// getTypeAllocSize - Return the offset in bytes between successive objects 00367 /// of the specified type, including alignment padding. This is the amount 00368 /// that alloca reserves for this type. For example, returns 12 or 16 for 00369 /// x86_fp80, depending on alignment. 00370 uint64_t getTypeAllocSize(Type *Ty) const { 00371 // Round up to the next alignment boundary. 00372 return RoundUpAlignment(getTypeStoreSize(Ty), getABITypeAlignment(Ty)); 00373 } 00374 00375 /// getTypeAllocSizeInBits - Return the offset in bits between successive 00376 /// objects of the specified type, including alignment padding; always a 00377 /// multiple of 8. This is the amount that alloca reserves for this type. 00378 /// For example, returns 96 or 128 for x86_fp80, depending on alignment. 00379 uint64_t getTypeAllocSizeInBits(Type *Ty) const { 00380 return 8*getTypeAllocSize(Ty); 00381 } 00382 00383 /// getABITypeAlignment - Return the minimum ABI-required alignment for the 00384 /// specified type. 00385 unsigned getABITypeAlignment(Type *Ty) const; 00386 00387 /// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for 00388 /// an integer type of the specified bitwidth. 00389 unsigned getABIIntegerTypeAlignment(unsigned BitWidth) const; 00390 00391 /// getPrefTypeAlignment - Return the preferred stack/global alignment for 00392 /// the specified type. This is always at least as good as the ABI alignment. 00393 unsigned getPrefTypeAlignment(Type *Ty) const; 00394 00395 /// getPreferredTypeAlignmentShift - Return the preferred alignment for the 00396 /// specified type, returned as log2 of the value (a shift amount). 00397 unsigned getPreferredTypeAlignmentShift(Type *Ty) const; 00398 00399 /// getIntPtrType - Return an integer type with size at least as big as that 00400 /// of a pointer in the given address space. 00401 IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const; 00402 00403 /// getIntPtrType - Return an integer (vector of integer) type with size at 00404 /// least as big as that of a pointer of the given pointer (vector of pointer) 00405 /// type. 00406 Type *getIntPtrType(Type *) const; 00407 00408 /// getSmallestLegalIntType - Return the smallest integer type with size at 00409 /// least as big as Width bits. 00410 Type *getSmallestLegalIntType(LLVMContext &C, unsigned Width = 0) const; 00411 00412 /// getLargestLegalIntType - Return the largest legal integer type, or null if 00413 /// none are set. 00414 Type *getLargestLegalIntType(LLVMContext &C) const { 00415 unsigned LargestSize = getLargestLegalIntTypeSize(); 00416 return (LargestSize == 0) ? nullptr : Type::getIntNTy(C, LargestSize); 00417 } 00418 00419 /// getLargestLegalIntTypeSize - Return the size of largest legal integer 00420 /// type size, or 0 if none are set. 00421 unsigned getLargestLegalIntTypeSize() const; 00422 00423 /// getIndexedOffset - return the offset from the beginning of the type for 00424 /// the specified indices. This is used to implement getelementptr. 00425 uint64_t getIndexedOffset(Type *Ty, ArrayRef<Value *> Indices) const; 00426 00427 /// getStructLayout - Return a StructLayout object, indicating the alignment 00428 /// of the struct, its size, and the offsets of its fields. Note that this 00429 /// information is lazily cached. 00430 const StructLayout *getStructLayout(StructType *Ty) const; 00431 00432 /// getPreferredAlignment - Return the preferred alignment of the specified 00433 /// global. This includes an explicitly requested alignment (if the global 00434 /// has one). 00435 unsigned getPreferredAlignment(const GlobalVariable *GV) const; 00436 00437 /// getPreferredAlignmentLog - Return the preferred alignment of the 00438 /// specified global, returned in log form. This includes an explicitly 00439 /// requested alignment (if the global has one). 00440 unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const; 00441 00442 /// RoundUpAlignment - Round the specified value up to the next alignment 00443 /// boundary specified by Alignment. For example, 7 rounded up to an 00444 /// alignment boundary of 4 is 8. 8 rounded up to the alignment boundary of 4 00445 /// is 8 because it is already aligned. 00446 template <typename UIntTy> 00447 static UIntTy RoundUpAlignment(UIntTy Val, unsigned Alignment) { 00448 assert((Alignment & (Alignment-1)) == 0 && "Alignment must be power of 2!"); 00449 return (Val + (Alignment-1)) & ~UIntTy(Alignment-1); 00450 } 00451 }; 00452 00453 inline DataLayout *unwrap(LLVMTargetDataRef P) { 00454 return reinterpret_cast<DataLayout*>(P); 00455 } 00456 00457 inline LLVMTargetDataRef wrap(const DataLayout *P) { 00458 return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout*>(P)); 00459 } 00460 00461 class DataLayoutPass : public ImmutablePass { 00462 DataLayout DL; 00463 00464 public: 00465 /// This has to exist, because this is a pass, but it should never be used. 00466 DataLayoutPass(); 00467 ~DataLayoutPass(); 00468 00469 const DataLayout &getDataLayout() const { return DL; } 00470 00471 static char ID; // Pass identification, replacement for typeid 00472 00473 bool doFinalization(Module &M) override; 00474 bool doInitialization(Module &M) override; 00475 }; 00476 00477 /// StructLayout - used to lazily calculate structure layout information for a 00478 /// target machine, based on the DataLayout structure. 00479 /// 00480 class StructLayout { 00481 uint64_t StructSize; 00482 unsigned StructAlignment; 00483 unsigned NumElements; 00484 uint64_t MemberOffsets[1]; // variable sized array! 00485 public: 00486 00487 uint64_t getSizeInBytes() const { 00488 return StructSize; 00489 } 00490 00491 uint64_t getSizeInBits() const { 00492 return 8*StructSize; 00493 } 00494 00495 unsigned getAlignment() const { 00496 return StructAlignment; 00497 } 00498 00499 /// getElementContainingOffset - Given a valid byte offset into the structure, 00500 /// return the structure index that contains it. 00501 /// 00502 unsigned getElementContainingOffset(uint64_t Offset) const; 00503 00504 uint64_t getElementOffset(unsigned Idx) const { 00505 assert(Idx < NumElements && "Invalid element idx!"); 00506 return MemberOffsets[Idx]; 00507 } 00508 00509 uint64_t getElementOffsetInBits(unsigned Idx) const { 00510 return getElementOffset(Idx)*8; 00511 } 00512 00513 private: 00514 friend class DataLayout; // Only DataLayout can create this class 00515 StructLayout(StructType *ST, const DataLayout &DL); 00516 }; 00517 00518 00519 // The implementation of this method is provided inline as it is particularly 00520 // well suited to constant folding when called on a specific Type subclass. 00521 inline uint64_t DataLayout::getTypeSizeInBits(Type *Ty) const { 00522 assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!"); 00523 switch (Ty->getTypeID()) { 00524 case Type::LabelTyID: 00525 return getPointerSizeInBits(0); 00526 case Type::PointerTyID: 00527 return getPointerSizeInBits(Ty->getPointerAddressSpace()); 00528 case Type::ArrayTyID: { 00529 ArrayType *ATy = cast<ArrayType>(Ty); 00530 return ATy->getNumElements() * 00531 getTypeAllocSizeInBits(ATy->getElementType()); 00532 } 00533 case Type::StructTyID: 00534 // Get the layout annotation... which is lazily created on demand. 00535 return getStructLayout(cast<StructType>(Ty))->getSizeInBits(); 00536 case Type::IntegerTyID: 00537 return Ty->getIntegerBitWidth(); 00538 case Type::HalfTyID: 00539 return 16; 00540 case Type::FloatTyID: 00541 return 32; 00542 case Type::DoubleTyID: 00543 case Type::X86_MMXTyID: 00544 return 64; 00545 case Type::PPC_FP128TyID: 00546 case Type::FP128TyID: 00547 return 128; 00548 // In memory objects this is always aligned to a higher boundary, but 00549 // only 80 bits contain information. 00550 case Type::X86_FP80TyID: 00551 return 80; 00552 case Type::VectorTyID: { 00553 VectorType *VTy = cast<VectorType>(Ty); 00554 return VTy->getNumElements() * getTypeSizeInBits(VTy->getElementType()); 00555 } 00556 default: 00557 llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type"); 00558 } 00559 } 00560 00561 } // End llvm namespace 00562 00563 #endif