LLVM API Documentation
00001 //===-- llvm/ADT/FoldingSet.h - Uniquing Hash Set ---------------*- C++ -*-===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file defines a hash set that can be used to remove duplication of nodes 00011 // in a graph. This code was originally created by Chris Lattner for use with 00012 // SelectionDAGCSEMap, but was isolated to provide use across the llvm code set. 00013 // 00014 //===----------------------------------------------------------------------===// 00015 00016 #ifndef LLVM_ADT_FOLDINGSET_H 00017 #define LLVM_ADT_FOLDINGSET_H 00018 00019 #include "llvm/ADT/SmallVector.h" 00020 #include "llvm/ADT/StringRef.h" 00021 #include "llvm/Support/Allocator.h" 00022 #include "llvm/Support/DataTypes.h" 00023 00024 namespace llvm { 00025 class APFloat; 00026 class APInt; 00027 00028 /// This folding set used for two purposes: 00029 /// 1. Given information about a node we want to create, look up the unique 00030 /// instance of the node in the set. If the node already exists, return 00031 /// it, otherwise return the bucket it should be inserted into. 00032 /// 2. Given a node that has already been created, remove it from the set. 00033 /// 00034 /// This class is implemented as a single-link chained hash table, where the 00035 /// "buckets" are actually the nodes themselves (the next pointer is in the 00036 /// node). The last node points back to the bucket to simplify node removal. 00037 /// 00038 /// Any node that is to be included in the folding set must be a subclass of 00039 /// FoldingSetNode. The node class must also define a Profile method used to 00040 /// establish the unique bits of data for the node. The Profile method is 00041 /// passed a FoldingSetNodeID object which is used to gather the bits. Just 00042 /// call one of the Add* functions defined in the FoldingSetImpl::NodeID class. 00043 /// NOTE: That the folding set does not own the nodes and it is the 00044 /// responsibility of the user to dispose of the nodes. 00045 /// 00046 /// Eg. 00047 /// class MyNode : public FoldingSetNode { 00048 /// private: 00049 /// std::string Name; 00050 /// unsigned Value; 00051 /// public: 00052 /// MyNode(const char *N, unsigned V) : Name(N), Value(V) {} 00053 /// ... 00054 /// void Profile(FoldingSetNodeID &ID) const { 00055 /// ID.AddString(Name); 00056 /// ID.AddInteger(Value); 00057 /// } 00058 /// ... 00059 /// }; 00060 /// 00061 /// To define the folding set itself use the FoldingSet template; 00062 /// 00063 /// Eg. 00064 /// FoldingSet<MyNode> MyFoldingSet; 00065 /// 00066 /// Four public methods are available to manipulate the folding set; 00067 /// 00068 /// 1) If you have an existing node that you want add to the set but unsure 00069 /// that the node might already exist then call; 00070 /// 00071 /// MyNode *M = MyFoldingSet.GetOrInsertNode(N); 00072 /// 00073 /// If The result is equal to the input then the node has been inserted. 00074 /// Otherwise, the result is the node existing in the folding set, and the 00075 /// input can be discarded (use the result instead.) 00076 /// 00077 /// 2) If you are ready to construct a node but want to check if it already 00078 /// exists, then call FindNodeOrInsertPos with a FoldingSetNodeID of the bits to 00079 /// check; 00080 /// 00081 /// FoldingSetNodeID ID; 00082 /// ID.AddString(Name); 00083 /// ID.AddInteger(Value); 00084 /// void *InsertPoint; 00085 /// 00086 /// MyNode *M = MyFoldingSet.FindNodeOrInsertPos(ID, InsertPoint); 00087 /// 00088 /// If found then M with be non-NULL, else InsertPoint will point to where it 00089 /// should be inserted using InsertNode. 00090 /// 00091 /// 3) If you get a NULL result from FindNodeOrInsertPos then you can as a new 00092 /// node with FindNodeOrInsertPos; 00093 /// 00094 /// InsertNode(N, InsertPoint); 00095 /// 00096 /// 4) Finally, if you want to remove a node from the folding set call; 00097 /// 00098 /// bool WasRemoved = RemoveNode(N); 00099 /// 00100 /// The result indicates whether the node existed in the folding set. 00101 00102 class FoldingSetNodeID; 00103 00104 //===----------------------------------------------------------------------===// 00105 /// FoldingSetImpl - Implements the folding set functionality. The main 00106 /// structure is an array of buckets. Each bucket is indexed by the hash of 00107 /// the nodes it contains. The bucket itself points to the nodes contained 00108 /// in the bucket via a singly linked list. The last node in the list points 00109 /// back to the bucket to facilitate node removal. 00110 /// 00111 class FoldingSetImpl { 00112 protected: 00113 /// Buckets - Array of bucket chains. 00114 /// 00115 void **Buckets; 00116 00117 /// NumBuckets - Length of the Buckets array. Always a power of 2. 00118 /// 00119 unsigned NumBuckets; 00120 00121 /// NumNodes - Number of nodes in the folding set. Growth occurs when NumNodes 00122 /// is greater than twice the number of buckets. 00123 unsigned NumNodes; 00124 00125 public: 00126 explicit FoldingSetImpl(unsigned Log2InitSize = 6); 00127 virtual ~FoldingSetImpl(); 00128 00129 //===--------------------------------------------------------------------===// 00130 /// Node - This class is used to maintain the singly linked bucket list in 00131 /// a folding set. 00132 /// 00133 class Node { 00134 private: 00135 // NextInFoldingSetBucket - next link in the bucket list. 00136 void *NextInFoldingSetBucket; 00137 00138 public: 00139 00140 Node() : NextInFoldingSetBucket(nullptr) {} 00141 00142 // Accessors 00143 void *getNextInBucket() const { return NextInFoldingSetBucket; } 00144 void SetNextInBucket(void *N) { NextInFoldingSetBucket = N; } 00145 }; 00146 00147 /// clear - Remove all nodes from the folding set. 00148 void clear(); 00149 00150 /// RemoveNode - Remove a node from the folding set, returning true if one 00151 /// was removed or false if the node was not in the folding set. 00152 bool RemoveNode(Node *N); 00153 00154 /// GetOrInsertNode - If there is an existing simple Node exactly 00155 /// equal to the specified node, return it. Otherwise, insert 'N' and return 00156 /// it instead. 00157 Node *GetOrInsertNode(Node *N); 00158 00159 /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists, 00160 /// return it. If not, return the insertion token that will make insertion 00161 /// faster. 00162 Node *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos); 00163 00164 /// InsertNode - Insert the specified node into the folding set, knowing that 00165 /// it is not already in the folding set. InsertPos must be obtained from 00166 /// FindNodeOrInsertPos. 00167 void InsertNode(Node *N, void *InsertPos); 00168 00169 /// InsertNode - Insert the specified node into the folding set, knowing that 00170 /// it is not already in the folding set. 00171 void InsertNode(Node *N) { 00172 Node *Inserted = GetOrInsertNode(N); 00173 (void)Inserted; 00174 assert(Inserted == N && "Node already inserted!"); 00175 } 00176 00177 /// size - Returns the number of nodes in the folding set. 00178 unsigned size() const { return NumNodes; } 00179 00180 /// empty - Returns true if there are no nodes in the folding set. 00181 bool empty() const { return NumNodes == 0; } 00182 00183 private: 00184 00185 /// GrowHashTable - Double the size of the hash table and rehash everything. 00186 /// 00187 void GrowHashTable(); 00188 00189 protected: 00190 00191 /// GetNodeProfile - Instantiations of the FoldingSet template implement 00192 /// this function to gather data bits for the given node. 00193 virtual void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const = 0; 00194 /// NodeEquals - Instantiations of the FoldingSet template implement 00195 /// this function to compare the given node with the given ID. 00196 virtual bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash, 00197 FoldingSetNodeID &TempID) const=0; 00198 /// ComputeNodeHash - Instantiations of the FoldingSet template implement 00199 /// this function to compute a hash value for the given node. 00200 virtual unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const = 0; 00201 }; 00202 00203 //===----------------------------------------------------------------------===// 00204 00205 template<typename T> struct FoldingSetTrait; 00206 00207 /// DefaultFoldingSetTrait - This class provides default implementations 00208 /// for FoldingSetTrait implementations. 00209 /// 00210 template<typename T> struct DefaultFoldingSetTrait { 00211 static void Profile(const T &X, FoldingSetNodeID &ID) { 00212 X.Profile(ID); 00213 } 00214 static void Profile(T &X, FoldingSetNodeID &ID) { 00215 X.Profile(ID); 00216 } 00217 00218 // Equals - Test if the profile for X would match ID, using TempID 00219 // to compute a temporary ID if necessary. The default implementation 00220 // just calls Profile and does a regular comparison. Implementations 00221 // can override this to provide more efficient implementations. 00222 static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash, 00223 FoldingSetNodeID &TempID); 00224 00225 // ComputeHash - Compute a hash value for X, using TempID to 00226 // compute a temporary ID if necessary. The default implementation 00227 // just calls Profile and does a regular hash computation. 00228 // Implementations can override this to provide more efficient 00229 // implementations. 00230 static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID); 00231 }; 00232 00233 /// FoldingSetTrait - This trait class is used to define behavior of how 00234 /// to "profile" (in the FoldingSet parlance) an object of a given type. 00235 /// The default behavior is to invoke a 'Profile' method on an object, but 00236 /// through template specialization the behavior can be tailored for specific 00237 /// types. Combined with the FoldingSetNodeWrapper class, one can add objects 00238 /// to FoldingSets that were not originally designed to have that behavior. 00239 template<typename T> struct FoldingSetTrait 00240 : public DefaultFoldingSetTrait<T> {}; 00241 00242 template<typename T, typename Ctx> struct ContextualFoldingSetTrait; 00243 00244 /// DefaultContextualFoldingSetTrait - Like DefaultFoldingSetTrait, but 00245 /// for ContextualFoldingSets. 00246 template<typename T, typename Ctx> 00247 struct DefaultContextualFoldingSetTrait { 00248 static void Profile(T &X, FoldingSetNodeID &ID, Ctx Context) { 00249 X.Profile(ID, Context); 00250 } 00251 static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash, 00252 FoldingSetNodeID &TempID, Ctx Context); 00253 static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID, 00254 Ctx Context); 00255 }; 00256 00257 /// ContextualFoldingSetTrait - Like FoldingSetTrait, but for 00258 /// ContextualFoldingSets. 00259 template<typename T, typename Ctx> struct ContextualFoldingSetTrait 00260 : public DefaultContextualFoldingSetTrait<T, Ctx> {}; 00261 00262 //===--------------------------------------------------------------------===// 00263 /// FoldingSetNodeIDRef - This class describes a reference to an interned 00264 /// FoldingSetNodeID, which can be a useful to store node id data rather 00265 /// than using plain FoldingSetNodeIDs, since the 32-element SmallVector 00266 /// is often much larger than necessary, and the possibility of heap 00267 /// allocation means it requires a non-trivial destructor call. 00268 class FoldingSetNodeIDRef { 00269 const unsigned *Data; 00270 size_t Size; 00271 public: 00272 FoldingSetNodeIDRef() : Data(nullptr), Size(0) {} 00273 FoldingSetNodeIDRef(const unsigned *D, size_t S) : Data(D), Size(S) {} 00274 00275 /// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef, 00276 /// used to lookup the node in the FoldingSetImpl. 00277 unsigned ComputeHash() const; 00278 00279 bool operator==(FoldingSetNodeIDRef) const; 00280 00281 bool operator!=(FoldingSetNodeIDRef RHS) const { return !(*this == RHS); } 00282 00283 /// Used to compare the "ordering" of two nodes as defined by the 00284 /// profiled bits and their ordering defined by memcmp(). 00285 bool operator<(FoldingSetNodeIDRef) const; 00286 00287 const unsigned *getData() const { return Data; } 00288 size_t getSize() const { return Size; } 00289 }; 00290 00291 //===--------------------------------------------------------------------===// 00292 /// FoldingSetNodeID - This class is used to gather all the unique data bits of 00293 /// a node. When all the bits are gathered this class is used to produce a 00294 /// hash value for the node. 00295 /// 00296 class FoldingSetNodeID { 00297 /// Bits - Vector of all the data bits that make the node unique. 00298 /// Use a SmallVector to avoid a heap allocation in the common case. 00299 SmallVector<unsigned, 32> Bits; 00300 00301 public: 00302 FoldingSetNodeID() {} 00303 00304 FoldingSetNodeID(FoldingSetNodeIDRef Ref) 00305 : Bits(Ref.getData(), Ref.getData() + Ref.getSize()) {} 00306 00307 /// Add* - Add various data types to Bit data. 00308 /// 00309 void AddPointer(const void *Ptr); 00310 void AddInteger(signed I); 00311 void AddInteger(unsigned I); 00312 void AddInteger(long I); 00313 void AddInteger(unsigned long I); 00314 void AddInteger(long long I); 00315 void AddInteger(unsigned long long I); 00316 void AddBoolean(bool B) { AddInteger(B ? 1U : 0U); } 00317 void AddString(StringRef String); 00318 void AddNodeID(const FoldingSetNodeID &ID); 00319 00320 template <typename T> 00321 inline void Add(const T &x) { FoldingSetTrait<T>::Profile(x, *this); } 00322 00323 /// clear - Clear the accumulated profile, allowing this FoldingSetNodeID 00324 /// object to be used to compute a new profile. 00325 inline void clear() { Bits.clear(); } 00326 00327 /// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used 00328 /// to lookup the node in the FoldingSetImpl. 00329 unsigned ComputeHash() const; 00330 00331 /// operator== - Used to compare two nodes to each other. 00332 /// 00333 bool operator==(const FoldingSetNodeID &RHS) const; 00334 bool operator==(const FoldingSetNodeIDRef RHS) const; 00335 00336 bool operator!=(const FoldingSetNodeID &RHS) const { return !(*this == RHS); } 00337 bool operator!=(const FoldingSetNodeIDRef RHS) const { return !(*this ==RHS);} 00338 00339 /// Used to compare the "ordering" of two nodes as defined by the 00340 /// profiled bits and their ordering defined by memcmp(). 00341 bool operator<(const FoldingSetNodeID &RHS) const; 00342 bool operator<(const FoldingSetNodeIDRef RHS) const; 00343 00344 /// Intern - Copy this node's data to a memory region allocated from the 00345 /// given allocator and return a FoldingSetNodeIDRef describing the 00346 /// interned data. 00347 FoldingSetNodeIDRef Intern(BumpPtrAllocator &Allocator) const; 00348 }; 00349 00350 // Convenience type to hide the implementation of the folding set. 00351 typedef FoldingSetImpl::Node FoldingSetNode; 00352 template<class T> class FoldingSetIterator; 00353 template<class T> class FoldingSetBucketIterator; 00354 00355 // Definitions of FoldingSetTrait and ContextualFoldingSetTrait functions, which 00356 // require the definition of FoldingSetNodeID. 00357 template<typename T> 00358 inline bool 00359 DefaultFoldingSetTrait<T>::Equals(T &X, const FoldingSetNodeID &ID, 00360 unsigned /*IDHash*/, 00361 FoldingSetNodeID &TempID) { 00362 FoldingSetTrait<T>::Profile(X, TempID); 00363 return TempID == ID; 00364 } 00365 template<typename T> 00366 inline unsigned 00367 DefaultFoldingSetTrait<T>::ComputeHash(T &X, FoldingSetNodeID &TempID) { 00368 FoldingSetTrait<T>::Profile(X, TempID); 00369 return TempID.ComputeHash(); 00370 } 00371 template<typename T, typename Ctx> 00372 inline bool 00373 DefaultContextualFoldingSetTrait<T, Ctx>::Equals(T &X, 00374 const FoldingSetNodeID &ID, 00375 unsigned /*IDHash*/, 00376 FoldingSetNodeID &TempID, 00377 Ctx Context) { 00378 ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context); 00379 return TempID == ID; 00380 } 00381 template<typename T, typename Ctx> 00382 inline unsigned 00383 DefaultContextualFoldingSetTrait<T, Ctx>::ComputeHash(T &X, 00384 FoldingSetNodeID &TempID, 00385 Ctx Context) { 00386 ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context); 00387 return TempID.ComputeHash(); 00388 } 00389 00390 //===----------------------------------------------------------------------===// 00391 /// FoldingSet - This template class is used to instantiate a specialized 00392 /// implementation of the folding set to the node class T. T must be a 00393 /// subclass of FoldingSetNode and implement a Profile function. 00394 /// 00395 template<class T> class FoldingSet : public FoldingSetImpl { 00396 private: 00397 /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a 00398 /// way to convert nodes into a unique specifier. 00399 void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const override { 00400 T *TN = static_cast<T *>(N); 00401 FoldingSetTrait<T>::Profile(*TN, ID); 00402 } 00403 /// NodeEquals - Instantiations may optionally provide a way to compare a 00404 /// node with a specified ID. 00405 bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash, 00406 FoldingSetNodeID &TempID) const override { 00407 T *TN = static_cast<T *>(N); 00408 return FoldingSetTrait<T>::Equals(*TN, ID, IDHash, TempID); 00409 } 00410 /// ComputeNodeHash - Instantiations may optionally provide a way to compute a 00411 /// hash value directly from a node. 00412 unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const override { 00413 T *TN = static_cast<T *>(N); 00414 return FoldingSetTrait<T>::ComputeHash(*TN, TempID); 00415 } 00416 00417 public: 00418 explicit FoldingSet(unsigned Log2InitSize = 6) 00419 : FoldingSetImpl(Log2InitSize) 00420 {} 00421 00422 typedef FoldingSetIterator<T> iterator; 00423 iterator begin() { return iterator(Buckets); } 00424 iterator end() { return iterator(Buckets+NumBuckets); } 00425 00426 typedef FoldingSetIterator<const T> const_iterator; 00427 const_iterator begin() const { return const_iterator(Buckets); } 00428 const_iterator end() const { return const_iterator(Buckets+NumBuckets); } 00429 00430 typedef FoldingSetBucketIterator<T> bucket_iterator; 00431 00432 bucket_iterator bucket_begin(unsigned hash) { 00433 return bucket_iterator(Buckets + (hash & (NumBuckets-1))); 00434 } 00435 00436 bucket_iterator bucket_end(unsigned hash) { 00437 return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true); 00438 } 00439 00440 /// GetOrInsertNode - If there is an existing simple Node exactly 00441 /// equal to the specified node, return it. Otherwise, insert 'N' and 00442 /// return it instead. 00443 T *GetOrInsertNode(Node *N) { 00444 return static_cast<T *>(FoldingSetImpl::GetOrInsertNode(N)); 00445 } 00446 00447 /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists, 00448 /// return it. If not, return the insertion token that will make insertion 00449 /// faster. 00450 T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) { 00451 return static_cast<T *>(FoldingSetImpl::FindNodeOrInsertPos(ID, InsertPos)); 00452 } 00453 }; 00454 00455 //===----------------------------------------------------------------------===// 00456 /// ContextualFoldingSet - This template class is a further refinement 00457 /// of FoldingSet which provides a context argument when calling 00458 /// Profile on its nodes. Currently, that argument is fixed at 00459 /// initialization time. 00460 /// 00461 /// T must be a subclass of FoldingSetNode and implement a Profile 00462 /// function with signature 00463 /// void Profile(llvm::FoldingSetNodeID &, Ctx); 00464 template <class T, class Ctx> 00465 class ContextualFoldingSet : public FoldingSetImpl { 00466 // Unfortunately, this can't derive from FoldingSet<T> because the 00467 // construction vtable for FoldingSet<T> requires 00468 // FoldingSet<T>::GetNodeProfile to be instantiated, which in turn 00469 // requires a single-argument T::Profile(). 00470 00471 private: 00472 Ctx Context; 00473 00474 /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a 00475 /// way to convert nodes into a unique specifier. 00476 void GetNodeProfile(FoldingSetImpl::Node *N, 00477 FoldingSetNodeID &ID) const override { 00478 T *TN = static_cast<T *>(N); 00479 ContextualFoldingSetTrait<T, Ctx>::Profile(*TN, ID, Context); 00480 } 00481 bool NodeEquals(FoldingSetImpl::Node *N, const FoldingSetNodeID &ID, 00482 unsigned IDHash, FoldingSetNodeID &TempID) const override { 00483 T *TN = static_cast<T *>(N); 00484 return ContextualFoldingSetTrait<T, Ctx>::Equals(*TN, ID, IDHash, TempID, 00485 Context); 00486 } 00487 unsigned ComputeNodeHash(FoldingSetImpl::Node *N, 00488 FoldingSetNodeID &TempID) const override { 00489 T *TN = static_cast<T *>(N); 00490 return ContextualFoldingSetTrait<T, Ctx>::ComputeHash(*TN, TempID, Context); 00491 } 00492 00493 public: 00494 explicit ContextualFoldingSet(Ctx Context, unsigned Log2InitSize = 6) 00495 : FoldingSetImpl(Log2InitSize), Context(Context) 00496 {} 00497 00498 Ctx getContext() const { return Context; } 00499 00500 00501 typedef FoldingSetIterator<T> iterator; 00502 iterator begin() { return iterator(Buckets); } 00503 iterator end() { return iterator(Buckets+NumBuckets); } 00504 00505 typedef FoldingSetIterator<const T> const_iterator; 00506 const_iterator begin() const { return const_iterator(Buckets); } 00507 const_iterator end() const { return const_iterator(Buckets+NumBuckets); } 00508 00509 typedef FoldingSetBucketIterator<T> bucket_iterator; 00510 00511 bucket_iterator bucket_begin(unsigned hash) { 00512 return bucket_iterator(Buckets + (hash & (NumBuckets-1))); 00513 } 00514 00515 bucket_iterator bucket_end(unsigned hash) { 00516 return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true); 00517 } 00518 00519 /// GetOrInsertNode - If there is an existing simple Node exactly 00520 /// equal to the specified node, return it. Otherwise, insert 'N' 00521 /// and return it instead. 00522 T *GetOrInsertNode(Node *N) { 00523 return static_cast<T *>(FoldingSetImpl::GetOrInsertNode(N)); 00524 } 00525 00526 /// FindNodeOrInsertPos - Look up the node specified by ID. If it 00527 /// exists, return it. If not, return the insertion token that will 00528 /// make insertion faster. 00529 T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) { 00530 return static_cast<T *>(FoldingSetImpl::FindNodeOrInsertPos(ID, InsertPos)); 00531 } 00532 }; 00533 00534 //===----------------------------------------------------------------------===// 00535 /// FoldingSetVectorIterator - This implements an iterator for 00536 /// FoldingSetVector. It is only necessary because FoldingSetIterator provides 00537 /// a value_type of T, while the vector in FoldingSetVector exposes 00538 /// a value_type of T*. Fortunately, FoldingSetIterator doesn't expose very 00539 /// much besides operator* and operator->, so we just wrap the inner vector 00540 /// iterator and perform the extra dereference. 00541 template <class T, class VectorIteratorT> 00542 class FoldingSetVectorIterator { 00543 // Provide a typedef to workaround the lack of correct injected class name 00544 // support in older GCCs. 00545 typedef FoldingSetVectorIterator<T, VectorIteratorT> SelfT; 00546 00547 VectorIteratorT Iterator; 00548 00549 public: 00550 FoldingSetVectorIterator(VectorIteratorT I) : Iterator(I) {} 00551 00552 bool operator==(const SelfT &RHS) const { 00553 return Iterator == RHS.Iterator; 00554 } 00555 bool operator!=(const SelfT &RHS) const { 00556 return Iterator != RHS.Iterator; 00557 } 00558 00559 T &operator*() const { return **Iterator; } 00560 00561 T *operator->() const { return *Iterator; } 00562 00563 inline SelfT &operator++() { 00564 ++Iterator; 00565 return *this; 00566 } 00567 SelfT operator++(int) { 00568 SelfT tmp = *this; 00569 ++*this; 00570 return tmp; 00571 } 00572 }; 00573 00574 //===----------------------------------------------------------------------===// 00575 /// FoldingSetVector - This template class combines a FoldingSet and a vector 00576 /// to provide the interface of FoldingSet but with deterministic iteration 00577 /// order based on the insertion order. T must be a subclass of FoldingSetNode 00578 /// and implement a Profile function. 00579 template <class T, class VectorT = SmallVector<T*, 8> > 00580 class FoldingSetVector { 00581 FoldingSet<T> Set; 00582 VectorT Vector; 00583 00584 public: 00585 explicit FoldingSetVector(unsigned Log2InitSize = 6) 00586 : Set(Log2InitSize) { 00587 } 00588 00589 typedef FoldingSetVectorIterator<T, typename VectorT::iterator> iterator; 00590 iterator begin() { return Vector.begin(); } 00591 iterator end() { return Vector.end(); } 00592 00593 typedef FoldingSetVectorIterator<const T, typename VectorT::const_iterator> 00594 const_iterator; 00595 const_iterator begin() const { return Vector.begin(); } 00596 const_iterator end() const { return Vector.end(); } 00597 00598 /// clear - Remove all nodes from the folding set. 00599 void clear() { Set.clear(); Vector.clear(); } 00600 00601 /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists, 00602 /// return it. If not, return the insertion token that will make insertion 00603 /// faster. 00604 T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) { 00605 return Set.FindNodeOrInsertPos(ID, InsertPos); 00606 } 00607 00608 /// GetOrInsertNode - If there is an existing simple Node exactly 00609 /// equal to the specified node, return it. Otherwise, insert 'N' and 00610 /// return it instead. 00611 T *GetOrInsertNode(T *N) { 00612 T *Result = Set.GetOrInsertNode(N); 00613 if (Result == N) Vector.push_back(N); 00614 return Result; 00615 } 00616 00617 /// InsertNode - Insert the specified node into the folding set, knowing that 00618 /// it is not already in the folding set. InsertPos must be obtained from 00619 /// FindNodeOrInsertPos. 00620 void InsertNode(T *N, void *InsertPos) { 00621 Set.InsertNode(N, InsertPos); 00622 Vector.push_back(N); 00623 } 00624 00625 /// InsertNode - Insert the specified node into the folding set, knowing that 00626 /// it is not already in the folding set. 00627 void InsertNode(T *N) { 00628 Set.InsertNode(N); 00629 Vector.push_back(N); 00630 } 00631 00632 /// size - Returns the number of nodes in the folding set. 00633 unsigned size() const { return Set.size(); } 00634 00635 /// empty - Returns true if there are no nodes in the folding set. 00636 bool empty() const { return Set.empty(); } 00637 }; 00638 00639 //===----------------------------------------------------------------------===// 00640 /// FoldingSetIteratorImpl - This is the common iterator support shared by all 00641 /// folding sets, which knows how to walk the folding set hash table. 00642 class FoldingSetIteratorImpl { 00643 protected: 00644 FoldingSetNode *NodePtr; 00645 FoldingSetIteratorImpl(void **Bucket); 00646 void advance(); 00647 00648 public: 00649 bool operator==(const FoldingSetIteratorImpl &RHS) const { 00650 return NodePtr == RHS.NodePtr; 00651 } 00652 bool operator!=(const FoldingSetIteratorImpl &RHS) const { 00653 return NodePtr != RHS.NodePtr; 00654 } 00655 }; 00656 00657 00658 template<class T> 00659 class FoldingSetIterator : public FoldingSetIteratorImpl { 00660 public: 00661 explicit FoldingSetIterator(void **Bucket) : FoldingSetIteratorImpl(Bucket) {} 00662 00663 T &operator*() const { 00664 return *static_cast<T*>(NodePtr); 00665 } 00666 00667 T *operator->() const { 00668 return static_cast<T*>(NodePtr); 00669 } 00670 00671 inline FoldingSetIterator &operator++() { // Preincrement 00672 advance(); 00673 return *this; 00674 } 00675 FoldingSetIterator operator++(int) { // Postincrement 00676 FoldingSetIterator tmp = *this; ++*this; return tmp; 00677 } 00678 }; 00679 00680 //===----------------------------------------------------------------------===// 00681 /// FoldingSetBucketIteratorImpl - This is the common bucket iterator support 00682 /// shared by all folding sets, which knows how to walk a particular bucket 00683 /// of a folding set hash table. 00684 00685 class FoldingSetBucketIteratorImpl { 00686 protected: 00687 void *Ptr; 00688 00689 explicit FoldingSetBucketIteratorImpl(void **Bucket); 00690 00691 FoldingSetBucketIteratorImpl(void **Bucket, bool) 00692 : Ptr(Bucket) {} 00693 00694 void advance() { 00695 void *Probe = static_cast<FoldingSetNode*>(Ptr)->getNextInBucket(); 00696 uintptr_t x = reinterpret_cast<uintptr_t>(Probe) & ~0x1; 00697 Ptr = reinterpret_cast<void*>(x); 00698 } 00699 00700 public: 00701 bool operator==(const FoldingSetBucketIteratorImpl &RHS) const { 00702 return Ptr == RHS.Ptr; 00703 } 00704 bool operator!=(const FoldingSetBucketIteratorImpl &RHS) const { 00705 return Ptr != RHS.Ptr; 00706 } 00707 }; 00708 00709 00710 template<class T> 00711 class FoldingSetBucketIterator : public FoldingSetBucketIteratorImpl { 00712 public: 00713 explicit FoldingSetBucketIterator(void **Bucket) : 00714 FoldingSetBucketIteratorImpl(Bucket) {} 00715 00716 FoldingSetBucketIterator(void **Bucket, bool) : 00717 FoldingSetBucketIteratorImpl(Bucket, true) {} 00718 00719 T &operator*() const { return *static_cast<T*>(Ptr); } 00720 T *operator->() const { return static_cast<T*>(Ptr); } 00721 00722 inline FoldingSetBucketIterator &operator++() { // Preincrement 00723 advance(); 00724 return *this; 00725 } 00726 FoldingSetBucketIterator operator++(int) { // Postincrement 00727 FoldingSetBucketIterator tmp = *this; ++*this; return tmp; 00728 } 00729 }; 00730 00731 //===----------------------------------------------------------------------===// 00732 /// FoldingSetNodeWrapper - This template class is used to "wrap" arbitrary 00733 /// types in an enclosing object so that they can be inserted into FoldingSets. 00734 template <typename T> 00735 class FoldingSetNodeWrapper : public FoldingSetNode { 00736 T data; 00737 public: 00738 explicit FoldingSetNodeWrapper(const T &x) : data(x) {} 00739 virtual ~FoldingSetNodeWrapper() {} 00740 00741 template<typename A1> 00742 explicit FoldingSetNodeWrapper(const A1 &a1) 00743 : data(a1) {} 00744 00745 template <typename A1, typename A2> 00746 explicit FoldingSetNodeWrapper(const A1 &a1, const A2 &a2) 00747 : data(a1,a2) {} 00748 00749 template <typename A1, typename A2, typename A3> 00750 explicit FoldingSetNodeWrapper(const A1 &a1, const A2 &a2, const A3 &a3) 00751 : data(a1,a2,a3) {} 00752 00753 template <typename A1, typename A2, typename A3, typename A4> 00754 explicit FoldingSetNodeWrapper(const A1 &a1, const A2 &a2, const A3 &a3, 00755 const A4 &a4) 00756 : data(a1,a2,a3,a4) {} 00757 00758 template <typename A1, typename A2, typename A3, typename A4, typename A5> 00759 explicit FoldingSetNodeWrapper(const A1 &a1, const A2 &a2, const A3 &a3, 00760 const A4 &a4, const A5 &a5) 00761 : data(a1,a2,a3,a4,a5) {} 00762 00763 00764 void Profile(FoldingSetNodeID &ID) { FoldingSetTrait<T>::Profile(data, ID); } 00765 00766 T &getValue() { return data; } 00767 const T &getValue() const { return data; } 00768 00769 operator T&() { return data; } 00770 operator const T&() const { return data; } 00771 }; 00772 00773 //===----------------------------------------------------------------------===// 00774 /// FastFoldingSetNode - This is a subclass of FoldingSetNode which stores 00775 /// a FoldingSetNodeID value rather than requiring the node to recompute it 00776 /// each time it is needed. This trades space for speed (which can be 00777 /// significant if the ID is long), and it also permits nodes to drop 00778 /// information that would otherwise only be required for recomputing an ID. 00779 class FastFoldingSetNode : public FoldingSetNode { 00780 FoldingSetNodeID FastID; 00781 protected: 00782 explicit FastFoldingSetNode(const FoldingSetNodeID &ID) : FastID(ID) {} 00783 public: 00784 void Profile(FoldingSetNodeID &ID) const { 00785 ID.AddNodeID(FastID); 00786 } 00787 }; 00788 00789 //===----------------------------------------------------------------------===// 00790 // Partial specializations of FoldingSetTrait. 00791 00792 template<typename T> struct FoldingSetTrait<T*> { 00793 static inline void Profile(T *X, FoldingSetNodeID &ID) { 00794 ID.AddPointer(X); 00795 } 00796 }; 00797 template <typename T1, typename T2> 00798 struct FoldingSetTrait<std::pair<T1, T2>> { 00799 static inline void Profile(const std::pair<T1, T2> &P, 00800 llvm::FoldingSetNodeID &ID) { 00801 ID.Add(P.first); 00802 ID.Add(P.second); 00803 } 00804 }; 00805 } // End of namespace llvm. 00806 00807 #endif