LLVM API Documentation
00001 //===-- llvm/ADT/Hashing.h - Utilities for hashing --------------*- C++ -*-===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file implements the newly proposed standard C++ interfaces for hashing 00011 // arbitrary data and building hash functions for user-defined types. This 00012 // interface was originally proposed in N3333[1] and is currently under review 00013 // for inclusion in a future TR and/or standard. 00014 // 00015 // The primary interfaces provide are comprised of one type and three functions: 00016 // 00017 // -- 'hash_code' class is an opaque type representing the hash code for some 00018 // data. It is the intended product of hashing, and can be used to implement 00019 // hash tables, checksumming, and other common uses of hashes. It is not an 00020 // integer type (although it can be converted to one) because it is risky 00021 // to assume much about the internals of a hash_code. In particular, each 00022 // execution of the program has a high probability of producing a different 00023 // hash_code for a given input. Thus their values are not stable to save or 00024 // persist, and should only be used during the execution for the 00025 // construction of hashing datastructures. 00026 // 00027 // -- 'hash_value' is a function designed to be overloaded for each 00028 // user-defined type which wishes to be used within a hashing context. It 00029 // should be overloaded within the user-defined type's namespace and found 00030 // via ADL. Overloads for primitive types are provided by this library. 00031 // 00032 // -- 'hash_combine' and 'hash_combine_range' are functions designed to aid 00033 // programmers in easily and intuitively combining a set of data into 00034 // a single hash_code for their object. They should only logically be used 00035 // within the implementation of a 'hash_value' routine or similar context. 00036 // 00037 // Note that 'hash_combine_range' contains very special logic for hashing 00038 // a contiguous array of integers or pointers. This logic is *extremely* fast, 00039 // on a modern Intel "Gainestown" Xeon (Nehalem uarch) @2.2 GHz, these were 00040 // benchmarked at over 6.5 GiB/s for large keys, and <20 cycles/hash for keys 00041 // under 32-bytes. 00042 // 00043 //===----------------------------------------------------------------------===// 00044 00045 #ifndef LLVM_ADT_HASHING_H 00046 #define LLVM_ADT_HASHING_H 00047 00048 #include "llvm/Support/DataTypes.h" 00049 #include "llvm/Support/Host.h" 00050 #include "llvm/Support/SwapByteOrder.h" 00051 #include "llvm/Support/type_traits.h" 00052 #include <algorithm> 00053 #include <cassert> 00054 #include <cstring> 00055 #include <iterator> 00056 #include <utility> 00057 00058 // Allow detecting C++11 feature availability when building with Clang without 00059 // breaking other compilers. 00060 #ifndef __has_feature 00061 # define __has_feature(x) 0 00062 #endif 00063 00064 namespace llvm { 00065 00066 /// \brief An opaque object representing a hash code. 00067 /// 00068 /// This object represents the result of hashing some entity. It is intended to 00069 /// be used to implement hashtables or other hashing-based data structures. 00070 /// While it wraps and exposes a numeric value, this value should not be 00071 /// trusted to be stable or predictable across processes or executions. 00072 /// 00073 /// In order to obtain the hash_code for an object 'x': 00074 /// \code 00075 /// using llvm::hash_value; 00076 /// llvm::hash_code code = hash_value(x); 00077 /// \endcode 00078 class hash_code { 00079 size_t value; 00080 00081 public: 00082 /// \brief Default construct a hash_code. 00083 /// Note that this leaves the value uninitialized. 00084 hash_code() {} 00085 00086 /// \brief Form a hash code directly from a numerical value. 00087 hash_code(size_t value) : value(value) {} 00088 00089 /// \brief Convert the hash code to its numerical value for use. 00090 /*explicit*/ operator size_t() const { return value; } 00091 00092 friend bool operator==(const hash_code &lhs, const hash_code &rhs) { 00093 return lhs.value == rhs.value; 00094 } 00095 friend bool operator!=(const hash_code &lhs, const hash_code &rhs) { 00096 return lhs.value != rhs.value; 00097 } 00098 00099 /// \brief Allow a hash_code to be directly run through hash_value. 00100 friend size_t hash_value(const hash_code &code) { return code.value; } 00101 }; 00102 00103 /// \brief Compute a hash_code for any integer value. 00104 /// 00105 /// Note that this function is intended to compute the same hash_code for 00106 /// a particular value without regard to the pre-promotion type. This is in 00107 /// contrast to hash_combine which may produce different hash_codes for 00108 /// differing argument types even if they would implicit promote to a common 00109 /// type without changing the value. 00110 template <typename T> 00111 typename std::enable_if<is_integral_or_enum<T>::value, hash_code>::type 00112 hash_value(T value); 00113 00114 /// \brief Compute a hash_code for a pointer's address. 00115 /// 00116 /// N.B.: This hashes the *address*. Not the value and not the type. 00117 template <typename T> hash_code hash_value(const T *ptr); 00118 00119 /// \brief Compute a hash_code for a pair of objects. 00120 template <typename T, typename U> 00121 hash_code hash_value(const std::pair<T, U> &arg); 00122 00123 /// \brief Compute a hash_code for a standard string. 00124 template <typename T> 00125 hash_code hash_value(const std::basic_string<T> &arg); 00126 00127 00128 /// \brief Override the execution seed with a fixed value. 00129 /// 00130 /// This hashing library uses a per-execution seed designed to change on each 00131 /// run with high probability in order to ensure that the hash codes are not 00132 /// attackable and to ensure that output which is intended to be stable does 00133 /// not rely on the particulars of the hash codes produced. 00134 /// 00135 /// That said, there are use cases where it is important to be able to 00136 /// reproduce *exactly* a specific behavior. To that end, we provide a function 00137 /// which will forcibly set the seed to a fixed value. This must be done at the 00138 /// start of the program, before any hashes are computed. Also, it cannot be 00139 /// undone. This makes it thread-hostile and very hard to use outside of 00140 /// immediately on start of a simple program designed for reproducible 00141 /// behavior. 00142 void set_fixed_execution_hash_seed(size_t fixed_value); 00143 00144 00145 // All of the implementation details of actually computing the various hash 00146 // code values are held within this namespace. These routines are included in 00147 // the header file mainly to allow inlining and constant propagation. 00148 namespace hashing { 00149 namespace detail { 00150 00151 inline uint64_t fetch64(const char *p) { 00152 uint64_t result; 00153 memcpy(&result, p, sizeof(result)); 00154 if (sys::IsBigEndianHost) 00155 sys::swapByteOrder(result); 00156 return result; 00157 } 00158 00159 inline uint32_t fetch32(const char *p) { 00160 uint32_t result; 00161 memcpy(&result, p, sizeof(result)); 00162 if (sys::IsBigEndianHost) 00163 sys::swapByteOrder(result); 00164 return result; 00165 } 00166 00167 /// Some primes between 2^63 and 2^64 for various uses. 00168 static const uint64_t k0 = 0xc3a5c85c97cb3127ULL; 00169 static const uint64_t k1 = 0xb492b66fbe98f273ULL; 00170 static const uint64_t k2 = 0x9ae16a3b2f90404fULL; 00171 static const uint64_t k3 = 0xc949d7c7509e6557ULL; 00172 00173 /// \brief Bitwise right rotate. 00174 /// Normally this will compile to a single instruction, especially if the 00175 /// shift is a manifest constant. 00176 inline uint64_t rotate(uint64_t val, size_t shift) { 00177 // Avoid shifting by 64: doing so yields an undefined result. 00178 return shift == 0 ? val : ((val >> shift) | (val << (64 - shift))); 00179 } 00180 00181 inline uint64_t shift_mix(uint64_t val) { 00182 return val ^ (val >> 47); 00183 } 00184 00185 inline uint64_t hash_16_bytes(uint64_t low, uint64_t high) { 00186 // Murmur-inspired hashing. 00187 const uint64_t kMul = 0x9ddfea08eb382d69ULL; 00188 uint64_t a = (low ^ high) * kMul; 00189 a ^= (a >> 47); 00190 uint64_t b = (high ^ a) * kMul; 00191 b ^= (b >> 47); 00192 b *= kMul; 00193 return b; 00194 } 00195 00196 inline uint64_t hash_1to3_bytes(const char *s, size_t len, uint64_t seed) { 00197 uint8_t a = s[0]; 00198 uint8_t b = s[len >> 1]; 00199 uint8_t c = s[len - 1]; 00200 uint32_t y = static_cast<uint32_t>(a) + (static_cast<uint32_t>(b) << 8); 00201 uint32_t z = len + (static_cast<uint32_t>(c) << 2); 00202 return shift_mix(y * k2 ^ z * k3 ^ seed) * k2; 00203 } 00204 00205 inline uint64_t hash_4to8_bytes(const char *s, size_t len, uint64_t seed) { 00206 uint64_t a = fetch32(s); 00207 return hash_16_bytes(len + (a << 3), seed ^ fetch32(s + len - 4)); 00208 } 00209 00210 inline uint64_t hash_9to16_bytes(const char *s, size_t len, uint64_t seed) { 00211 uint64_t a = fetch64(s); 00212 uint64_t b = fetch64(s + len - 8); 00213 return hash_16_bytes(seed ^ a, rotate(b + len, len)) ^ b; 00214 } 00215 00216 inline uint64_t hash_17to32_bytes(const char *s, size_t len, uint64_t seed) { 00217 uint64_t a = fetch64(s) * k1; 00218 uint64_t b = fetch64(s + 8); 00219 uint64_t c = fetch64(s + len - 8) * k2; 00220 uint64_t d = fetch64(s + len - 16) * k0; 00221 return hash_16_bytes(rotate(a - b, 43) + rotate(c ^ seed, 30) + d, 00222 a + rotate(b ^ k3, 20) - c + len + seed); 00223 } 00224 00225 inline uint64_t hash_33to64_bytes(const char *s, size_t len, uint64_t seed) { 00226 uint64_t z = fetch64(s + 24); 00227 uint64_t a = fetch64(s) + (len + fetch64(s + len - 16)) * k0; 00228 uint64_t b = rotate(a + z, 52); 00229 uint64_t c = rotate(a, 37); 00230 a += fetch64(s + 8); 00231 c += rotate(a, 7); 00232 a += fetch64(s + 16); 00233 uint64_t vf = a + z; 00234 uint64_t vs = b + rotate(a, 31) + c; 00235 a = fetch64(s + 16) + fetch64(s + len - 32); 00236 z = fetch64(s + len - 8); 00237 b = rotate(a + z, 52); 00238 c = rotate(a, 37); 00239 a += fetch64(s + len - 24); 00240 c += rotate(a, 7); 00241 a += fetch64(s + len - 16); 00242 uint64_t wf = a + z; 00243 uint64_t ws = b + rotate(a, 31) + c; 00244 uint64_t r = shift_mix((vf + ws) * k2 + (wf + vs) * k0); 00245 return shift_mix((seed ^ (r * k0)) + vs) * k2; 00246 } 00247 00248 inline uint64_t hash_short(const char *s, size_t length, uint64_t seed) { 00249 if (length >= 4 && length <= 8) 00250 return hash_4to8_bytes(s, length, seed); 00251 if (length > 8 && length <= 16) 00252 return hash_9to16_bytes(s, length, seed); 00253 if (length > 16 && length <= 32) 00254 return hash_17to32_bytes(s, length, seed); 00255 if (length > 32) 00256 return hash_33to64_bytes(s, length, seed); 00257 if (length != 0) 00258 return hash_1to3_bytes(s, length, seed); 00259 00260 return k2 ^ seed; 00261 } 00262 00263 /// \brief The intermediate state used during hashing. 00264 /// Currently, the algorithm for computing hash codes is based on CityHash and 00265 /// keeps 56 bytes of arbitrary state. 00266 struct hash_state { 00267 uint64_t h0, h1, h2, h3, h4, h5, h6; 00268 00269 /// \brief Create a new hash_state structure and initialize it based on the 00270 /// seed and the first 64-byte chunk. 00271 /// This effectively performs the initial mix. 00272 static hash_state create(const char *s, uint64_t seed) { 00273 hash_state state = { 00274 0, seed, hash_16_bytes(seed, k1), rotate(seed ^ k1, 49), 00275 seed * k1, shift_mix(seed), 0 }; 00276 state.h6 = hash_16_bytes(state.h4, state.h5); 00277 state.mix(s); 00278 return state; 00279 } 00280 00281 /// \brief Mix 32-bytes from the input sequence into the 16-bytes of 'a' 00282 /// and 'b', including whatever is already in 'a' and 'b'. 00283 static void mix_32_bytes(const char *s, uint64_t &a, uint64_t &b) { 00284 a += fetch64(s); 00285 uint64_t c = fetch64(s + 24); 00286 b = rotate(b + a + c, 21); 00287 uint64_t d = a; 00288 a += fetch64(s + 8) + fetch64(s + 16); 00289 b += rotate(a, 44) + d; 00290 a += c; 00291 } 00292 00293 /// \brief Mix in a 64-byte buffer of data. 00294 /// We mix all 64 bytes even when the chunk length is smaller, but we 00295 /// record the actual length. 00296 void mix(const char *s) { 00297 h0 = rotate(h0 + h1 + h3 + fetch64(s + 8), 37) * k1; 00298 h1 = rotate(h1 + h4 + fetch64(s + 48), 42) * k1; 00299 h0 ^= h6; 00300 h1 += h3 + fetch64(s + 40); 00301 h2 = rotate(h2 + h5, 33) * k1; 00302 h3 = h4 * k1; 00303 h4 = h0 + h5; 00304 mix_32_bytes(s, h3, h4); 00305 h5 = h2 + h6; 00306 h6 = h1 + fetch64(s + 16); 00307 mix_32_bytes(s + 32, h5, h6); 00308 std::swap(h2, h0); 00309 } 00310 00311 /// \brief Compute the final 64-bit hash code value based on the current 00312 /// state and the length of bytes hashed. 00313 uint64_t finalize(size_t length) { 00314 return hash_16_bytes(hash_16_bytes(h3, h5) + shift_mix(h1) * k1 + h2, 00315 hash_16_bytes(h4, h6) + shift_mix(length) * k1 + h0); 00316 } 00317 }; 00318 00319 00320 /// \brief A global, fixed seed-override variable. 00321 /// 00322 /// This variable can be set using the \see llvm::set_fixed_execution_seed 00323 /// function. See that function for details. Do not, under any circumstances, 00324 /// set or read this variable. 00325 extern size_t fixed_seed_override; 00326 00327 inline size_t get_execution_seed() { 00328 // FIXME: This needs to be a per-execution seed. This is just a placeholder 00329 // implementation. Switching to a per-execution seed is likely to flush out 00330 // instability bugs and so will happen as its own commit. 00331 // 00332 // However, if there is a fixed seed override set the first time this is 00333 // called, return that instead of the per-execution seed. 00334 const uint64_t seed_prime = 0xff51afd7ed558ccdULL; 00335 static size_t seed = fixed_seed_override ? fixed_seed_override 00336 : (size_t)seed_prime; 00337 return seed; 00338 } 00339 00340 00341 /// \brief Trait to indicate whether a type's bits can be hashed directly. 00342 /// 00343 /// A type trait which is true if we want to combine values for hashing by 00344 /// reading the underlying data. It is false if values of this type must 00345 /// first be passed to hash_value, and the resulting hash_codes combined. 00346 // 00347 // FIXME: We want to replace is_integral_or_enum and is_pointer here with 00348 // a predicate which asserts that comparing the underlying storage of two 00349 // values of the type for equality is equivalent to comparing the two values 00350 // for equality. For all the platforms we care about, this holds for integers 00351 // and pointers, but there are platforms where it doesn't and we would like to 00352 // support user-defined types which happen to satisfy this property. 00353 template <typename T> struct is_hashable_data 00354 : std::integral_constant<bool, ((is_integral_or_enum<T>::value || 00355 std::is_pointer<T>::value) && 00356 64 % sizeof(T) == 0)> {}; 00357 00358 // Special case std::pair to detect when both types are viable and when there 00359 // is no alignment-derived padding in the pair. This is a bit of a lie because 00360 // std::pair isn't truly POD, but it's close enough in all reasonable 00361 // implementations for our use case of hashing the underlying data. 00362 template <typename T, typename U> struct is_hashable_data<std::pair<T, U> > 00363 : std::integral_constant<bool, (is_hashable_data<T>::value && 00364 is_hashable_data<U>::value && 00365 (sizeof(T) + sizeof(U)) == 00366 sizeof(std::pair<T, U>))> {}; 00367 00368 /// \brief Helper to get the hashable data representation for a type. 00369 /// This variant is enabled when the type itself can be used. 00370 template <typename T> 00371 typename std::enable_if<is_hashable_data<T>::value, T>::type 00372 get_hashable_data(const T &value) { 00373 return value; 00374 } 00375 /// \brief Helper to get the hashable data representation for a type. 00376 /// This variant is enabled when we must first call hash_value and use the 00377 /// result as our data. 00378 template <typename T> 00379 typename std::enable_if<!is_hashable_data<T>::value, size_t>::type 00380 get_hashable_data(const T &value) { 00381 using ::llvm::hash_value; 00382 return hash_value(value); 00383 } 00384 00385 /// \brief Helper to store data from a value into a buffer and advance the 00386 /// pointer into that buffer. 00387 /// 00388 /// This routine first checks whether there is enough space in the provided 00389 /// buffer, and if not immediately returns false. If there is space, it 00390 /// copies the underlying bytes of value into the buffer, advances the 00391 /// buffer_ptr past the copied bytes, and returns true. 00392 template <typename T> 00393 bool store_and_advance(char *&buffer_ptr, char *buffer_end, const T& value, 00394 size_t offset = 0) { 00395 size_t store_size = sizeof(value) - offset; 00396 if (buffer_ptr + store_size > buffer_end) 00397 return false; 00398 const char *value_data = reinterpret_cast<const char *>(&value); 00399 memcpy(buffer_ptr, value_data + offset, store_size); 00400 buffer_ptr += store_size; 00401 return true; 00402 } 00403 00404 /// \brief Implement the combining of integral values into a hash_code. 00405 /// 00406 /// This overload is selected when the value type of the iterator is 00407 /// integral. Rather than computing a hash_code for each object and then 00408 /// combining them, this (as an optimization) directly combines the integers. 00409 template <typename InputIteratorT> 00410 hash_code hash_combine_range_impl(InputIteratorT first, InputIteratorT last) { 00411 const size_t seed = get_execution_seed(); 00412 char buffer[64], *buffer_ptr = buffer; 00413 char *const buffer_end = std::end(buffer); 00414 while (first != last && store_and_advance(buffer_ptr, buffer_end, 00415 get_hashable_data(*first))) 00416 ++first; 00417 if (first == last) 00418 return hash_short(buffer, buffer_ptr - buffer, seed); 00419 assert(buffer_ptr == buffer_end); 00420 00421 hash_state state = state.create(buffer, seed); 00422 size_t length = 64; 00423 while (first != last) { 00424 // Fill up the buffer. We don't clear it, which re-mixes the last round 00425 // when only a partial 64-byte chunk is left. 00426 buffer_ptr = buffer; 00427 while (first != last && store_and_advance(buffer_ptr, buffer_end, 00428 get_hashable_data(*first))) 00429 ++first; 00430 00431 // Rotate the buffer if we did a partial fill in order to simulate doing 00432 // a mix of the last 64-bytes. That is how the algorithm works when we 00433 // have a contiguous byte sequence, and we want to emulate that here. 00434 std::rotate(buffer, buffer_ptr, buffer_end); 00435 00436 // Mix this chunk into the current state. 00437 state.mix(buffer); 00438 length += buffer_ptr - buffer; 00439 }; 00440 00441 return state.finalize(length); 00442 } 00443 00444 /// \brief Implement the combining of integral values into a hash_code. 00445 /// 00446 /// This overload is selected when the value type of the iterator is integral 00447 /// and when the input iterator is actually a pointer. Rather than computing 00448 /// a hash_code for each object and then combining them, this (as an 00449 /// optimization) directly combines the integers. Also, because the integers 00450 /// are stored in contiguous memory, this routine avoids copying each value 00451 /// and directly reads from the underlying memory. 00452 template <typename ValueT> 00453 typename std::enable_if<is_hashable_data<ValueT>::value, hash_code>::type 00454 hash_combine_range_impl(ValueT *first, ValueT *last) { 00455 const size_t seed = get_execution_seed(); 00456 const char *s_begin = reinterpret_cast<const char *>(first); 00457 const char *s_end = reinterpret_cast<const char *>(last); 00458 const size_t length = std::distance(s_begin, s_end); 00459 if (length <= 64) 00460 return hash_short(s_begin, length, seed); 00461 00462 const char *s_aligned_end = s_begin + (length & ~63); 00463 hash_state state = state.create(s_begin, seed); 00464 s_begin += 64; 00465 while (s_begin != s_aligned_end) { 00466 state.mix(s_begin); 00467 s_begin += 64; 00468 } 00469 if (length & 63) 00470 state.mix(s_end - 64); 00471 00472 return state.finalize(length); 00473 } 00474 00475 } // namespace detail 00476 } // namespace hashing 00477 00478 00479 /// \brief Compute a hash_code for a sequence of values. 00480 /// 00481 /// This hashes a sequence of values. It produces the same hash_code as 00482 /// 'hash_combine(a, b, c, ...)', but can run over arbitrary sized sequences 00483 /// and is significantly faster given pointers and types which can be hashed as 00484 /// a sequence of bytes. 00485 template <typename InputIteratorT> 00486 hash_code hash_combine_range(InputIteratorT first, InputIteratorT last) { 00487 return ::llvm::hashing::detail::hash_combine_range_impl(first, last); 00488 } 00489 00490 00491 // Implementation details for hash_combine. 00492 namespace hashing { 00493 namespace detail { 00494 00495 /// \brief Helper class to manage the recursive combining of hash_combine 00496 /// arguments. 00497 /// 00498 /// This class exists to manage the state and various calls involved in the 00499 /// recursive combining of arguments used in hash_combine. It is particularly 00500 /// useful at minimizing the code in the recursive calls to ease the pain 00501 /// caused by a lack of variadic functions. 00502 struct hash_combine_recursive_helper { 00503 char buffer[64]; 00504 hash_state state; 00505 const size_t seed; 00506 00507 public: 00508 /// \brief Construct a recursive hash combining helper. 00509 /// 00510 /// This sets up the state for a recursive hash combine, including getting 00511 /// the seed and buffer setup. 00512 hash_combine_recursive_helper() 00513 : seed(get_execution_seed()) {} 00514 00515 /// \brief Combine one chunk of data into the current in-flight hash. 00516 /// 00517 /// This merges one chunk of data into the hash. First it tries to buffer 00518 /// the data. If the buffer is full, it hashes the buffer into its 00519 /// hash_state, empties it, and then merges the new chunk in. This also 00520 /// handles cases where the data straddles the end of the buffer. 00521 template <typename T> 00522 char *combine_data(size_t &length, char *buffer_ptr, char *buffer_end, T data) { 00523 if (!store_and_advance(buffer_ptr, buffer_end, data)) { 00524 // Check for skew which prevents the buffer from being packed, and do 00525 // a partial store into the buffer to fill it. This is only a concern 00526 // with the variadic combine because that formation can have varying 00527 // argument types. 00528 size_t partial_store_size = buffer_end - buffer_ptr; 00529 memcpy(buffer_ptr, &data, partial_store_size); 00530 00531 // If the store fails, our buffer is full and ready to hash. We have to 00532 // either initialize the hash state (on the first full buffer) or mix 00533 // this buffer into the existing hash state. Length tracks the *hashed* 00534 // length, not the buffered length. 00535 if (length == 0) { 00536 state = state.create(buffer, seed); 00537 length = 64; 00538 } else { 00539 // Mix this chunk into the current state and bump length up by 64. 00540 state.mix(buffer); 00541 length += 64; 00542 } 00543 // Reset the buffer_ptr to the head of the buffer for the next chunk of 00544 // data. 00545 buffer_ptr = buffer; 00546 00547 // Try again to store into the buffer -- this cannot fail as we only 00548 // store types smaller than the buffer. 00549 if (!store_and_advance(buffer_ptr, buffer_end, data, 00550 partial_store_size)) 00551 abort(); 00552 } 00553 return buffer_ptr; 00554 } 00555 00556 #if defined(__has_feature) && __has_feature(__cxx_variadic_templates__) 00557 00558 /// \brief Recursive, variadic combining method. 00559 /// 00560 /// This function recurses through each argument, combining that argument 00561 /// into a single hash. 00562 template <typename T, typename ...Ts> 00563 hash_code combine(size_t length, char *buffer_ptr, char *buffer_end, 00564 const T &arg, const Ts &...args) { 00565 buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg)); 00566 00567 // Recurse to the next argument. 00568 return combine(length, buffer_ptr, buffer_end, args...); 00569 } 00570 00571 #else 00572 // Manually expanded recursive combining methods. See variadic above for 00573 // documentation. 00574 00575 template <typename T1, typename T2, typename T3, typename T4, typename T5, 00576 typename T6> 00577 hash_code combine(size_t length, char *buffer_ptr, char *buffer_end, 00578 const T1 &arg1, const T2 &arg2, const T3 &arg3, 00579 const T4 &arg4, const T5 &arg5, const T6 &arg6) { 00580 buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg1)); 00581 return combine(length, buffer_ptr, buffer_end, arg2, arg3, arg4, arg5, arg6); 00582 } 00583 template <typename T1, typename T2, typename T3, typename T4, typename T5> 00584 hash_code combine(size_t length, char *buffer_ptr, char *buffer_end, 00585 const T1 &arg1, const T2 &arg2, const T3 &arg3, 00586 const T4 &arg4, const T5 &arg5) { 00587 buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg1)); 00588 return combine(length, buffer_ptr, buffer_end, arg2, arg3, arg4, arg5); 00589 } 00590 template <typename T1, typename T2, typename T3, typename T4> 00591 hash_code combine(size_t length, char *buffer_ptr, char *buffer_end, 00592 const T1 &arg1, const T2 &arg2, const T3 &arg3, 00593 const T4 &arg4) { 00594 buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg1)); 00595 return combine(length, buffer_ptr, buffer_end, arg2, arg3, arg4); 00596 } 00597 template <typename T1, typename T2, typename T3> 00598 hash_code combine(size_t length, char *buffer_ptr, char *buffer_end, 00599 const T1 &arg1, const T2 &arg2, const T3 &arg3) { 00600 buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg1)); 00601 return combine(length, buffer_ptr, buffer_end, arg2, arg3); 00602 } 00603 template <typename T1, typename T2> 00604 hash_code combine(size_t length, char *buffer_ptr, char *buffer_end, 00605 const T1 &arg1, const T2 &arg2) { 00606 buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg1)); 00607 return combine(length, buffer_ptr, buffer_end, arg2); 00608 } 00609 template <typename T1> 00610 hash_code combine(size_t length, char *buffer_ptr, char *buffer_end, 00611 const T1 &arg1) { 00612 buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg1)); 00613 return combine(length, buffer_ptr, buffer_end); 00614 } 00615 00616 #endif 00617 00618 /// \brief Base case for recursive, variadic combining. 00619 /// 00620 /// The base case when combining arguments recursively is reached when all 00621 /// arguments have been handled. It flushes the remaining buffer and 00622 /// constructs a hash_code. 00623 hash_code combine(size_t length, char *buffer_ptr, char *buffer_end) { 00624 // Check whether the entire set of values fit in the buffer. If so, we'll 00625 // use the optimized short hashing routine and skip state entirely. 00626 if (length == 0) 00627 return hash_short(buffer, buffer_ptr - buffer, seed); 00628 00629 // Mix the final buffer, rotating it if we did a partial fill in order to 00630 // simulate doing a mix of the last 64-bytes. That is how the algorithm 00631 // works when we have a contiguous byte sequence, and we want to emulate 00632 // that here. 00633 std::rotate(buffer, buffer_ptr, buffer_end); 00634 00635 // Mix this chunk into the current state. 00636 state.mix(buffer); 00637 length += buffer_ptr - buffer; 00638 00639 return state.finalize(length); 00640 } 00641 }; 00642 00643 } // namespace detail 00644 } // namespace hashing 00645 00646 00647 #if __has_feature(__cxx_variadic_templates__) 00648 00649 /// \brief Combine values into a single hash_code. 00650 /// 00651 /// This routine accepts a varying number of arguments of any type. It will 00652 /// attempt to combine them into a single hash_code. For user-defined types it 00653 /// attempts to call a \see hash_value overload (via ADL) for the type. For 00654 /// integer and pointer types it directly combines their data into the 00655 /// resulting hash_code. 00656 /// 00657 /// The result is suitable for returning from a user's hash_value 00658 /// *implementation* for their user-defined type. Consumers of a type should 00659 /// *not* call this routine, they should instead call 'hash_value'. 00660 template <typename ...Ts> hash_code hash_combine(const Ts &...args) { 00661 // Recursively hash each argument using a helper class. 00662 ::llvm::hashing::detail::hash_combine_recursive_helper helper; 00663 return helper.combine(0, helper.buffer, helper.buffer + 64, args...); 00664 } 00665 00666 #else 00667 00668 // What follows are manually exploded overloads for each argument width. See 00669 // the above variadic definition for documentation and specification. 00670 00671 template <typename T1, typename T2, typename T3, typename T4, typename T5, 00672 typename T6> 00673 hash_code hash_combine(const T1 &arg1, const T2 &arg2, const T3 &arg3, 00674 const T4 &arg4, const T5 &arg5, const T6 &arg6) { 00675 ::llvm::hashing::detail::hash_combine_recursive_helper helper; 00676 return helper.combine(0, helper.buffer, helper.buffer + 64, 00677 arg1, arg2, arg3, arg4, arg5, arg6); 00678 } 00679 template <typename T1, typename T2, typename T3, typename T4, typename T5> 00680 hash_code hash_combine(const T1 &arg1, const T2 &arg2, const T3 &arg3, 00681 const T4 &arg4, const T5 &arg5) { 00682 ::llvm::hashing::detail::hash_combine_recursive_helper helper; 00683 return helper.combine(0, helper.buffer, helper.buffer + 64, 00684 arg1, arg2, arg3, arg4, arg5); 00685 } 00686 template <typename T1, typename T2, typename T3, typename T4> 00687 hash_code hash_combine(const T1 &arg1, const T2 &arg2, const T3 &arg3, 00688 const T4 &arg4) { 00689 ::llvm::hashing::detail::hash_combine_recursive_helper helper; 00690 return helper.combine(0, helper.buffer, helper.buffer + 64, 00691 arg1, arg2, arg3, arg4); 00692 } 00693 template <typename T1, typename T2, typename T3> 00694 hash_code hash_combine(const T1 &arg1, const T2 &arg2, const T3 &arg3) { 00695 ::llvm::hashing::detail::hash_combine_recursive_helper helper; 00696 return helper.combine(0, helper.buffer, helper.buffer + 64, arg1, arg2, arg3); 00697 } 00698 template <typename T1, typename T2> 00699 hash_code hash_combine(const T1 &arg1, const T2 &arg2) { 00700 ::llvm::hashing::detail::hash_combine_recursive_helper helper; 00701 return helper.combine(0, helper.buffer, helper.buffer + 64, arg1, arg2); 00702 } 00703 template <typename T1> 00704 hash_code hash_combine(const T1 &arg1) { 00705 ::llvm::hashing::detail::hash_combine_recursive_helper helper; 00706 return helper.combine(0, helper.buffer, helper.buffer + 64, arg1); 00707 } 00708 00709 #endif 00710 00711 00712 // Implementation details for implementations of hash_value overloads provided 00713 // here. 00714 namespace hashing { 00715 namespace detail { 00716 00717 /// \brief Helper to hash the value of a single integer. 00718 /// 00719 /// Overloads for smaller integer types are not provided to ensure consistent 00720 /// behavior in the presence of integral promotions. Essentially, 00721 /// "hash_value('4')" and "hash_value('0' + 4)" should be the same. 00722 inline hash_code hash_integer_value(uint64_t value) { 00723 // Similar to hash_4to8_bytes but using a seed instead of length. 00724 const uint64_t seed = get_execution_seed(); 00725 const char *s = reinterpret_cast<const char *>(&value); 00726 const uint64_t a = fetch32(s); 00727 return hash_16_bytes(seed + (a << 3), fetch32(s + 4)); 00728 } 00729 00730 } // namespace detail 00731 } // namespace hashing 00732 00733 // Declared and documented above, but defined here so that any of the hashing 00734 // infrastructure is available. 00735 template <typename T> 00736 typename std::enable_if<is_integral_or_enum<T>::value, hash_code>::type 00737 hash_value(T value) { 00738 return ::llvm::hashing::detail::hash_integer_value(value); 00739 } 00740 00741 // Declared and documented above, but defined here so that any of the hashing 00742 // infrastructure is available. 00743 template <typename T> hash_code hash_value(const T *ptr) { 00744 return ::llvm::hashing::detail::hash_integer_value( 00745 reinterpret_cast<uintptr_t>(ptr)); 00746 } 00747 00748 // Declared and documented above, but defined here so that any of the hashing 00749 // infrastructure is available. 00750 template <typename T, typename U> 00751 hash_code hash_value(const std::pair<T, U> &arg) { 00752 return hash_combine(arg.first, arg.second); 00753 } 00754 00755 // Declared and documented above, but defined here so that any of the hashing 00756 // infrastructure is available. 00757 template <typename T> 00758 hash_code hash_value(const std::basic_string<T> &arg) { 00759 return hash_combine_range(arg.begin(), arg.end()); 00760 } 00761 00762 } // namespace llvm 00763 00764 #endif