LLVM API Documentation
00001 //===- InstCombineAndOrXor.cpp --------------------------------------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file implements the visitAnd, visitOr, and visitXor functions. 00011 // 00012 //===----------------------------------------------------------------------===// 00013 00014 #include "InstCombine.h" 00015 #include "llvm/Analysis/InstructionSimplify.h" 00016 #include "llvm/IR/ConstantRange.h" 00017 #include "llvm/IR/Intrinsics.h" 00018 #include "llvm/IR/PatternMatch.h" 00019 #include "llvm/Transforms/Utils/CmpInstAnalysis.h" 00020 using namespace llvm; 00021 using namespace PatternMatch; 00022 00023 #define DEBUG_TYPE "instcombine" 00024 00025 /// isFreeToInvert - Return true if the specified value is free to invert (apply 00026 /// ~ to). This happens in cases where the ~ can be eliminated. 00027 static inline bool isFreeToInvert(Value *V) { 00028 // ~(~(X)) -> X. 00029 if (BinaryOperator::isNot(V)) 00030 return true; 00031 00032 // Constants can be considered to be not'ed values. 00033 if (isa<ConstantInt>(V)) 00034 return true; 00035 00036 // Compares can be inverted if they have a single use. 00037 if (CmpInst *CI = dyn_cast<CmpInst>(V)) 00038 return CI->hasOneUse(); 00039 00040 return false; 00041 } 00042 00043 static inline Value *dyn_castNotVal(Value *V) { 00044 // If this is not(not(x)) don't return that this is a not: we want the two 00045 // not's to be folded first. 00046 if (BinaryOperator::isNot(V)) { 00047 Value *Operand = BinaryOperator::getNotArgument(V); 00048 if (!isFreeToInvert(Operand)) 00049 return Operand; 00050 } 00051 00052 // Constants can be considered to be not'ed values... 00053 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 00054 return ConstantInt::get(C->getType(), ~C->getValue()); 00055 return nullptr; 00056 } 00057 00058 /// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp 00059 /// predicate into a three bit mask. It also returns whether it is an ordered 00060 /// predicate by reference. 00061 static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) { 00062 isOrdered = false; 00063 switch (CC) { 00064 case FCmpInst::FCMP_ORD: isOrdered = true; return 0; // 000 00065 case FCmpInst::FCMP_UNO: return 0; // 000 00066 case FCmpInst::FCMP_OGT: isOrdered = true; return 1; // 001 00067 case FCmpInst::FCMP_UGT: return 1; // 001 00068 case FCmpInst::FCMP_OEQ: isOrdered = true; return 2; // 010 00069 case FCmpInst::FCMP_UEQ: return 2; // 010 00070 case FCmpInst::FCMP_OGE: isOrdered = true; return 3; // 011 00071 case FCmpInst::FCMP_UGE: return 3; // 011 00072 case FCmpInst::FCMP_OLT: isOrdered = true; return 4; // 100 00073 case FCmpInst::FCMP_ULT: return 4; // 100 00074 case FCmpInst::FCMP_ONE: isOrdered = true; return 5; // 101 00075 case FCmpInst::FCMP_UNE: return 5; // 101 00076 case FCmpInst::FCMP_OLE: isOrdered = true; return 6; // 110 00077 case FCmpInst::FCMP_ULE: return 6; // 110 00078 // True -> 7 00079 default: 00080 // Not expecting FCMP_FALSE and FCMP_TRUE; 00081 llvm_unreachable("Unexpected FCmp predicate!"); 00082 } 00083 } 00084 00085 /// getNewICmpValue - This is the complement of getICmpCode, which turns an 00086 /// opcode and two operands into either a constant true or false, or a brand 00087 /// new ICmp instruction. The sign is passed in to determine which kind 00088 /// of predicate to use in the new icmp instruction. 00089 static Value *getNewICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS, 00090 InstCombiner::BuilderTy *Builder) { 00091 ICmpInst::Predicate NewPred; 00092 if (Value *NewConstant = getICmpValue(Sign, Code, LHS, RHS, NewPred)) 00093 return NewConstant; 00094 return Builder->CreateICmp(NewPred, LHS, RHS); 00095 } 00096 00097 /// getFCmpValue - This is the complement of getFCmpCode, which turns an 00098 /// opcode and two operands into either a FCmp instruction. isordered is passed 00099 /// in to determine which kind of predicate to use in the new fcmp instruction. 00100 static Value *getFCmpValue(bool isordered, unsigned code, 00101 Value *LHS, Value *RHS, 00102 InstCombiner::BuilderTy *Builder) { 00103 CmpInst::Predicate Pred; 00104 switch (code) { 00105 default: llvm_unreachable("Illegal FCmp code!"); 00106 case 0: Pred = isordered ? FCmpInst::FCMP_ORD : FCmpInst::FCMP_UNO; break; 00107 case 1: Pred = isordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; break; 00108 case 2: Pred = isordered ? FCmpInst::FCMP_OEQ : FCmpInst::FCMP_UEQ; break; 00109 case 3: Pred = isordered ? FCmpInst::FCMP_OGE : FCmpInst::FCMP_UGE; break; 00110 case 4: Pred = isordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; break; 00111 case 5: Pred = isordered ? FCmpInst::FCMP_ONE : FCmpInst::FCMP_UNE; break; 00112 case 6: Pred = isordered ? FCmpInst::FCMP_OLE : FCmpInst::FCMP_ULE; break; 00113 case 7: 00114 if (!isordered) return ConstantInt::getTrue(LHS->getContext()); 00115 Pred = FCmpInst::FCMP_ORD; break; 00116 } 00117 return Builder->CreateFCmp(Pred, LHS, RHS); 00118 } 00119 00120 // OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where 00121 // the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is 00122 // guaranteed to be a binary operator. 00123 Instruction *InstCombiner::OptAndOp(Instruction *Op, 00124 ConstantInt *OpRHS, 00125 ConstantInt *AndRHS, 00126 BinaryOperator &TheAnd) { 00127 Value *X = Op->getOperand(0); 00128 Constant *Together = nullptr; 00129 if (!Op->isShift()) 00130 Together = ConstantExpr::getAnd(AndRHS, OpRHS); 00131 00132 switch (Op->getOpcode()) { 00133 case Instruction::Xor: 00134 if (Op->hasOneUse()) { 00135 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2) 00136 Value *And = Builder->CreateAnd(X, AndRHS); 00137 And->takeName(Op); 00138 return BinaryOperator::CreateXor(And, Together); 00139 } 00140 break; 00141 case Instruction::Or: 00142 if (Op->hasOneUse()){ 00143 if (Together != OpRHS) { 00144 // (X | C1) & C2 --> (X | (C1&C2)) & C2 00145 Value *Or = Builder->CreateOr(X, Together); 00146 Or->takeName(Op); 00147 return BinaryOperator::CreateAnd(Or, AndRHS); 00148 } 00149 00150 ConstantInt *TogetherCI = dyn_cast<ConstantInt>(Together); 00151 if (TogetherCI && !TogetherCI->isZero()){ 00152 // (X | C1) & C2 --> (X & (C2^(C1&C2))) | C1 00153 // NOTE: This reduces the number of bits set in the & mask, which 00154 // can expose opportunities for store narrowing. 00155 Together = ConstantExpr::getXor(AndRHS, Together); 00156 Value *And = Builder->CreateAnd(X, Together); 00157 And->takeName(Op); 00158 return BinaryOperator::CreateOr(And, OpRHS); 00159 } 00160 } 00161 00162 break; 00163 case Instruction::Add: 00164 if (Op->hasOneUse()) { 00165 // Adding a one to a single bit bit-field should be turned into an XOR 00166 // of the bit. First thing to check is to see if this AND is with a 00167 // single bit constant. 00168 const APInt &AndRHSV = AndRHS->getValue(); 00169 00170 // If there is only one bit set. 00171 if (AndRHSV.isPowerOf2()) { 00172 // Ok, at this point, we know that we are masking the result of the 00173 // ADD down to exactly one bit. If the constant we are adding has 00174 // no bits set below this bit, then we can eliminate the ADD. 00175 const APInt& AddRHS = OpRHS->getValue(); 00176 00177 // Check to see if any bits below the one bit set in AndRHSV are set. 00178 if ((AddRHS & (AndRHSV-1)) == 0) { 00179 // If not, the only thing that can effect the output of the AND is 00180 // the bit specified by AndRHSV. If that bit is set, the effect of 00181 // the XOR is to toggle the bit. If it is clear, then the ADD has 00182 // no effect. 00183 if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop 00184 TheAnd.setOperand(0, X); 00185 return &TheAnd; 00186 } else { 00187 // Pull the XOR out of the AND. 00188 Value *NewAnd = Builder->CreateAnd(X, AndRHS); 00189 NewAnd->takeName(Op); 00190 return BinaryOperator::CreateXor(NewAnd, AndRHS); 00191 } 00192 } 00193 } 00194 } 00195 break; 00196 00197 case Instruction::Shl: { 00198 // We know that the AND will not produce any of the bits shifted in, so if 00199 // the anded constant includes them, clear them now! 00200 // 00201 uint32_t BitWidth = AndRHS->getType()->getBitWidth(); 00202 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth); 00203 APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal)); 00204 ConstantInt *CI = Builder->getInt(AndRHS->getValue() & ShlMask); 00205 00206 if (CI->getValue() == ShlMask) 00207 // Masking out bits that the shift already masks. 00208 return ReplaceInstUsesWith(TheAnd, Op); // No need for the and. 00209 00210 if (CI != AndRHS) { // Reducing bits set in and. 00211 TheAnd.setOperand(1, CI); 00212 return &TheAnd; 00213 } 00214 break; 00215 } 00216 case Instruction::LShr: { 00217 // We know that the AND will not produce any of the bits shifted in, so if 00218 // the anded constant includes them, clear them now! This only applies to 00219 // unsigned shifts, because a signed shr may bring in set bits! 00220 // 00221 uint32_t BitWidth = AndRHS->getType()->getBitWidth(); 00222 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth); 00223 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal)); 00224 ConstantInt *CI = Builder->getInt(AndRHS->getValue() & ShrMask); 00225 00226 if (CI->getValue() == ShrMask) 00227 // Masking out bits that the shift already masks. 00228 return ReplaceInstUsesWith(TheAnd, Op); 00229 00230 if (CI != AndRHS) { 00231 TheAnd.setOperand(1, CI); // Reduce bits set in and cst. 00232 return &TheAnd; 00233 } 00234 break; 00235 } 00236 case Instruction::AShr: 00237 // Signed shr. 00238 // See if this is shifting in some sign extension, then masking it out 00239 // with an and. 00240 if (Op->hasOneUse()) { 00241 uint32_t BitWidth = AndRHS->getType()->getBitWidth(); 00242 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth); 00243 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal)); 00244 Constant *C = Builder->getInt(AndRHS->getValue() & ShrMask); 00245 if (C == AndRHS) { // Masking out bits shifted in. 00246 // (Val ashr C1) & C2 -> (Val lshr C1) & C2 00247 // Make the argument unsigned. 00248 Value *ShVal = Op->getOperand(0); 00249 ShVal = Builder->CreateLShr(ShVal, OpRHS, Op->getName()); 00250 return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName()); 00251 } 00252 } 00253 break; 00254 } 00255 return nullptr; 00256 } 00257 00258 /// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise 00259 /// (V < Lo || V >= Hi). In practice, we emit the more efficient 00260 /// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates 00261 /// whether to treat the V, Lo and HI as signed or not. IB is the location to 00262 /// insert new instructions. 00263 Value *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi, 00264 bool isSigned, bool Inside) { 00265 assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ? 00266 ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() && 00267 "Lo is not <= Hi in range emission code!"); 00268 00269 if (Inside) { 00270 if (Lo == Hi) // Trivially false. 00271 return Builder->getFalse(); 00272 00273 // V >= Min && V < Hi --> V < Hi 00274 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) { 00275 ICmpInst::Predicate pred = (isSigned ? 00276 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT); 00277 return Builder->CreateICmp(pred, V, Hi); 00278 } 00279 00280 // Emit V-Lo <u Hi-Lo 00281 Constant *NegLo = ConstantExpr::getNeg(Lo); 00282 Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off"); 00283 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi); 00284 return Builder->CreateICmpULT(Add, UpperBound); 00285 } 00286 00287 if (Lo == Hi) // Trivially true. 00288 return Builder->getTrue(); 00289 00290 // V < Min || V >= Hi -> V > Hi-1 00291 Hi = SubOne(cast<ConstantInt>(Hi)); 00292 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) { 00293 ICmpInst::Predicate pred = (isSigned ? 00294 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT); 00295 return Builder->CreateICmp(pred, V, Hi); 00296 } 00297 00298 // Emit V-Lo >u Hi-1-Lo 00299 // Note that Hi has already had one subtracted from it, above. 00300 ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo)); 00301 Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off"); 00302 Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi); 00303 return Builder->CreateICmpUGT(Add, LowerBound); 00304 } 00305 00306 // isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with 00307 // any number of 0s on either side. The 1s are allowed to wrap from LSB to 00308 // MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is 00309 // not, since all 1s are not contiguous. 00310 static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) { 00311 const APInt& V = Val->getValue(); 00312 uint32_t BitWidth = Val->getType()->getBitWidth(); 00313 if (!APIntOps::isShiftedMask(BitWidth, V)) return false; 00314 00315 // look for the first zero bit after the run of ones 00316 MB = BitWidth - ((V - 1) ^ V).countLeadingZeros(); 00317 // look for the first non-zero bit 00318 ME = V.getActiveBits(); 00319 return true; 00320 } 00321 00322 /// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask, 00323 /// where isSub determines whether the operator is a sub. If we can fold one of 00324 /// the following xforms: 00325 /// 00326 /// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask 00327 /// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0 00328 /// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0 00329 /// 00330 /// return (A +/- B). 00331 /// 00332 Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS, 00333 ConstantInt *Mask, bool isSub, 00334 Instruction &I) { 00335 Instruction *LHSI = dyn_cast<Instruction>(LHS); 00336 if (!LHSI || LHSI->getNumOperands() != 2 || 00337 !isa<ConstantInt>(LHSI->getOperand(1))) return nullptr; 00338 00339 ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1)); 00340 00341 switch (LHSI->getOpcode()) { 00342 default: return nullptr; 00343 case Instruction::And: 00344 if (ConstantExpr::getAnd(N, Mask) == Mask) { 00345 // If the AndRHS is a power of two minus one (0+1+), this is simple. 00346 if ((Mask->getValue().countLeadingZeros() + 00347 Mask->getValue().countPopulation()) == 00348 Mask->getValue().getBitWidth()) 00349 break; 00350 00351 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+ 00352 // part, we don't need any explicit masks to take them out of A. If that 00353 // is all N is, ignore it. 00354 uint32_t MB = 0, ME = 0; 00355 if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive 00356 uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth(); 00357 APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1)); 00358 if (MaskedValueIsZero(RHS, Mask, 0, &I)) 00359 break; 00360 } 00361 } 00362 return nullptr; 00363 case Instruction::Or: 00364 case Instruction::Xor: 00365 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0 00366 if ((Mask->getValue().countLeadingZeros() + 00367 Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth() 00368 && ConstantExpr::getAnd(N, Mask)->isNullValue()) 00369 break; 00370 return nullptr; 00371 } 00372 00373 if (isSub) 00374 return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold"); 00375 return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold"); 00376 } 00377 00378 /// enum for classifying (icmp eq (A & B), C) and (icmp ne (A & B), C) 00379 /// One of A and B is considered the mask, the other the value. This is 00380 /// described as the "AMask" or "BMask" part of the enum. If the enum 00381 /// contains only "Mask", then both A and B can be considered masks. 00382 /// If A is the mask, then it was proven, that (A & C) == C. This 00383 /// is trivial if C == A, or C == 0. If both A and C are constants, this 00384 /// proof is also easy. 00385 /// For the following explanations we assume that A is the mask. 00386 /// The part "AllOnes" declares, that the comparison is true only 00387 /// if (A & B) == A, or all bits of A are set in B. 00388 /// Example: (icmp eq (A & 3), 3) -> FoldMskICmp_AMask_AllOnes 00389 /// The part "AllZeroes" declares, that the comparison is true only 00390 /// if (A & B) == 0, or all bits of A are cleared in B. 00391 /// Example: (icmp eq (A & 3), 0) -> FoldMskICmp_Mask_AllZeroes 00392 /// The part "Mixed" declares, that (A & B) == C and C might or might not 00393 /// contain any number of one bits and zero bits. 00394 /// Example: (icmp eq (A & 3), 1) -> FoldMskICmp_AMask_Mixed 00395 /// The Part "Not" means, that in above descriptions "==" should be replaced 00396 /// by "!=". 00397 /// Example: (icmp ne (A & 3), 3) -> FoldMskICmp_AMask_NotAllOnes 00398 /// If the mask A contains a single bit, then the following is equivalent: 00399 /// (icmp eq (A & B), A) equals (icmp ne (A & B), 0) 00400 /// (icmp ne (A & B), A) equals (icmp eq (A & B), 0) 00401 enum MaskedICmpType { 00402 FoldMskICmp_AMask_AllOnes = 1, 00403 FoldMskICmp_AMask_NotAllOnes = 2, 00404 FoldMskICmp_BMask_AllOnes = 4, 00405 FoldMskICmp_BMask_NotAllOnes = 8, 00406 FoldMskICmp_Mask_AllZeroes = 16, 00407 FoldMskICmp_Mask_NotAllZeroes = 32, 00408 FoldMskICmp_AMask_Mixed = 64, 00409 FoldMskICmp_AMask_NotMixed = 128, 00410 FoldMskICmp_BMask_Mixed = 256, 00411 FoldMskICmp_BMask_NotMixed = 512 00412 }; 00413 00414 /// return the set of pattern classes (from MaskedICmpType) 00415 /// that (icmp SCC (A & B), C) satisfies 00416 static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C, 00417 ICmpInst::Predicate SCC) 00418 { 00419 ConstantInt *ACst = dyn_cast<ConstantInt>(A); 00420 ConstantInt *BCst = dyn_cast<ConstantInt>(B); 00421 ConstantInt *CCst = dyn_cast<ConstantInt>(C); 00422 bool icmp_eq = (SCC == ICmpInst::ICMP_EQ); 00423 bool icmp_abit = (ACst && !ACst->isZero() && 00424 ACst->getValue().isPowerOf2()); 00425 bool icmp_bbit = (BCst && !BCst->isZero() && 00426 BCst->getValue().isPowerOf2()); 00427 unsigned result = 0; 00428 if (CCst && CCst->isZero()) { 00429 // if C is zero, then both A and B qualify as mask 00430 result |= (icmp_eq ? (FoldMskICmp_Mask_AllZeroes | 00431 FoldMskICmp_Mask_AllZeroes | 00432 FoldMskICmp_AMask_Mixed | 00433 FoldMskICmp_BMask_Mixed) 00434 : (FoldMskICmp_Mask_NotAllZeroes | 00435 FoldMskICmp_Mask_NotAllZeroes | 00436 FoldMskICmp_AMask_NotMixed | 00437 FoldMskICmp_BMask_NotMixed)); 00438 if (icmp_abit) 00439 result |= (icmp_eq ? (FoldMskICmp_AMask_NotAllOnes | 00440 FoldMskICmp_AMask_NotMixed) 00441 : (FoldMskICmp_AMask_AllOnes | 00442 FoldMskICmp_AMask_Mixed)); 00443 if (icmp_bbit) 00444 result |= (icmp_eq ? (FoldMskICmp_BMask_NotAllOnes | 00445 FoldMskICmp_BMask_NotMixed) 00446 : (FoldMskICmp_BMask_AllOnes | 00447 FoldMskICmp_BMask_Mixed)); 00448 return result; 00449 } 00450 if (A == C) { 00451 result |= (icmp_eq ? (FoldMskICmp_AMask_AllOnes | 00452 FoldMskICmp_AMask_Mixed) 00453 : (FoldMskICmp_AMask_NotAllOnes | 00454 FoldMskICmp_AMask_NotMixed)); 00455 if (icmp_abit) 00456 result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes | 00457 FoldMskICmp_AMask_NotMixed) 00458 : (FoldMskICmp_Mask_AllZeroes | 00459 FoldMskICmp_AMask_Mixed)); 00460 } else if (ACst && CCst && 00461 ConstantExpr::getAnd(ACst, CCst) == CCst) { 00462 result |= (icmp_eq ? FoldMskICmp_AMask_Mixed 00463 : FoldMskICmp_AMask_NotMixed); 00464 } 00465 if (B == C) { 00466 result |= (icmp_eq ? (FoldMskICmp_BMask_AllOnes | 00467 FoldMskICmp_BMask_Mixed) 00468 : (FoldMskICmp_BMask_NotAllOnes | 00469 FoldMskICmp_BMask_NotMixed)); 00470 if (icmp_bbit) 00471 result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes | 00472 FoldMskICmp_BMask_NotMixed) 00473 : (FoldMskICmp_Mask_AllZeroes | 00474 FoldMskICmp_BMask_Mixed)); 00475 } else if (BCst && CCst && 00476 ConstantExpr::getAnd(BCst, CCst) == CCst) { 00477 result |= (icmp_eq ? FoldMskICmp_BMask_Mixed 00478 : FoldMskICmp_BMask_NotMixed); 00479 } 00480 return result; 00481 } 00482 00483 /// Convert an analysis of a masked ICmp into its equivalent if all boolean 00484 /// operations had the opposite sense. Since each "NotXXX" flag (recording !=) 00485 /// is adjacent to the corresponding normal flag (recording ==), this just 00486 /// involves swapping those bits over. 00487 static unsigned conjugateICmpMask(unsigned Mask) { 00488 unsigned NewMask; 00489 NewMask = (Mask & (FoldMskICmp_AMask_AllOnes | FoldMskICmp_BMask_AllOnes | 00490 FoldMskICmp_Mask_AllZeroes | FoldMskICmp_AMask_Mixed | 00491 FoldMskICmp_BMask_Mixed)) 00492 << 1; 00493 00494 NewMask |= 00495 (Mask & (FoldMskICmp_AMask_NotAllOnes | FoldMskICmp_BMask_NotAllOnes | 00496 FoldMskICmp_Mask_NotAllZeroes | FoldMskICmp_AMask_NotMixed | 00497 FoldMskICmp_BMask_NotMixed)) 00498 >> 1; 00499 00500 return NewMask; 00501 } 00502 00503 /// decomposeBitTestICmp - Decompose an icmp into the form ((X & Y) pred Z) 00504 /// if possible. The returned predicate is either == or !=. Returns false if 00505 /// decomposition fails. 00506 static bool decomposeBitTestICmp(const ICmpInst *I, ICmpInst::Predicate &Pred, 00507 Value *&X, Value *&Y, Value *&Z) { 00508 ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1)); 00509 if (!C) 00510 return false; 00511 00512 switch (I->getPredicate()) { 00513 default: 00514 return false; 00515 case ICmpInst::ICMP_SLT: 00516 // X < 0 is equivalent to (X & SignBit) != 0. 00517 if (!C->isZero()) 00518 return false; 00519 Y = ConstantInt::get(I->getContext(), APInt::getSignBit(C->getBitWidth())); 00520 Pred = ICmpInst::ICMP_NE; 00521 break; 00522 case ICmpInst::ICMP_SGT: 00523 // X > -1 is equivalent to (X & SignBit) == 0. 00524 if (!C->isAllOnesValue()) 00525 return false; 00526 Y = ConstantInt::get(I->getContext(), APInt::getSignBit(C->getBitWidth())); 00527 Pred = ICmpInst::ICMP_EQ; 00528 break; 00529 case ICmpInst::ICMP_ULT: 00530 // X <u 2^n is equivalent to (X & ~(2^n-1)) == 0. 00531 if (!C->getValue().isPowerOf2()) 00532 return false; 00533 Y = ConstantInt::get(I->getContext(), -C->getValue()); 00534 Pred = ICmpInst::ICMP_EQ; 00535 break; 00536 case ICmpInst::ICMP_UGT: 00537 // X >u 2^n-1 is equivalent to (X & ~(2^n-1)) != 0. 00538 if (!(C->getValue() + 1).isPowerOf2()) 00539 return false; 00540 Y = ConstantInt::get(I->getContext(), ~C->getValue()); 00541 Pred = ICmpInst::ICMP_NE; 00542 break; 00543 } 00544 00545 X = I->getOperand(0); 00546 Z = ConstantInt::getNullValue(C->getType()); 00547 return true; 00548 } 00549 00550 /// foldLogOpOfMaskedICmpsHelper: 00551 /// handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) 00552 /// return the set of pattern classes (from MaskedICmpType) 00553 /// that both LHS and RHS satisfy 00554 static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A, 00555 Value*& B, Value*& C, 00556 Value*& D, Value*& E, 00557 ICmpInst *LHS, ICmpInst *RHS, 00558 ICmpInst::Predicate &LHSCC, 00559 ICmpInst::Predicate &RHSCC) { 00560 if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType()) return 0; 00561 // vectors are not (yet?) supported 00562 if (LHS->getOperand(0)->getType()->isVectorTy()) return 0; 00563 00564 // Here comes the tricky part: 00565 // LHS might be of the form L11 & L12 == X, X == L21 & L22, 00566 // and L11 & L12 == L21 & L22. The same goes for RHS. 00567 // Now we must find those components L** and R**, that are equal, so 00568 // that we can extract the parameters A, B, C, D, and E for the canonical 00569 // above. 00570 Value *L1 = LHS->getOperand(0); 00571 Value *L2 = LHS->getOperand(1); 00572 Value *L11,*L12,*L21,*L22; 00573 // Check whether the icmp can be decomposed into a bit test. 00574 if (decomposeBitTestICmp(LHS, LHSCC, L11, L12, L2)) { 00575 L21 = L22 = L1 = nullptr; 00576 } else { 00577 // Look for ANDs in the LHS icmp. 00578 if (!L1->getType()->isIntegerTy()) { 00579 // You can icmp pointers, for example. They really aren't masks. 00580 L11 = L12 = nullptr; 00581 } else if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) { 00582 // Any icmp can be viewed as being trivially masked; if it allows us to 00583 // remove one, it's worth it. 00584 L11 = L1; 00585 L12 = Constant::getAllOnesValue(L1->getType()); 00586 } 00587 00588 if (!L2->getType()->isIntegerTy()) { 00589 // You can icmp pointers, for example. They really aren't masks. 00590 L21 = L22 = nullptr; 00591 } else if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) { 00592 L21 = L2; 00593 L22 = Constant::getAllOnesValue(L2->getType()); 00594 } 00595 } 00596 00597 // Bail if LHS was a icmp that can't be decomposed into an equality. 00598 if (!ICmpInst::isEquality(LHSCC)) 00599 return 0; 00600 00601 Value *R1 = RHS->getOperand(0); 00602 Value *R2 = RHS->getOperand(1); 00603 Value *R11,*R12; 00604 bool ok = false; 00605 if (decomposeBitTestICmp(RHS, RHSCC, R11, R12, R2)) { 00606 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { 00607 A = R11; D = R12; 00608 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { 00609 A = R12; D = R11; 00610 } else { 00611 return 0; 00612 } 00613 E = R2; R1 = nullptr; ok = true; 00614 } else if (R1->getType()->isIntegerTy()) { 00615 if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) { 00616 // As before, model no mask as a trivial mask if it'll let us do an 00617 // optimization. 00618 R11 = R1; 00619 R12 = Constant::getAllOnesValue(R1->getType()); 00620 } 00621 00622 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { 00623 A = R11; D = R12; E = R2; ok = true; 00624 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { 00625 A = R12; D = R11; E = R2; ok = true; 00626 } 00627 } 00628 00629 // Bail if RHS was a icmp that can't be decomposed into an equality. 00630 if (!ICmpInst::isEquality(RHSCC)) 00631 return 0; 00632 00633 // Look for ANDs in on the right side of the RHS icmp. 00634 if (!ok && R2->getType()->isIntegerTy()) { 00635 if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) { 00636 R11 = R2; 00637 R12 = Constant::getAllOnesValue(R2->getType()); 00638 } 00639 00640 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { 00641 A = R11; D = R12; E = R1; ok = true; 00642 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { 00643 A = R12; D = R11; E = R1; ok = true; 00644 } else { 00645 return 0; 00646 } 00647 } 00648 if (!ok) 00649 return 0; 00650 00651 if (L11 == A) { 00652 B = L12; C = L2; 00653 } else if (L12 == A) { 00654 B = L11; C = L2; 00655 } else if (L21 == A) { 00656 B = L22; C = L1; 00657 } else if (L22 == A) { 00658 B = L21; C = L1; 00659 } 00660 00661 unsigned left_type = getTypeOfMaskedICmp(A, B, C, LHSCC); 00662 unsigned right_type = getTypeOfMaskedICmp(A, D, E, RHSCC); 00663 return left_type & right_type; 00664 } 00665 /// foldLogOpOfMaskedICmps: 00666 /// try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) 00667 /// into a single (icmp(A & X) ==/!= Y) 00668 static Value* foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, 00669 llvm::InstCombiner::BuilderTy* Builder) { 00670 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr; 00671 ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate(); 00672 unsigned mask = foldLogOpOfMaskedICmpsHelper(A, B, C, D, E, LHS, RHS, 00673 LHSCC, RHSCC); 00674 if (mask == 0) return nullptr; 00675 assert(ICmpInst::isEquality(LHSCC) && ICmpInst::isEquality(RHSCC) && 00676 "foldLogOpOfMaskedICmpsHelper must return an equality predicate."); 00677 00678 // In full generality: 00679 // (icmp (A & B) Op C) | (icmp (A & D) Op E) 00680 // == ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ] 00681 // 00682 // If the latter can be converted into (icmp (A & X) Op Y) then the former is 00683 // equivalent to (icmp (A & X) !Op Y). 00684 // 00685 // Therefore, we can pretend for the rest of this function that we're dealing 00686 // with the conjunction, provided we flip the sense of any comparisons (both 00687 // input and output). 00688 00689 // In most cases we're going to produce an EQ for the "&&" case. 00690 ICmpInst::Predicate NEWCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 00691 if (!IsAnd) { 00692 // Convert the masking analysis into its equivalent with negated 00693 // comparisons. 00694 mask = conjugateICmpMask(mask); 00695 } 00696 00697 if (mask & FoldMskICmp_Mask_AllZeroes) { 00698 // (icmp eq (A & B), 0) & (icmp eq (A & D), 0) 00699 // -> (icmp eq (A & (B|D)), 0) 00700 Value* newOr = Builder->CreateOr(B, D); 00701 Value* newAnd = Builder->CreateAnd(A, newOr); 00702 // we can't use C as zero, because we might actually handle 00703 // (icmp ne (A & B), B) & (icmp ne (A & D), D) 00704 // with B and D, having a single bit set 00705 Value* zero = Constant::getNullValue(A->getType()); 00706 return Builder->CreateICmp(NEWCC, newAnd, zero); 00707 } 00708 if (mask & FoldMskICmp_BMask_AllOnes) { 00709 // (icmp eq (A & B), B) & (icmp eq (A & D), D) 00710 // -> (icmp eq (A & (B|D)), (B|D)) 00711 Value* newOr = Builder->CreateOr(B, D); 00712 Value* newAnd = Builder->CreateAnd(A, newOr); 00713 return Builder->CreateICmp(NEWCC, newAnd, newOr); 00714 } 00715 if (mask & FoldMskICmp_AMask_AllOnes) { 00716 // (icmp eq (A & B), A) & (icmp eq (A & D), A) 00717 // -> (icmp eq (A & (B&D)), A) 00718 Value* newAnd1 = Builder->CreateAnd(B, D); 00719 Value* newAnd = Builder->CreateAnd(A, newAnd1); 00720 return Builder->CreateICmp(NEWCC, newAnd, A); 00721 } 00722 00723 // Remaining cases assume at least that B and D are constant, and depend on 00724 // their actual values. This isn't strictly, necessary, just a "handle the 00725 // easy cases for now" decision. 00726 ConstantInt *BCst = dyn_cast<ConstantInt>(B); 00727 if (!BCst) return nullptr; 00728 ConstantInt *DCst = dyn_cast<ConstantInt>(D); 00729 if (!DCst) return nullptr; 00730 00731 if (mask & (FoldMskICmp_Mask_NotAllZeroes | FoldMskICmp_BMask_NotAllOnes)) { 00732 // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and 00733 // (icmp ne (A & B), B) & (icmp ne (A & D), D) 00734 // -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0) 00735 // Only valid if one of the masks is a superset of the other (check "B&D" is 00736 // the same as either B or D). 00737 APInt NewMask = BCst->getValue() & DCst->getValue(); 00738 00739 if (NewMask == BCst->getValue()) 00740 return LHS; 00741 else if (NewMask == DCst->getValue()) 00742 return RHS; 00743 } 00744 if (mask & FoldMskICmp_AMask_NotAllOnes) { 00745 // (icmp ne (A & B), B) & (icmp ne (A & D), D) 00746 // -> (icmp ne (A & B), A) or (icmp ne (A & D), A) 00747 // Only valid if one of the masks is a superset of the other (check "B|D" is 00748 // the same as either B or D). 00749 APInt NewMask = BCst->getValue() | DCst->getValue(); 00750 00751 if (NewMask == BCst->getValue()) 00752 return LHS; 00753 else if (NewMask == DCst->getValue()) 00754 return RHS; 00755 } 00756 if (mask & FoldMskICmp_BMask_Mixed) { 00757 // (icmp eq (A & B), C) & (icmp eq (A & D), E) 00758 // We already know that B & C == C && D & E == E. 00759 // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of 00760 // C and E, which are shared by both the mask B and the mask D, don't 00761 // contradict, then we can transform to 00762 // -> (icmp eq (A & (B|D)), (C|E)) 00763 // Currently, we only handle the case of B, C, D, and E being constant. 00764 // we can't simply use C and E, because we might actually handle 00765 // (icmp ne (A & B), B) & (icmp eq (A & D), D) 00766 // with B and D, having a single bit set 00767 ConstantInt *CCst = dyn_cast<ConstantInt>(C); 00768 if (!CCst) return nullptr; 00769 if (LHSCC != NEWCC) 00770 CCst = dyn_cast<ConstantInt>( ConstantExpr::getXor(BCst, CCst) ); 00771 ConstantInt *ECst = dyn_cast<ConstantInt>(E); 00772 if (!ECst) return nullptr; 00773 if (RHSCC != NEWCC) 00774 ECst = dyn_cast<ConstantInt>( ConstantExpr::getXor(DCst, ECst) ); 00775 ConstantInt* MCst = dyn_cast<ConstantInt>( 00776 ConstantExpr::getAnd(ConstantExpr::getAnd(BCst, DCst), 00777 ConstantExpr::getXor(CCst, ECst)) ); 00778 // if there is a conflict we should actually return a false for the 00779 // whole construct 00780 if (!MCst->isZero()) 00781 return nullptr; 00782 Value *newOr1 = Builder->CreateOr(B, D); 00783 Value *newOr2 = ConstantExpr::getOr(CCst, ECst); 00784 Value *newAnd = Builder->CreateAnd(A, newOr1); 00785 return Builder->CreateICmp(NEWCC, newAnd, newOr2); 00786 } 00787 return nullptr; 00788 } 00789 00790 /// FoldAndOfICmps - Fold (icmp)&(icmp) if possible. 00791 Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) { 00792 ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate(); 00793 00794 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B) 00795 if (PredicatesFoldable(LHSCC, RHSCC)) { 00796 if (LHS->getOperand(0) == RHS->getOperand(1) && 00797 LHS->getOperand(1) == RHS->getOperand(0)) 00798 LHS->swapOperands(); 00799 if (LHS->getOperand(0) == RHS->getOperand(0) && 00800 LHS->getOperand(1) == RHS->getOperand(1)) { 00801 Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1); 00802 unsigned Code = getICmpCode(LHS) & getICmpCode(RHS); 00803 bool isSigned = LHS->isSigned() || RHS->isSigned(); 00804 return getNewICmpValue(isSigned, Code, Op0, Op1, Builder); 00805 } 00806 } 00807 00808 // handle (roughly): (icmp eq (A & B), C) & (icmp eq (A & D), E) 00809 if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, true, Builder)) 00810 return V; 00811 00812 // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2). 00813 Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0); 00814 ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1)); 00815 ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1)); 00816 if (!LHSCst || !RHSCst) return nullptr; 00817 00818 if (LHSCst == RHSCst && LHSCC == RHSCC) { 00819 // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C) 00820 // where C is a power of 2 00821 if (LHSCC == ICmpInst::ICMP_ULT && 00822 LHSCst->getValue().isPowerOf2()) { 00823 Value *NewOr = Builder->CreateOr(Val, Val2); 00824 return Builder->CreateICmp(LHSCC, NewOr, LHSCst); 00825 } 00826 00827 // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0) 00828 if (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero()) { 00829 Value *NewOr = Builder->CreateOr(Val, Val2); 00830 return Builder->CreateICmp(LHSCC, NewOr, LHSCst); 00831 } 00832 } 00833 00834 // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2 00835 // where CMAX is the all ones value for the truncated type, 00836 // iff the lower bits of C2 and CA are zero. 00837 if (LHSCC == ICmpInst::ICMP_EQ && LHSCC == RHSCC && 00838 LHS->hasOneUse() && RHS->hasOneUse()) { 00839 Value *V; 00840 ConstantInt *AndCst, *SmallCst = nullptr, *BigCst = nullptr; 00841 00842 // (trunc x) == C1 & (and x, CA) == C2 00843 // (and x, CA) == C2 & (trunc x) == C1 00844 if (match(Val2, m_Trunc(m_Value(V))) && 00845 match(Val, m_And(m_Specific(V), m_ConstantInt(AndCst)))) { 00846 SmallCst = RHSCst; 00847 BigCst = LHSCst; 00848 } else if (match(Val, m_Trunc(m_Value(V))) && 00849 match(Val2, m_And(m_Specific(V), m_ConstantInt(AndCst)))) { 00850 SmallCst = LHSCst; 00851 BigCst = RHSCst; 00852 } 00853 00854 if (SmallCst && BigCst) { 00855 unsigned BigBitSize = BigCst->getType()->getBitWidth(); 00856 unsigned SmallBitSize = SmallCst->getType()->getBitWidth(); 00857 00858 // Check that the low bits are zero. 00859 APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize); 00860 if ((Low & AndCst->getValue()) == 0 && (Low & BigCst->getValue()) == 0) { 00861 Value *NewAnd = Builder->CreateAnd(V, Low | AndCst->getValue()); 00862 APInt N = SmallCst->getValue().zext(BigBitSize) | BigCst->getValue(); 00863 Value *NewVal = ConstantInt::get(AndCst->getType()->getContext(), N); 00864 return Builder->CreateICmp(LHSCC, NewAnd, NewVal); 00865 } 00866 } 00867 } 00868 00869 // From here on, we only handle: 00870 // (icmp1 A, C1) & (icmp2 A, C2) --> something simpler. 00871 if (Val != Val2) return nullptr; 00872 00873 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere. 00874 if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE || 00875 RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE || 00876 LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE || 00877 RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE) 00878 return nullptr; 00879 00880 // Make a constant range that's the intersection of the two icmp ranges. 00881 // If the intersection is empty, we know that the result is false. 00882 ConstantRange LHSRange = 00883 ConstantRange::makeICmpRegion(LHSCC, LHSCst->getValue()); 00884 ConstantRange RHSRange = 00885 ConstantRange::makeICmpRegion(RHSCC, RHSCst->getValue()); 00886 00887 if (LHSRange.intersectWith(RHSRange).isEmptySet()) 00888 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0); 00889 00890 // We can't fold (ugt x, C) & (sgt x, C2). 00891 if (!PredicatesFoldable(LHSCC, RHSCC)) 00892 return nullptr; 00893 00894 // Ensure that the larger constant is on the RHS. 00895 bool ShouldSwap; 00896 if (CmpInst::isSigned(LHSCC) || 00897 (ICmpInst::isEquality(LHSCC) && 00898 CmpInst::isSigned(RHSCC))) 00899 ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue()); 00900 else 00901 ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue()); 00902 00903 if (ShouldSwap) { 00904 std::swap(LHS, RHS); 00905 std::swap(LHSCst, RHSCst); 00906 std::swap(LHSCC, RHSCC); 00907 } 00908 00909 // At this point, we know we have two icmp instructions 00910 // comparing a value against two constants and and'ing the result 00911 // together. Because of the above check, we know that we only have 00912 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know 00913 // (from the icmp folding check above), that the two constants 00914 // are not equal and that the larger constant is on the RHS 00915 assert(LHSCst != RHSCst && "Compares not folded above?"); 00916 00917 switch (LHSCC) { 00918 default: llvm_unreachable("Unknown integer condition code!"); 00919 case ICmpInst::ICMP_EQ: 00920 switch (RHSCC) { 00921 default: llvm_unreachable("Unknown integer condition code!"); 00922 case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13 00923 case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13 00924 case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13 00925 return LHS; 00926 } 00927 case ICmpInst::ICMP_NE: 00928 switch (RHSCC) { 00929 default: llvm_unreachable("Unknown integer condition code!"); 00930 case ICmpInst::ICMP_ULT: 00931 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13 00932 return Builder->CreateICmpULT(Val, LHSCst); 00933 break; // (X != 13 & X u< 15) -> no change 00934 case ICmpInst::ICMP_SLT: 00935 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13 00936 return Builder->CreateICmpSLT(Val, LHSCst); 00937 break; // (X != 13 & X s< 15) -> no change 00938 case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15 00939 case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15 00940 case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15 00941 return RHS; 00942 case ICmpInst::ICMP_NE: 00943 // Special case to get the ordering right when the values wrap around 00944 // zero. 00945 if (LHSCst->getValue() == 0 && RHSCst->getValue().isAllOnesValue()) 00946 std::swap(LHSCst, RHSCst); 00947 if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1 00948 Constant *AddCST = ConstantExpr::getNeg(LHSCst); 00949 Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off"); 00950 return Builder->CreateICmpUGT(Add, ConstantInt::get(Add->getType(), 1), 00951 Val->getName()+".cmp"); 00952 } 00953 break; // (X != 13 & X != 15) -> no change 00954 } 00955 break; 00956 case ICmpInst::ICMP_ULT: 00957 switch (RHSCC) { 00958 default: llvm_unreachable("Unknown integer condition code!"); 00959 case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false 00960 case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false 00961 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0); 00962 case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change 00963 break; 00964 case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13 00965 case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13 00966 return LHS; 00967 case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change 00968 break; 00969 } 00970 break; 00971 case ICmpInst::ICMP_SLT: 00972 switch (RHSCC) { 00973 default: llvm_unreachable("Unknown integer condition code!"); 00974 case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change 00975 break; 00976 case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13 00977 case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13 00978 return LHS; 00979 case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change 00980 break; 00981 } 00982 break; 00983 case ICmpInst::ICMP_UGT: 00984 switch (RHSCC) { 00985 default: llvm_unreachable("Unknown integer condition code!"); 00986 case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X == 15 00987 case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15 00988 return RHS; 00989 case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change 00990 break; 00991 case ICmpInst::ICMP_NE: 00992 if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14 00993 return Builder->CreateICmp(LHSCC, Val, RHSCst); 00994 break; // (X u> 13 & X != 15) -> no change 00995 case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) <u 1 00996 return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true); 00997 case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change 00998 break; 00999 } 01000 break; 01001 case ICmpInst::ICMP_SGT: 01002 switch (RHSCC) { 01003 default: llvm_unreachable("Unknown integer condition code!"); 01004 case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15 01005 case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15 01006 return RHS; 01007 case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change 01008 break; 01009 case ICmpInst::ICMP_NE: 01010 if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14 01011 return Builder->CreateICmp(LHSCC, Val, RHSCst); 01012 break; // (X s> 13 & X != 15) -> no change 01013 case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) s< 1 01014 return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, true, true); 01015 case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change 01016 break; 01017 } 01018 break; 01019 } 01020 01021 return nullptr; 01022 } 01023 01024 /// FoldAndOfFCmps - Optimize (fcmp)&(fcmp). NOTE: Unlike the rest of 01025 /// instcombine, this returns a Value which should already be inserted into the 01026 /// function. 01027 Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) { 01028 if (LHS->getPredicate() == FCmpInst::FCMP_ORD && 01029 RHS->getPredicate() == FCmpInst::FCMP_ORD) { 01030 if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType()) 01031 return nullptr; 01032 01033 // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y) 01034 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1))) 01035 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) { 01036 // If either of the constants are nans, then the whole thing returns 01037 // false. 01038 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN()) 01039 return Builder->getFalse(); 01040 return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0)); 01041 } 01042 01043 // Handle vector zeros. This occurs because the canonical form of 01044 // "fcmp ord x,x" is "fcmp ord x, 0". 01045 if (isa<ConstantAggregateZero>(LHS->getOperand(1)) && 01046 isa<ConstantAggregateZero>(RHS->getOperand(1))) 01047 return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0)); 01048 return nullptr; 01049 } 01050 01051 Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1); 01052 Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1); 01053 FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate(); 01054 01055 01056 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) { 01057 // Swap RHS operands to match LHS. 01058 Op1CC = FCmpInst::getSwappedPredicate(Op1CC); 01059 std::swap(Op1LHS, Op1RHS); 01060 } 01061 01062 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) { 01063 // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y). 01064 if (Op0CC == Op1CC) 01065 return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS); 01066 if (Op0CC == FCmpInst::FCMP_FALSE || Op1CC == FCmpInst::FCMP_FALSE) 01067 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0); 01068 if (Op0CC == FCmpInst::FCMP_TRUE) 01069 return RHS; 01070 if (Op1CC == FCmpInst::FCMP_TRUE) 01071 return LHS; 01072 01073 bool Op0Ordered; 01074 bool Op1Ordered; 01075 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered); 01076 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered); 01077 // uno && ord -> false 01078 if (Op0Pred == 0 && Op1Pred == 0 && Op0Ordered != Op1Ordered) 01079 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0); 01080 if (Op1Pred == 0) { 01081 std::swap(LHS, RHS); 01082 std::swap(Op0Pred, Op1Pred); 01083 std::swap(Op0Ordered, Op1Ordered); 01084 } 01085 if (Op0Pred == 0) { 01086 // uno && ueq -> uno && (uno || eq) -> uno 01087 // ord && olt -> ord && (ord && lt) -> olt 01088 if (!Op0Ordered && (Op0Ordered == Op1Ordered)) 01089 return LHS; 01090 if (Op0Ordered && (Op0Ordered == Op1Ordered)) 01091 return RHS; 01092 01093 // uno && oeq -> uno && (ord && eq) -> false 01094 if (!Op0Ordered) 01095 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0); 01096 // ord && ueq -> ord && (uno || eq) -> oeq 01097 return getFCmpValue(true, Op1Pred, Op0LHS, Op0RHS, Builder); 01098 } 01099 } 01100 01101 return nullptr; 01102 } 01103 01104 Instruction *InstCombiner::visitAnd(BinaryOperator &I) { 01105 bool Changed = SimplifyAssociativeOrCommutative(I); 01106 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 01107 01108 if (Value *V = SimplifyVectorOp(I)) 01109 return ReplaceInstUsesWith(I, V); 01110 01111 if (Value *V = SimplifyAndInst(Op0, Op1, DL, TLI, DT, AT)) 01112 return ReplaceInstUsesWith(I, V); 01113 01114 // (A|B)&(A|C) -> A|(B&C) etc 01115 if (Value *V = SimplifyUsingDistributiveLaws(I)) 01116 return ReplaceInstUsesWith(I, V); 01117 01118 // See if we can simplify any instructions used by the instruction whose sole 01119 // purpose is to compute bits we don't care about. 01120 if (SimplifyDemandedInstructionBits(I)) 01121 return &I; 01122 01123 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) { 01124 const APInt &AndRHSMask = AndRHS->getValue(); 01125 01126 // Optimize a variety of ((val OP C1) & C2) combinations... 01127 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) { 01128 Value *Op0LHS = Op0I->getOperand(0); 01129 Value *Op0RHS = Op0I->getOperand(1); 01130 switch (Op0I->getOpcode()) { 01131 default: break; 01132 case Instruction::Xor: 01133 case Instruction::Or: { 01134 // If the mask is only needed on one incoming arm, push it up. 01135 if (!Op0I->hasOneUse()) break; 01136 01137 APInt NotAndRHS(~AndRHSMask); 01138 if (MaskedValueIsZero(Op0LHS, NotAndRHS, 0, &I)) { 01139 // Not masking anything out for the LHS, move to RHS. 01140 Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS, 01141 Op0RHS->getName()+".masked"); 01142 return BinaryOperator::Create(Op0I->getOpcode(), Op0LHS, NewRHS); 01143 } 01144 if (!isa<Constant>(Op0RHS) && 01145 MaskedValueIsZero(Op0RHS, NotAndRHS, 0, &I)) { 01146 // Not masking anything out for the RHS, move to LHS. 01147 Value *NewLHS = Builder->CreateAnd(Op0LHS, AndRHS, 01148 Op0LHS->getName()+".masked"); 01149 return BinaryOperator::Create(Op0I->getOpcode(), NewLHS, Op0RHS); 01150 } 01151 01152 break; 01153 } 01154 case Instruction::Add: 01155 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS. 01156 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0 01157 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0 01158 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I)) 01159 return BinaryOperator::CreateAnd(V, AndRHS); 01160 if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I)) 01161 return BinaryOperator::CreateAnd(V, AndRHS); // Add commutes 01162 break; 01163 01164 case Instruction::Sub: 01165 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS. 01166 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0 01167 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0 01168 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I)) 01169 return BinaryOperator::CreateAnd(V, AndRHS); 01170 01171 // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS 01172 // has 1's for all bits that the subtraction with A might affect. 01173 if (Op0I->hasOneUse() && !match(Op0LHS, m_Zero())) { 01174 uint32_t BitWidth = AndRHSMask.getBitWidth(); 01175 uint32_t Zeros = AndRHSMask.countLeadingZeros(); 01176 APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros); 01177 01178 if (MaskedValueIsZero(Op0LHS, Mask, 0, &I)) { 01179 Value *NewNeg = Builder->CreateNeg(Op0RHS); 01180 return BinaryOperator::CreateAnd(NewNeg, AndRHS); 01181 } 01182 } 01183 break; 01184 01185 case Instruction::Shl: 01186 case Instruction::LShr: 01187 // (1 << x) & 1 --> zext(x == 0) 01188 // (1 >> x) & 1 --> zext(x == 0) 01189 if (AndRHSMask == 1 && Op0LHS == AndRHS) { 01190 Value *NewICmp = 01191 Builder->CreateICmpEQ(Op0RHS, Constant::getNullValue(I.getType())); 01192 return new ZExtInst(NewICmp, I.getType()); 01193 } 01194 break; 01195 } 01196 01197 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) 01198 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I)) 01199 return Res; 01200 } 01201 01202 // If this is an integer truncation, and if the source is an 'and' with 01203 // immediate, transform it. This frequently occurs for bitfield accesses. 01204 { 01205 Value *X = nullptr; ConstantInt *YC = nullptr; 01206 if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) { 01207 // Change: and (trunc (and X, YC) to T), C2 01208 // into : and (trunc X to T), trunc(YC) & C2 01209 // This will fold the two constants together, which may allow 01210 // other simplifications. 01211 Value *NewCast = Builder->CreateTrunc(X, I.getType(), "and.shrunk"); 01212 Constant *C3 = ConstantExpr::getTrunc(YC, I.getType()); 01213 C3 = ConstantExpr::getAnd(C3, AndRHS); 01214 return BinaryOperator::CreateAnd(NewCast, C3); 01215 } 01216 } 01217 01218 // Try to fold constant and into select arguments. 01219 if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) 01220 if (Instruction *R = FoldOpIntoSelect(I, SI)) 01221 return R; 01222 if (isa<PHINode>(Op0)) 01223 if (Instruction *NV = FoldOpIntoPhi(I)) 01224 return NV; 01225 } 01226 01227 01228 // (~A & ~B) == (~(A | B)) - De Morgan's Law 01229 if (Value *Op0NotVal = dyn_castNotVal(Op0)) 01230 if (Value *Op1NotVal = dyn_castNotVal(Op1)) 01231 if (Op0->hasOneUse() && Op1->hasOneUse()) { 01232 Value *Or = Builder->CreateOr(Op0NotVal, Op1NotVal, 01233 I.getName()+".demorgan"); 01234 return BinaryOperator::CreateNot(Or); 01235 } 01236 01237 { 01238 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 01239 // (A|B) & ~(A&B) -> A^B 01240 if (match(Op0, m_Or(m_Value(A), m_Value(B))) && 01241 match(Op1, m_Not(m_And(m_Value(C), m_Value(D)))) && 01242 ((A == C && B == D) || (A == D && B == C))) 01243 return BinaryOperator::CreateXor(A, B); 01244 01245 // ~(A&B) & (A|B) -> A^B 01246 if (match(Op1, m_Or(m_Value(A), m_Value(B))) && 01247 match(Op0, m_Not(m_And(m_Value(C), m_Value(D)))) && 01248 ((A == C && B == D) || (A == D && B == C))) 01249 return BinaryOperator::CreateXor(A, B); 01250 01251 // A&(A^B) => A & ~B 01252 { 01253 Value *tmpOp0 = Op0; 01254 Value *tmpOp1 = Op1; 01255 if (Op0->hasOneUse() && 01256 match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 01257 if (A == Op1 || B == Op1 ) { 01258 tmpOp1 = Op0; 01259 tmpOp0 = Op1; 01260 // Simplify below 01261 } 01262 } 01263 01264 if (tmpOp1->hasOneUse() && 01265 match(tmpOp1, m_Xor(m_Value(A), m_Value(B)))) { 01266 if (B == tmpOp0) { 01267 std::swap(A, B); 01268 } 01269 // Notice that the patten (A&(~B)) is actually (A&(-1^B)), so if 01270 // A is originally -1 (or a vector of -1 and undefs), then we enter 01271 // an endless loop. By checking that A is non-constant we ensure that 01272 // we will never get to the loop. 01273 if (A == tmpOp0 && !isa<Constant>(A)) // A&(A^B) -> A & ~B 01274 return BinaryOperator::CreateAnd(A, Builder->CreateNot(B)); 01275 } 01276 } 01277 01278 // (A&((~A)|B)) -> A&B 01279 if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) || 01280 match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1))))) 01281 return BinaryOperator::CreateAnd(A, Op1); 01282 if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) || 01283 match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0))))) 01284 return BinaryOperator::CreateAnd(A, Op0); 01285 01286 // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C 01287 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) 01288 if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A)))) 01289 if (Op1->hasOneUse() || cast<BinaryOperator>(Op1)->hasOneUse()) 01290 return BinaryOperator::CreateAnd(Op0, Builder->CreateNot(C)); 01291 01292 // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C 01293 if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B)))) 01294 if (match(Op1, m_Xor(m_Specific(B), m_Specific(A)))) 01295 if (Op0->hasOneUse() || cast<BinaryOperator>(Op0)->hasOneUse()) 01296 return BinaryOperator::CreateAnd(Op1, Builder->CreateNot(C)); 01297 01298 // (A | B) & ((~A) ^ B) -> (A & B) 01299 if (match(Op0, m_Or(m_Value(A), m_Value(B))) && 01300 match(Op1, m_Xor(m_Not(m_Specific(A)), m_Specific(B)))) 01301 return BinaryOperator::CreateAnd(A, B); 01302 01303 // ((~A) ^ B) & (A | B) -> (A & B) 01304 if (match(Op0, m_Xor(m_Not(m_Value(A)), m_Value(B))) && 01305 match(Op1, m_Or(m_Specific(A), m_Specific(B)))) 01306 return BinaryOperator::CreateAnd(A, B); 01307 } 01308 01309 { 01310 ICmpInst *LHS = dyn_cast<ICmpInst>(Op0); 01311 ICmpInst *RHS = dyn_cast<ICmpInst>(Op1); 01312 if (LHS && RHS) 01313 if (Value *Res = FoldAndOfICmps(LHS, RHS)) 01314 return ReplaceInstUsesWith(I, Res); 01315 01316 // TODO: Make this recursive; it's a little tricky because an arbitrary 01317 // number of 'and' instructions might have to be created. 01318 Value *X, *Y; 01319 if (LHS && match(Op1, m_OneUse(m_And(m_Value(X), m_Value(Y))))) { 01320 if (auto *Cmp = dyn_cast<ICmpInst>(X)) 01321 if (Value *Res = FoldAndOfICmps(LHS, Cmp)) 01322 return ReplaceInstUsesWith(I, Builder->CreateAnd(Res, Y)); 01323 if (auto *Cmp = dyn_cast<ICmpInst>(Y)) 01324 if (Value *Res = FoldAndOfICmps(LHS, Cmp)) 01325 return ReplaceInstUsesWith(I, Builder->CreateAnd(Res, X)); 01326 } 01327 if (RHS && match(Op0, m_OneUse(m_And(m_Value(X), m_Value(Y))))) { 01328 if (auto *Cmp = dyn_cast<ICmpInst>(X)) 01329 if (Value *Res = FoldAndOfICmps(Cmp, RHS)) 01330 return ReplaceInstUsesWith(I, Builder->CreateAnd(Res, Y)); 01331 if (auto *Cmp = dyn_cast<ICmpInst>(Y)) 01332 if (Value *Res = FoldAndOfICmps(Cmp, RHS)) 01333 return ReplaceInstUsesWith(I, Builder->CreateAnd(Res, X)); 01334 } 01335 } 01336 01337 // If and'ing two fcmp, try combine them into one. 01338 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) 01339 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) 01340 if (Value *Res = FoldAndOfFCmps(LHS, RHS)) 01341 return ReplaceInstUsesWith(I, Res); 01342 01343 01344 // fold (and (cast A), (cast B)) -> (cast (and A, B)) 01345 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) 01346 if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) { 01347 Type *SrcTy = Op0C->getOperand(0)->getType(); 01348 if (Op0C->getOpcode() == Op1C->getOpcode() && // same cast kind ? 01349 SrcTy == Op1C->getOperand(0)->getType() && 01350 SrcTy->isIntOrIntVectorTy()) { 01351 Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0); 01352 01353 // Only do this if the casts both really cause code to be generated. 01354 if (ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) && 01355 ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) { 01356 Value *NewOp = Builder->CreateAnd(Op0COp, Op1COp, I.getName()); 01357 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType()); 01358 } 01359 01360 // If this is and(cast(icmp), cast(icmp)), try to fold this even if the 01361 // cast is otherwise not optimizable. This happens for vector sexts. 01362 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp)) 01363 if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp)) 01364 if (Value *Res = FoldAndOfICmps(LHS, RHS)) 01365 return CastInst::Create(Op0C->getOpcode(), Res, I.getType()); 01366 01367 // If this is and(cast(fcmp), cast(fcmp)), try to fold this even if the 01368 // cast is otherwise not optimizable. This happens for vector sexts. 01369 if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp)) 01370 if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp)) 01371 if (Value *Res = FoldAndOfFCmps(LHS, RHS)) 01372 return CastInst::Create(Op0C->getOpcode(), Res, I.getType()); 01373 } 01374 } 01375 01376 { 01377 Value *X = nullptr; 01378 bool OpsSwapped = false; 01379 // Canonicalize SExt or Not to the LHS 01380 if (match(Op1, m_SExt(m_Value())) || 01381 match(Op1, m_Not(m_Value()))) { 01382 std::swap(Op0, Op1); 01383 OpsSwapped = true; 01384 } 01385 01386 // Fold (and (sext bool to A), B) --> (select bool, B, 0) 01387 if (match(Op0, m_SExt(m_Value(X))) && 01388 X->getType()->getScalarType()->isIntegerTy(1)) { 01389 Value *Zero = Constant::getNullValue(Op1->getType()); 01390 return SelectInst::Create(X, Op1, Zero); 01391 } 01392 01393 // Fold (and ~(sext bool to A), B) --> (select bool, 0, B) 01394 if (match(Op0, m_Not(m_SExt(m_Value(X)))) && 01395 X->getType()->getScalarType()->isIntegerTy(1)) { 01396 Value *Zero = Constant::getNullValue(Op0->getType()); 01397 return SelectInst::Create(X, Zero, Op1); 01398 } 01399 01400 if (OpsSwapped) 01401 std::swap(Op0, Op1); 01402 } 01403 01404 return Changed ? &I : nullptr; 01405 } 01406 01407 /// CollectBSwapParts - Analyze the specified subexpression and see if it is 01408 /// capable of providing pieces of a bswap. The subexpression provides pieces 01409 /// of a bswap if it is proven that each of the non-zero bytes in the output of 01410 /// the expression came from the corresponding "byte swapped" byte in some other 01411 /// value. For example, if the current subexpression is "(shl i32 %X, 24)" then 01412 /// we know that the expression deposits the low byte of %X into the high byte 01413 /// of the bswap result and that all other bytes are zero. This expression is 01414 /// accepted, the high byte of ByteValues is set to X to indicate a correct 01415 /// match. 01416 /// 01417 /// This function returns true if the match was unsuccessful and false if so. 01418 /// On entry to the function the "OverallLeftShift" is a signed integer value 01419 /// indicating the number of bytes that the subexpression is later shifted. For 01420 /// example, if the expression is later right shifted by 16 bits, the 01421 /// OverallLeftShift value would be -2 on entry. This is used to specify which 01422 /// byte of ByteValues is actually being set. 01423 /// 01424 /// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding 01425 /// byte is masked to zero by a user. For example, in (X & 255), X will be 01426 /// processed with a bytemask of 1. Because bytemask is 32-bits, this limits 01427 /// this function to working on up to 32-byte (256 bit) values. ByteMask is 01428 /// always in the local (OverallLeftShift) coordinate space. 01429 /// 01430 static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask, 01431 SmallVectorImpl<Value *> &ByteValues) { 01432 if (Instruction *I = dyn_cast<Instruction>(V)) { 01433 // If this is an or instruction, it may be an inner node of the bswap. 01434 if (I->getOpcode() == Instruction::Or) { 01435 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask, 01436 ByteValues) || 01437 CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask, 01438 ByteValues); 01439 } 01440 01441 // If this is a logical shift by a constant multiple of 8, recurse with 01442 // OverallLeftShift and ByteMask adjusted. 01443 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 01444 unsigned ShAmt = 01445 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 01446 // Ensure the shift amount is defined and of a byte value. 01447 if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size())) 01448 return true; 01449 01450 unsigned ByteShift = ShAmt >> 3; 01451 if (I->getOpcode() == Instruction::Shl) { 01452 // X << 2 -> collect(X, +2) 01453 OverallLeftShift += ByteShift; 01454 ByteMask >>= ByteShift; 01455 } else { 01456 // X >>u 2 -> collect(X, -2) 01457 OverallLeftShift -= ByteShift; 01458 ByteMask <<= ByteShift; 01459 ByteMask &= (~0U >> (32-ByteValues.size())); 01460 } 01461 01462 if (OverallLeftShift >= (int)ByteValues.size()) return true; 01463 if (OverallLeftShift <= -(int)ByteValues.size()) return true; 01464 01465 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask, 01466 ByteValues); 01467 } 01468 01469 // If this is a logical 'and' with a mask that clears bytes, clear the 01470 // corresponding bytes in ByteMask. 01471 if (I->getOpcode() == Instruction::And && 01472 isa<ConstantInt>(I->getOperand(1))) { 01473 // Scan every byte of the and mask, seeing if the byte is either 0 or 255. 01474 unsigned NumBytes = ByteValues.size(); 01475 APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255); 01476 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 01477 01478 for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) { 01479 // If this byte is masked out by a later operation, we don't care what 01480 // the and mask is. 01481 if ((ByteMask & (1 << i)) == 0) 01482 continue; 01483 01484 // If the AndMask is all zeros for this byte, clear the bit. 01485 APInt MaskB = AndMask & Byte; 01486 if (MaskB == 0) { 01487 ByteMask &= ~(1U << i); 01488 continue; 01489 } 01490 01491 // If the AndMask is not all ones for this byte, it's not a bytezap. 01492 if (MaskB != Byte) 01493 return true; 01494 01495 // Otherwise, this byte is kept. 01496 } 01497 01498 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask, 01499 ByteValues); 01500 } 01501 } 01502 01503 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 01504 // the input value to the bswap. Some observations: 1) if more than one byte 01505 // is demanded from this input, then it could not be successfully assembled 01506 // into a byteswap. At least one of the two bytes would not be aligned with 01507 // their ultimate destination. 01508 if (!isPowerOf2_32(ByteMask)) return true; 01509 unsigned InputByteNo = countTrailingZeros(ByteMask); 01510 01511 // 2) The input and ultimate destinations must line up: if byte 3 of an i32 01512 // is demanded, it needs to go into byte 0 of the result. This means that the 01513 // byte needs to be shifted until it lands in the right byte bucket. The 01514 // shift amount depends on the position: if the byte is coming from the high 01515 // part of the value (e.g. byte 3) then it must be shifted right. If from the 01516 // low part, it must be shifted left. 01517 unsigned DestByteNo = InputByteNo + OverallLeftShift; 01518 if (ByteValues.size()-1-DestByteNo != InputByteNo) 01519 return true; 01520 01521 // If the destination byte value is already defined, the values are or'd 01522 // together, which isn't a bswap (unless it's an or of the same bits). 01523 if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V) 01524 return true; 01525 ByteValues[DestByteNo] = V; 01526 return false; 01527 } 01528 01529 /// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom. 01530 /// If so, insert the new bswap intrinsic and return it. 01531 Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) { 01532 IntegerType *ITy = dyn_cast<IntegerType>(I.getType()); 01533 if (!ITy || ITy->getBitWidth() % 16 || 01534 // ByteMask only allows up to 32-byte values. 01535 ITy->getBitWidth() > 32*8) 01536 return nullptr; // Can only bswap pairs of bytes. Can't do vectors. 01537 01538 /// ByteValues - For each byte of the result, we keep track of which value 01539 /// defines each byte. 01540 SmallVector<Value*, 8> ByteValues; 01541 ByteValues.resize(ITy->getBitWidth()/8); 01542 01543 // Try to find all the pieces corresponding to the bswap. 01544 uint32_t ByteMask = ~0U >> (32-ByteValues.size()); 01545 if (CollectBSwapParts(&I, 0, ByteMask, ByteValues)) 01546 return nullptr; 01547 01548 // Check to see if all of the bytes come from the same value. 01549 Value *V = ByteValues[0]; 01550 if (!V) return nullptr; // Didn't find a byte? Must be zero. 01551 01552 // Check to make sure that all of the bytes come from the same value. 01553 for (unsigned i = 1, e = ByteValues.size(); i != e; ++i) 01554 if (ByteValues[i] != V) 01555 return nullptr; 01556 Module *M = I.getParent()->getParent()->getParent(); 01557 Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, ITy); 01558 return CallInst::Create(F, V); 01559 } 01560 01561 /// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D). Check 01562 /// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then 01563 /// we can simplify this expression to "cond ? C : D or B". 01564 static Instruction *MatchSelectFromAndOr(Value *A, Value *B, 01565 Value *C, Value *D) { 01566 // If A is not a select of -1/0, this cannot match. 01567 Value *Cond = nullptr; 01568 if (!match(A, m_SExt(m_Value(Cond))) || 01569 !Cond->getType()->isIntegerTy(1)) 01570 return nullptr; 01571 01572 // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B. 01573 if (match(D, m_Not(m_SExt(m_Specific(Cond))))) 01574 return SelectInst::Create(Cond, C, B); 01575 if (match(D, m_SExt(m_Not(m_Specific(Cond))))) 01576 return SelectInst::Create(Cond, C, B); 01577 01578 // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D. 01579 if (match(B, m_Not(m_SExt(m_Specific(Cond))))) 01580 return SelectInst::Create(Cond, C, D); 01581 if (match(B, m_SExt(m_Not(m_Specific(Cond))))) 01582 return SelectInst::Create(Cond, C, D); 01583 return nullptr; 01584 } 01585 01586 /// FoldOrOfICmps - Fold (icmp)|(icmp) if possible. 01587 Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, 01588 Instruction *CxtI) { 01589 ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate(); 01590 01591 // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2) 01592 // if K1 and K2 are a one-bit mask. 01593 ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1)); 01594 ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1)); 01595 01596 if (LHS->getPredicate() == ICmpInst::ICMP_EQ && LHSCst && LHSCst->isZero() && 01597 RHS->getPredicate() == ICmpInst::ICMP_EQ && RHSCst && RHSCst->isZero()) { 01598 01599 BinaryOperator *LAnd = dyn_cast<BinaryOperator>(LHS->getOperand(0)); 01600 BinaryOperator *RAnd = dyn_cast<BinaryOperator>(RHS->getOperand(0)); 01601 if (LAnd && RAnd && LAnd->hasOneUse() && RHS->hasOneUse() && 01602 LAnd->getOpcode() == Instruction::And && 01603 RAnd->getOpcode() == Instruction::And) { 01604 01605 Value *Mask = nullptr; 01606 Value *Masked = nullptr; 01607 if (LAnd->getOperand(0) == RAnd->getOperand(0) && 01608 isKnownToBeAPowerOfTwo(LAnd->getOperand(1), false, 0, AT, CxtI, DT) && 01609 isKnownToBeAPowerOfTwo(RAnd->getOperand(1), false, 0, AT, CxtI, DT)) { 01610 Mask = Builder->CreateOr(LAnd->getOperand(1), RAnd->getOperand(1)); 01611 Masked = Builder->CreateAnd(LAnd->getOperand(0), Mask); 01612 } else if (LAnd->getOperand(1) == RAnd->getOperand(1) && 01613 isKnownToBeAPowerOfTwo(LAnd->getOperand(0), 01614 false, 0, AT, CxtI, DT) && 01615 isKnownToBeAPowerOfTwo(RAnd->getOperand(0), 01616 false, 0, AT, CxtI, DT)) { 01617 Mask = Builder->CreateOr(LAnd->getOperand(0), RAnd->getOperand(0)); 01618 Masked = Builder->CreateAnd(LAnd->getOperand(1), Mask); 01619 } 01620 01621 if (Masked) 01622 return Builder->CreateICmp(ICmpInst::ICMP_NE, Masked, Mask); 01623 } 01624 } 01625 01626 // Fold (icmp ult/ule (A + C1), C3) | (icmp ult/ule (A + C2), C3) 01627 // --> (icmp ult/ule ((A & ~(C1 ^ C2)) + max(C1, C2)), C3) 01628 // The original condition actually refers to the following two ranges: 01629 // [MAX_UINT-C1+1, MAX_UINT-C1+1+C3] and [MAX_UINT-C2+1, MAX_UINT-C2+1+C3] 01630 // We can fold these two ranges if: 01631 // 1) C1 and C2 is unsigned greater than C3. 01632 // 2) The two ranges are separated. 01633 // 3) C1 ^ C2 is one-bit mask. 01634 // 4) LowRange1 ^ LowRange2 and HighRange1 ^ HighRange2 are one-bit mask. 01635 // This implies all values in the two ranges differ by exactly one bit. 01636 01637 if ((LHSCC == ICmpInst::ICMP_ULT || LHSCC == ICmpInst::ICMP_ULE) && 01638 LHSCC == RHSCC && LHSCst && RHSCst && LHS->hasOneUse() && 01639 RHS->hasOneUse() && LHSCst->getType() == RHSCst->getType() && 01640 LHSCst->getValue() == (RHSCst->getValue())) { 01641 01642 Value *LAdd = LHS->getOperand(0); 01643 Value *RAdd = RHS->getOperand(0); 01644 01645 Value *LAddOpnd, *RAddOpnd; 01646 ConstantInt *LAddCst, *RAddCst; 01647 if (match(LAdd, m_Add(m_Value(LAddOpnd), m_ConstantInt(LAddCst))) && 01648 match(RAdd, m_Add(m_Value(RAddOpnd), m_ConstantInt(RAddCst))) && 01649 LAddCst->getValue().ugt(LHSCst->getValue()) && 01650 RAddCst->getValue().ugt(LHSCst->getValue())) { 01651 01652 APInt DiffCst = LAddCst->getValue() ^ RAddCst->getValue(); 01653 if (LAddOpnd == RAddOpnd && DiffCst.isPowerOf2()) { 01654 ConstantInt *MaxAddCst = nullptr; 01655 if (LAddCst->getValue().ult(RAddCst->getValue())) 01656 MaxAddCst = RAddCst; 01657 else 01658 MaxAddCst = LAddCst; 01659 01660 APInt RRangeLow = -RAddCst->getValue(); 01661 APInt RRangeHigh = RRangeLow + LHSCst->getValue(); 01662 APInt LRangeLow = -LAddCst->getValue(); 01663 APInt LRangeHigh = LRangeLow + LHSCst->getValue(); 01664 APInt LowRangeDiff = RRangeLow ^ LRangeLow; 01665 APInt HighRangeDiff = RRangeHigh ^ LRangeHigh; 01666 APInt RangeDiff = LRangeLow.sgt(RRangeLow) ? LRangeLow - RRangeLow 01667 : RRangeLow - LRangeLow; 01668 01669 if (LowRangeDiff.isPowerOf2() && LowRangeDiff == HighRangeDiff && 01670 RangeDiff.ugt(LHSCst->getValue())) { 01671 Value *MaskCst = ConstantInt::get(LAddCst->getType(), ~DiffCst); 01672 01673 Value *NewAnd = Builder->CreateAnd(LAddOpnd, MaskCst); 01674 Value *NewAdd = Builder->CreateAdd(NewAnd, MaxAddCst); 01675 return (Builder->CreateICmp(LHS->getPredicate(), NewAdd, LHSCst)); 01676 } 01677 } 01678 } 01679 } 01680 01681 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B) 01682 if (PredicatesFoldable(LHSCC, RHSCC)) { 01683 if (LHS->getOperand(0) == RHS->getOperand(1) && 01684 LHS->getOperand(1) == RHS->getOperand(0)) 01685 LHS->swapOperands(); 01686 if (LHS->getOperand(0) == RHS->getOperand(0) && 01687 LHS->getOperand(1) == RHS->getOperand(1)) { 01688 Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1); 01689 unsigned Code = getICmpCode(LHS) | getICmpCode(RHS); 01690 bool isSigned = LHS->isSigned() || RHS->isSigned(); 01691 return getNewICmpValue(isSigned, Code, Op0, Op1, Builder); 01692 } 01693 } 01694 01695 // handle (roughly): 01696 // (icmp ne (A & B), C) | (icmp ne (A & D), E) 01697 if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, false, Builder)) 01698 return V; 01699 01700 Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0); 01701 if (LHS->hasOneUse() || RHS->hasOneUse()) { 01702 // (icmp eq B, 0) | (icmp ult A, B) -> (icmp ule A, B-1) 01703 // (icmp eq B, 0) | (icmp ugt B, A) -> (icmp ule A, B-1) 01704 Value *A = nullptr, *B = nullptr; 01705 if (LHSCC == ICmpInst::ICMP_EQ && LHSCst && LHSCst->isZero()) { 01706 B = Val; 01707 if (RHSCC == ICmpInst::ICMP_ULT && Val == RHS->getOperand(1)) 01708 A = Val2; 01709 else if (RHSCC == ICmpInst::ICMP_UGT && Val == Val2) 01710 A = RHS->getOperand(1); 01711 } 01712 // (icmp ult A, B) | (icmp eq B, 0) -> (icmp ule A, B-1) 01713 // (icmp ugt B, A) | (icmp eq B, 0) -> (icmp ule A, B-1) 01714 else if (RHSCC == ICmpInst::ICMP_EQ && RHSCst && RHSCst->isZero()) { 01715 B = Val2; 01716 if (LHSCC == ICmpInst::ICMP_ULT && Val2 == LHS->getOperand(1)) 01717 A = Val; 01718 else if (LHSCC == ICmpInst::ICMP_UGT && Val2 == Val) 01719 A = LHS->getOperand(1); 01720 } 01721 if (A && B) 01722 return Builder->CreateICmp( 01723 ICmpInst::ICMP_UGE, 01724 Builder->CreateAdd(B, ConstantInt::getSigned(B->getType(), -1)), A); 01725 } 01726 01727 // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2). 01728 if (!LHSCst || !RHSCst) return nullptr; 01729 01730 if (LHSCst == RHSCst && LHSCC == RHSCC) { 01731 // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0) 01732 if (LHSCC == ICmpInst::ICMP_NE && LHSCst->isZero()) { 01733 Value *NewOr = Builder->CreateOr(Val, Val2); 01734 return Builder->CreateICmp(LHSCC, NewOr, LHSCst); 01735 } 01736 } 01737 01738 // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1) 01739 // iff C2 + CA == C1. 01740 if (LHSCC == ICmpInst::ICMP_ULT && RHSCC == ICmpInst::ICMP_EQ) { 01741 ConstantInt *AddCst; 01742 if (match(Val, m_Add(m_Specific(Val2), m_ConstantInt(AddCst)))) 01743 if (RHSCst->getValue() + AddCst->getValue() == LHSCst->getValue()) 01744 return Builder->CreateICmpULE(Val, LHSCst); 01745 } 01746 01747 // From here on, we only handle: 01748 // (icmp1 A, C1) | (icmp2 A, C2) --> something simpler. 01749 if (Val != Val2) return nullptr; 01750 01751 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere. 01752 if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE || 01753 RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE || 01754 LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE || 01755 RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE) 01756 return nullptr; 01757 01758 // We can't fold (ugt x, C) | (sgt x, C2). 01759 if (!PredicatesFoldable(LHSCC, RHSCC)) 01760 return nullptr; 01761 01762 // Ensure that the larger constant is on the RHS. 01763 bool ShouldSwap; 01764 if (CmpInst::isSigned(LHSCC) || 01765 (ICmpInst::isEquality(LHSCC) && 01766 CmpInst::isSigned(RHSCC))) 01767 ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue()); 01768 else 01769 ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue()); 01770 01771 if (ShouldSwap) { 01772 std::swap(LHS, RHS); 01773 std::swap(LHSCst, RHSCst); 01774 std::swap(LHSCC, RHSCC); 01775 } 01776 01777 // At this point, we know we have two icmp instructions 01778 // comparing a value against two constants and or'ing the result 01779 // together. Because of the above check, we know that we only have 01780 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the 01781 // icmp folding check above), that the two constants are not 01782 // equal. 01783 assert(LHSCst != RHSCst && "Compares not folded above?"); 01784 01785 switch (LHSCC) { 01786 default: llvm_unreachable("Unknown integer condition code!"); 01787 case ICmpInst::ICMP_EQ: 01788 switch (RHSCC) { 01789 default: llvm_unreachable("Unknown integer condition code!"); 01790 case ICmpInst::ICMP_EQ: 01791 if (LHS->getOperand(0) == RHS->getOperand(0)) { 01792 // if LHSCst and RHSCst differ only by one bit: 01793 // (A == C1 || A == C2) -> (A & ~(C1 ^ C2)) == C1 01794 assert(LHSCst->getValue().ule(LHSCst->getValue())); 01795 01796 APInt Xor = LHSCst->getValue() ^ RHSCst->getValue(); 01797 if (Xor.isPowerOf2()) { 01798 Value *NegCst = Builder->getInt(~Xor); 01799 Value *And = Builder->CreateAnd(LHS->getOperand(0), NegCst); 01800 return Builder->CreateICmp(ICmpInst::ICMP_EQ, And, LHSCst); 01801 } 01802 } 01803 01804 if (LHSCst == SubOne(RHSCst)) { 01805 // (X == 13 | X == 14) -> X-13 <u 2 01806 Constant *AddCST = ConstantExpr::getNeg(LHSCst); 01807 Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off"); 01808 AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst); 01809 return Builder->CreateICmpULT(Add, AddCST); 01810 } 01811 01812 break; // (X == 13 | X == 15) -> no change 01813 case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change 01814 case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change 01815 break; 01816 case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15 01817 case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15 01818 case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15 01819 return RHS; 01820 } 01821 break; 01822 case ICmpInst::ICMP_NE: 01823 switch (RHSCC) { 01824 default: llvm_unreachable("Unknown integer condition code!"); 01825 case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13 01826 case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13 01827 case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13 01828 return LHS; 01829 case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true 01830 case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true 01831 case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true 01832 return Builder->getTrue(); 01833 } 01834 case ICmpInst::ICMP_ULT: 01835 switch (RHSCC) { 01836 default: llvm_unreachable("Unknown integer condition code!"); 01837 case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change 01838 break; 01839 case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2 01840 // If RHSCst is [us]MAXINT, it is always false. Not handling 01841 // this can cause overflow. 01842 if (RHSCst->isMaxValue(false)) 01843 return LHS; 01844 return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), false, false); 01845 case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change 01846 break; 01847 case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15 01848 case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15 01849 return RHS; 01850 case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change 01851 break; 01852 } 01853 break; 01854 case ICmpInst::ICMP_SLT: 01855 switch (RHSCC) { 01856 default: llvm_unreachable("Unknown integer condition code!"); 01857 case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change 01858 break; 01859 case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) s> 2 01860 // If RHSCst is [us]MAXINT, it is always false. Not handling 01861 // this can cause overflow. 01862 if (RHSCst->isMaxValue(true)) 01863 return LHS; 01864 return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), true, false); 01865 case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change 01866 break; 01867 case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15 01868 case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15 01869 return RHS; 01870 case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change 01871 break; 01872 } 01873 break; 01874 case ICmpInst::ICMP_UGT: 01875 switch (RHSCC) { 01876 default: llvm_unreachable("Unknown integer condition code!"); 01877 case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13 01878 case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13 01879 return LHS; 01880 case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change 01881 break; 01882 case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true 01883 case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true 01884 return Builder->getTrue(); 01885 case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change 01886 break; 01887 } 01888 break; 01889 case ICmpInst::ICMP_SGT: 01890 switch (RHSCC) { 01891 default: llvm_unreachable("Unknown integer condition code!"); 01892 case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13 01893 case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13 01894 return LHS; 01895 case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change 01896 break; 01897 case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true 01898 case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true 01899 return Builder->getTrue(); 01900 case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change 01901 break; 01902 } 01903 break; 01904 } 01905 return nullptr; 01906 } 01907 01908 /// FoldOrOfFCmps - Optimize (fcmp)|(fcmp). NOTE: Unlike the rest of 01909 /// instcombine, this returns a Value which should already be inserted into the 01910 /// function. 01911 Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) { 01912 if (LHS->getPredicate() == FCmpInst::FCMP_UNO && 01913 RHS->getPredicate() == FCmpInst::FCMP_UNO && 01914 LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) { 01915 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1))) 01916 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) { 01917 // If either of the constants are nans, then the whole thing returns 01918 // true. 01919 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN()) 01920 return Builder->getTrue(); 01921 01922 // Otherwise, no need to compare the two constants, compare the 01923 // rest. 01924 return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0)); 01925 } 01926 01927 // Handle vector zeros. This occurs because the canonical form of 01928 // "fcmp uno x,x" is "fcmp uno x, 0". 01929 if (isa<ConstantAggregateZero>(LHS->getOperand(1)) && 01930 isa<ConstantAggregateZero>(RHS->getOperand(1))) 01931 return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0)); 01932 01933 return nullptr; 01934 } 01935 01936 Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1); 01937 Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1); 01938 FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate(); 01939 01940 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) { 01941 // Swap RHS operands to match LHS. 01942 Op1CC = FCmpInst::getSwappedPredicate(Op1CC); 01943 std::swap(Op1LHS, Op1RHS); 01944 } 01945 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) { 01946 // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y). 01947 if (Op0CC == Op1CC) 01948 return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS); 01949 if (Op0CC == FCmpInst::FCMP_TRUE || Op1CC == FCmpInst::FCMP_TRUE) 01950 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1); 01951 if (Op0CC == FCmpInst::FCMP_FALSE) 01952 return RHS; 01953 if (Op1CC == FCmpInst::FCMP_FALSE) 01954 return LHS; 01955 bool Op0Ordered; 01956 bool Op1Ordered; 01957 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered); 01958 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered); 01959 if (Op0Ordered == Op1Ordered) { 01960 // If both are ordered or unordered, return a new fcmp with 01961 // or'ed predicates. 01962 return getFCmpValue(Op0Ordered, Op0Pred|Op1Pred, Op0LHS, Op0RHS, Builder); 01963 } 01964 } 01965 return nullptr; 01966 } 01967 01968 /// FoldOrWithConstants - This helper function folds: 01969 /// 01970 /// ((A | B) & C1) | (B & C2) 01971 /// 01972 /// into: 01973 /// 01974 /// (A & C1) | B 01975 /// 01976 /// when the XOR of the two constants is "all ones" (-1). 01977 Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op, 01978 Value *A, Value *B, Value *C) { 01979 ConstantInt *CI1 = dyn_cast<ConstantInt>(C); 01980 if (!CI1) return nullptr; 01981 01982 Value *V1 = nullptr; 01983 ConstantInt *CI2 = nullptr; 01984 if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) return nullptr; 01985 01986 APInt Xor = CI1->getValue() ^ CI2->getValue(); 01987 if (!Xor.isAllOnesValue()) return nullptr; 01988 01989 if (V1 == A || V1 == B) { 01990 Value *NewOp = Builder->CreateAnd((V1 == A) ? B : A, CI1); 01991 return BinaryOperator::CreateOr(NewOp, V1); 01992 } 01993 01994 return nullptr; 01995 } 01996 01997 /// \brief This helper function folds: 01998 /// 01999 /// ((A | B) & C1) ^ (B & C2) 02000 /// 02001 /// into: 02002 /// 02003 /// (A & C1) ^ B 02004 /// 02005 /// when the XOR of the two constants is "all ones" (-1). 02006 Instruction *InstCombiner::FoldXorWithConstants(BinaryOperator &I, Value *Op, 02007 Value *A, Value *B, Value *C) { 02008 ConstantInt *CI1 = dyn_cast<ConstantInt>(C); 02009 if (!CI1) 02010 return nullptr; 02011 02012 Value *V1 = nullptr; 02013 ConstantInt *CI2 = nullptr; 02014 if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) 02015 return nullptr; 02016 02017 APInt Xor = CI1->getValue() ^ CI2->getValue(); 02018 if (!Xor.isAllOnesValue()) 02019 return nullptr; 02020 02021 if (V1 == A || V1 == B) { 02022 Value *NewOp = Builder->CreateAnd(V1 == A ? B : A, CI1); 02023 return BinaryOperator::CreateXor(NewOp, V1); 02024 } 02025 02026 return nullptr; 02027 } 02028 02029 Instruction *InstCombiner::visitOr(BinaryOperator &I) { 02030 bool Changed = SimplifyAssociativeOrCommutative(I); 02031 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 02032 02033 if (Value *V = SimplifyVectorOp(I)) 02034 return ReplaceInstUsesWith(I, V); 02035 02036 if (Value *V = SimplifyOrInst(Op0, Op1, DL, TLI, DT, AT)) 02037 return ReplaceInstUsesWith(I, V); 02038 02039 // (A&B)|(A&C) -> A&(B|C) etc 02040 if (Value *V = SimplifyUsingDistributiveLaws(I)) 02041 return ReplaceInstUsesWith(I, V); 02042 02043 // See if we can simplify any instructions used by the instruction whose sole 02044 // purpose is to compute bits we don't care about. 02045 if (SimplifyDemandedInstructionBits(I)) 02046 return &I; 02047 02048 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { 02049 ConstantInt *C1 = nullptr; Value *X = nullptr; 02050 // (X & C1) | C2 --> (X | C2) & (C1|C2) 02051 // iff (C1 & C2) == 0. 02052 if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && 02053 (RHS->getValue() & C1->getValue()) != 0 && 02054 Op0->hasOneUse()) { 02055 Value *Or = Builder->CreateOr(X, RHS); 02056 Or->takeName(Op0); 02057 return BinaryOperator::CreateAnd(Or, 02058 Builder->getInt(RHS->getValue() | C1->getValue())); 02059 } 02060 02061 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2) 02062 if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && 02063 Op0->hasOneUse()) { 02064 Value *Or = Builder->CreateOr(X, RHS); 02065 Or->takeName(Op0); 02066 return BinaryOperator::CreateXor(Or, 02067 Builder->getInt(C1->getValue() & ~RHS->getValue())); 02068 } 02069 02070 // Try to fold constant and into select arguments. 02071 if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) 02072 if (Instruction *R = FoldOpIntoSelect(I, SI)) 02073 return R; 02074 02075 if (isa<PHINode>(Op0)) 02076 if (Instruction *NV = FoldOpIntoPhi(I)) 02077 return NV; 02078 } 02079 02080 Value *A = nullptr, *B = nullptr; 02081 ConstantInt *C1 = nullptr, *C2 = nullptr; 02082 02083 // (A | B) | C and A | (B | C) -> bswap if possible. 02084 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible. 02085 if (match(Op0, m_Or(m_Value(), m_Value())) || 02086 match(Op1, m_Or(m_Value(), m_Value())) || 02087 (match(Op0, m_LogicalShift(m_Value(), m_Value())) && 02088 match(Op1, m_LogicalShift(m_Value(), m_Value())))) { 02089 if (Instruction *BSwap = MatchBSwap(I)) 02090 return BSwap; 02091 } 02092 02093 // (X^C)|Y -> (X|Y)^C iff Y&C == 0 02094 if (Op0->hasOneUse() && 02095 match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) && 02096 MaskedValueIsZero(Op1, C1->getValue(), 0, &I)) { 02097 Value *NOr = Builder->CreateOr(A, Op1); 02098 NOr->takeName(Op0); 02099 return BinaryOperator::CreateXor(NOr, C1); 02100 } 02101 02102 // Y|(X^C) -> (X|Y)^C iff Y&C == 0 02103 if (Op1->hasOneUse() && 02104 match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) && 02105 MaskedValueIsZero(Op0, C1->getValue(), 0, &I)) { 02106 Value *NOr = Builder->CreateOr(A, Op0); 02107 NOr->takeName(Op0); 02108 return BinaryOperator::CreateXor(NOr, C1); 02109 } 02110 02111 // ((~A & B) | A) -> (A | B) 02112 if (match(Op0, m_And(m_Not(m_Value(A)), m_Value(B))) && 02113 match(Op1, m_Specific(A))) 02114 return BinaryOperator::CreateOr(A, B); 02115 02116 // ((A & B) | ~A) -> (~A | B) 02117 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 02118 match(Op1, m_Not(m_Specific(A)))) 02119 return BinaryOperator::CreateOr(Builder->CreateNot(A), B); 02120 02121 // (A & (~B)) | (A ^ B) -> (A ^ B) 02122 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 02123 match(Op1, m_Xor(m_Specific(A), m_Specific(B)))) 02124 return BinaryOperator::CreateXor(A, B); 02125 02126 // (A ^ B) | ( A & (~B)) -> (A ^ B) 02127 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 02128 match(Op1, m_And(m_Specific(A), m_Not(m_Specific(B))))) 02129 return BinaryOperator::CreateXor(A, B); 02130 02131 // (A & C)|(B & D) 02132 Value *C = nullptr, *D = nullptr; 02133 if (match(Op0, m_And(m_Value(A), m_Value(C))) && 02134 match(Op1, m_And(m_Value(B), m_Value(D)))) { 02135 Value *V1 = nullptr, *V2 = nullptr; 02136 C1 = dyn_cast<ConstantInt>(C); 02137 C2 = dyn_cast<ConstantInt>(D); 02138 if (C1 && C2) { // (A & C1)|(B & C2) 02139 if ((C1->getValue() & C2->getValue()) == 0) { 02140 // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2) 02141 // iff (C1&C2) == 0 and (N&~C1) == 0 02142 if (match(A, m_Or(m_Value(V1), m_Value(V2))) && 02143 ((V1 == B && 02144 MaskedValueIsZero(V2, ~C1->getValue(), 0, &I)) || // (V|N) 02145 (V2 == B && 02146 MaskedValueIsZero(V1, ~C1->getValue(), 0, &I)))) // (N|V) 02147 return BinaryOperator::CreateAnd(A, 02148 Builder->getInt(C1->getValue()|C2->getValue())); 02149 // Or commutes, try both ways. 02150 if (match(B, m_Or(m_Value(V1), m_Value(V2))) && 02151 ((V1 == A && 02152 MaskedValueIsZero(V2, ~C2->getValue(), 0, &I)) || // (V|N) 02153 (V2 == A && 02154 MaskedValueIsZero(V1, ~C2->getValue(), 0, &I)))) // (N|V) 02155 return BinaryOperator::CreateAnd(B, 02156 Builder->getInt(C1->getValue()|C2->getValue())); 02157 02158 // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2) 02159 // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0. 02160 ConstantInt *C3 = nullptr, *C4 = nullptr; 02161 if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) && 02162 (C3->getValue() & ~C1->getValue()) == 0 && 02163 match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) && 02164 (C4->getValue() & ~C2->getValue()) == 0) { 02165 V2 = Builder->CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield"); 02166 return BinaryOperator::CreateAnd(V2, 02167 Builder->getInt(C1->getValue()|C2->getValue())); 02168 } 02169 } 02170 } 02171 02172 // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) -> C0 ? A : B, and commuted variants. 02173 // Don't do this for vector select idioms, the code generator doesn't handle 02174 // them well yet. 02175 if (!I.getType()->isVectorTy()) { 02176 if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D)) 02177 return Match; 02178 if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C)) 02179 return Match; 02180 if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D)) 02181 return Match; 02182 if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C)) 02183 return Match; 02184 } 02185 02186 // ((A&~B)|(~A&B)) -> A^B 02187 if ((match(C, m_Not(m_Specific(D))) && 02188 match(B, m_Not(m_Specific(A))))) 02189 return BinaryOperator::CreateXor(A, D); 02190 // ((~B&A)|(~A&B)) -> A^B 02191 if ((match(A, m_Not(m_Specific(D))) && 02192 match(B, m_Not(m_Specific(C))))) 02193 return BinaryOperator::CreateXor(C, D); 02194 // ((A&~B)|(B&~A)) -> A^B 02195 if ((match(C, m_Not(m_Specific(B))) && 02196 match(D, m_Not(m_Specific(A))))) 02197 return BinaryOperator::CreateXor(A, B); 02198 // ((~B&A)|(B&~A)) -> A^B 02199 if ((match(A, m_Not(m_Specific(B))) && 02200 match(D, m_Not(m_Specific(C))))) 02201 return BinaryOperator::CreateXor(C, B); 02202 02203 // ((A|B)&1)|(B&-2) -> (A&1) | B 02204 if (match(A, m_Or(m_Value(V1), m_Specific(B))) || 02205 match(A, m_Or(m_Specific(B), m_Value(V1)))) { 02206 Instruction *Ret = FoldOrWithConstants(I, Op1, V1, B, C); 02207 if (Ret) return Ret; 02208 } 02209 // (B&-2)|((A|B)&1) -> (A&1) | B 02210 if (match(B, m_Or(m_Specific(A), m_Value(V1))) || 02211 match(B, m_Or(m_Value(V1), m_Specific(A)))) { 02212 Instruction *Ret = FoldOrWithConstants(I, Op0, A, V1, D); 02213 if (Ret) return Ret; 02214 } 02215 // ((A^B)&1)|(B&-2) -> (A&1) ^ B 02216 if (match(A, m_Xor(m_Value(V1), m_Specific(B))) || 02217 match(A, m_Xor(m_Specific(B), m_Value(V1)))) { 02218 Instruction *Ret = FoldXorWithConstants(I, Op1, V1, B, C); 02219 if (Ret) return Ret; 02220 } 02221 // (B&-2)|((A^B)&1) -> (A&1) ^ B 02222 if (match(B, m_Xor(m_Specific(A), m_Value(V1))) || 02223 match(B, m_Xor(m_Value(V1), m_Specific(A)))) { 02224 Instruction *Ret = FoldXorWithConstants(I, Op0, A, V1, D); 02225 if (Ret) return Ret; 02226 } 02227 } 02228 02229 // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C 02230 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) 02231 if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A)))) 02232 if (Op1->hasOneUse() || cast<BinaryOperator>(Op1)->hasOneUse()) 02233 return BinaryOperator::CreateOr(Op0, C); 02234 02235 // ((A ^ C) ^ B) | (B ^ A) -> (B ^ A) | C 02236 if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B)))) 02237 if (match(Op1, m_Xor(m_Specific(B), m_Specific(A)))) 02238 if (Op0->hasOneUse() || cast<BinaryOperator>(Op0)->hasOneUse()) 02239 return BinaryOperator::CreateOr(Op1, C); 02240 02241 // ((B | C) & A) | B -> B | (A & C) 02242 if (match(Op0, m_And(m_Or(m_Specific(Op1), m_Value(C)), m_Value(A)))) 02243 return BinaryOperator::CreateOr(Op1, Builder->CreateAnd(A, C)); 02244 02245 // (~A | ~B) == (~(A & B)) - De Morgan's Law 02246 if (Value *Op0NotVal = dyn_castNotVal(Op0)) 02247 if (Value *Op1NotVal = dyn_castNotVal(Op1)) 02248 if (Op0->hasOneUse() && Op1->hasOneUse()) { 02249 Value *And = Builder->CreateAnd(Op0NotVal, Op1NotVal, 02250 I.getName()+".demorgan"); 02251 return BinaryOperator::CreateNot(And); 02252 } 02253 02254 // Canonicalize xor to the RHS. 02255 bool SwappedForXor = false; 02256 if (match(Op0, m_Xor(m_Value(), m_Value()))) { 02257 std::swap(Op0, Op1); 02258 SwappedForXor = true; 02259 } 02260 02261 // A | ( A ^ B) -> A | B 02262 // A | (~A ^ B) -> A | ~B 02263 // (A & B) | (A ^ B) 02264 if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) { 02265 if (Op0 == A || Op0 == B) 02266 return BinaryOperator::CreateOr(A, B); 02267 02268 if (match(Op0, m_And(m_Specific(A), m_Specific(B))) || 02269 match(Op0, m_And(m_Specific(B), m_Specific(A)))) 02270 return BinaryOperator::CreateOr(A, B); 02271 02272 if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) { 02273 Value *Not = Builder->CreateNot(B, B->getName()+".not"); 02274 return BinaryOperator::CreateOr(Not, Op0); 02275 } 02276 if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) { 02277 Value *Not = Builder->CreateNot(A, A->getName()+".not"); 02278 return BinaryOperator::CreateOr(Not, Op0); 02279 } 02280 } 02281 02282 // A | ~(A | B) -> A | ~B 02283 // A | ~(A ^ B) -> A | ~B 02284 if (match(Op1, m_Not(m_Value(A)))) 02285 if (BinaryOperator *B = dyn_cast<BinaryOperator>(A)) 02286 if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) && 02287 Op1->hasOneUse() && (B->getOpcode() == Instruction::Or || 02288 B->getOpcode() == Instruction::Xor)) { 02289 Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) : 02290 B->getOperand(0); 02291 Value *Not = Builder->CreateNot(NotOp, NotOp->getName()+".not"); 02292 return BinaryOperator::CreateOr(Not, Op0); 02293 } 02294 02295 // (A & B) | ((~A) ^ B) -> (~A ^ B) 02296 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 02297 match(Op1, m_Xor(m_Not(m_Specific(A)), m_Specific(B)))) 02298 return BinaryOperator::CreateXor(Builder->CreateNot(A), B); 02299 02300 // ((~A) ^ B) | (A & B) -> (~A ^ B) 02301 if (match(Op0, m_Xor(m_Not(m_Value(A)), m_Value(B))) && 02302 match(Op1, m_And(m_Specific(A), m_Specific(B)))) 02303 return BinaryOperator::CreateXor(Builder->CreateNot(A), B); 02304 02305 if (SwappedForXor) 02306 std::swap(Op0, Op1); 02307 02308 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) 02309 if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0))) 02310 if (Value *Res = FoldOrOfICmps(LHS, RHS, &I)) 02311 return ReplaceInstUsesWith(I, Res); 02312 02313 // (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y) 02314 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) 02315 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) 02316 if (Value *Res = FoldOrOfFCmps(LHS, RHS)) 02317 return ReplaceInstUsesWith(I, Res); 02318 02319 // fold (or (cast A), (cast B)) -> (cast (or A, B)) 02320 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) { 02321 CastInst *Op1C = dyn_cast<CastInst>(Op1); 02322 if (Op1C && Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ? 02323 Type *SrcTy = Op0C->getOperand(0)->getType(); 02324 if (SrcTy == Op1C->getOperand(0)->getType() && 02325 SrcTy->isIntOrIntVectorTy()) { 02326 Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0); 02327 02328 if ((!isa<ICmpInst>(Op0COp) || !isa<ICmpInst>(Op1COp)) && 02329 // Only do this if the casts both really cause code to be 02330 // generated. 02331 ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) && 02332 ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) { 02333 Value *NewOp = Builder->CreateOr(Op0COp, Op1COp, I.getName()); 02334 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType()); 02335 } 02336 02337 // If this is or(cast(icmp), cast(icmp)), try to fold this even if the 02338 // cast is otherwise not optimizable. This happens for vector sexts. 02339 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp)) 02340 if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp)) 02341 if (Value *Res = FoldOrOfICmps(LHS, RHS, &I)) 02342 return CastInst::Create(Op0C->getOpcode(), Res, I.getType()); 02343 02344 // If this is or(cast(fcmp), cast(fcmp)), try to fold this even if the 02345 // cast is otherwise not optimizable. This happens for vector sexts. 02346 if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp)) 02347 if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp)) 02348 if (Value *Res = FoldOrOfFCmps(LHS, RHS)) 02349 return CastInst::Create(Op0C->getOpcode(), Res, I.getType()); 02350 } 02351 } 02352 } 02353 02354 // or(sext(A), B) -> A ? -1 : B where A is an i1 02355 // or(A, sext(B)) -> B ? -1 : A where B is an i1 02356 if (match(Op0, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1)) 02357 return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1); 02358 if (match(Op1, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1)) 02359 return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0); 02360 02361 // Note: If we've gotten to the point of visiting the outer OR, then the 02362 // inner one couldn't be simplified. If it was a constant, then it won't 02363 // be simplified by a later pass either, so we try swapping the inner/outer 02364 // ORs in the hopes that we'll be able to simplify it this way. 02365 // (X|C) | V --> (X|V) | C 02366 if (Op0->hasOneUse() && !isa<ConstantInt>(Op1) && 02367 match(Op0, m_Or(m_Value(A), m_ConstantInt(C1)))) { 02368 Value *Inner = Builder->CreateOr(A, Op1); 02369 Inner->takeName(Op0); 02370 return BinaryOperator::CreateOr(Inner, C1); 02371 } 02372 02373 // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D)) 02374 // Since this OR statement hasn't been optimized further yet, we hope 02375 // that this transformation will allow the new ORs to be optimized. 02376 { 02377 Value *X = nullptr, *Y = nullptr; 02378 if (Op0->hasOneUse() && Op1->hasOneUse() && 02379 match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) && 02380 match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) { 02381 Value *orTrue = Builder->CreateOr(A, C); 02382 Value *orFalse = Builder->CreateOr(B, D); 02383 return SelectInst::Create(X, orTrue, orFalse); 02384 } 02385 } 02386 02387 return Changed ? &I : nullptr; 02388 } 02389 02390 Instruction *InstCombiner::visitXor(BinaryOperator &I) { 02391 bool Changed = SimplifyAssociativeOrCommutative(I); 02392 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 02393 02394 if (Value *V = SimplifyVectorOp(I)) 02395 return ReplaceInstUsesWith(I, V); 02396 02397 if (Value *V = SimplifyXorInst(Op0, Op1, DL, TLI, DT, AT)) 02398 return ReplaceInstUsesWith(I, V); 02399 02400 // (A&B)^(A&C) -> A&(B^C) etc 02401 if (Value *V = SimplifyUsingDistributiveLaws(I)) 02402 return ReplaceInstUsesWith(I, V); 02403 02404 // See if we can simplify any instructions used by the instruction whose sole 02405 // purpose is to compute bits we don't care about. 02406 if (SimplifyDemandedInstructionBits(I)) 02407 return &I; 02408 02409 // Is this a ~ operation? 02410 if (Value *NotOp = dyn_castNotVal(&I)) { 02411 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) { 02412 if (Op0I->getOpcode() == Instruction::And || 02413 Op0I->getOpcode() == Instruction::Or) { 02414 // ~(~X & Y) --> (X | ~Y) - De Morgan's Law 02415 // ~(~X | Y) === (X & ~Y) - De Morgan's Law 02416 if (dyn_castNotVal(Op0I->getOperand(1))) 02417 Op0I->swapOperands(); 02418 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) { 02419 Value *NotY = 02420 Builder->CreateNot(Op0I->getOperand(1), 02421 Op0I->getOperand(1)->getName()+".not"); 02422 if (Op0I->getOpcode() == Instruction::And) 02423 return BinaryOperator::CreateOr(Op0NotVal, NotY); 02424 return BinaryOperator::CreateAnd(Op0NotVal, NotY); 02425 } 02426 02427 // ~(X & Y) --> (~X | ~Y) - De Morgan's Law 02428 // ~(X | Y) === (~X & ~Y) - De Morgan's Law 02429 if (isFreeToInvert(Op0I->getOperand(0)) && 02430 isFreeToInvert(Op0I->getOperand(1))) { 02431 Value *NotX = 02432 Builder->CreateNot(Op0I->getOperand(0), "notlhs"); 02433 Value *NotY = 02434 Builder->CreateNot(Op0I->getOperand(1), "notrhs"); 02435 if (Op0I->getOpcode() == Instruction::And) 02436 return BinaryOperator::CreateOr(NotX, NotY); 02437 return BinaryOperator::CreateAnd(NotX, NotY); 02438 } 02439 02440 } else if (Op0I->getOpcode() == Instruction::AShr) { 02441 // ~(~X >>s Y) --> (X >>s Y) 02442 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) 02443 return BinaryOperator::CreateAShr(Op0NotVal, Op0I->getOperand(1)); 02444 } 02445 } 02446 } 02447 02448 02449 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { 02450 if (RHS->isOne() && Op0->hasOneUse()) 02451 // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B 02452 if (CmpInst *CI = dyn_cast<CmpInst>(Op0)) 02453 return CmpInst::Create(CI->getOpcode(), 02454 CI->getInversePredicate(), 02455 CI->getOperand(0), CI->getOperand(1)); 02456 02457 // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp). 02458 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) { 02459 if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) { 02460 if (CI->hasOneUse() && Op0C->hasOneUse()) { 02461 Instruction::CastOps Opcode = Op0C->getOpcode(); 02462 if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) && 02463 (RHS == ConstantExpr::getCast(Opcode, Builder->getTrue(), 02464 Op0C->getDestTy()))) { 02465 CI->setPredicate(CI->getInversePredicate()); 02466 return CastInst::Create(Opcode, CI, Op0C->getType()); 02467 } 02468 } 02469 } 02470 } 02471 02472 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) { 02473 // ~(c-X) == X-c-1 == X+(-c-1) 02474 if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue()) 02475 if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) { 02476 Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C); 02477 Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C, 02478 ConstantInt::get(I.getType(), 1)); 02479 return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS); 02480 } 02481 02482 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) { 02483 if (Op0I->getOpcode() == Instruction::Add) { 02484 // ~(X-c) --> (-c-1)-X 02485 if (RHS->isAllOnesValue()) { 02486 Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI); 02487 return BinaryOperator::CreateSub( 02488 ConstantExpr::getSub(NegOp0CI, 02489 ConstantInt::get(I.getType(), 1)), 02490 Op0I->getOperand(0)); 02491 } else if (RHS->getValue().isSignBit()) { 02492 // (X + C) ^ signbit -> (X + C + signbit) 02493 Constant *C = Builder->getInt(RHS->getValue() + Op0CI->getValue()); 02494 return BinaryOperator::CreateAdd(Op0I->getOperand(0), C); 02495 02496 } 02497 } else if (Op0I->getOpcode() == Instruction::Or) { 02498 // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0 02499 if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue(), 02500 0, &I)) { 02501 Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS); 02502 // Anything in both C1 and C2 is known to be zero, remove it from 02503 // NewRHS. 02504 Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS); 02505 NewRHS = ConstantExpr::getAnd(NewRHS, 02506 ConstantExpr::getNot(CommonBits)); 02507 Worklist.Add(Op0I); 02508 I.setOperand(0, Op0I->getOperand(0)); 02509 I.setOperand(1, NewRHS); 02510 return &I; 02511 } 02512 } else if (Op0I->getOpcode() == Instruction::LShr) { 02513 // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3) 02514 // E1 = "X ^ C1" 02515 BinaryOperator *E1; 02516 ConstantInt *C1; 02517 if (Op0I->hasOneUse() && 02518 (E1 = dyn_cast<BinaryOperator>(Op0I->getOperand(0))) && 02519 E1->getOpcode() == Instruction::Xor && 02520 (C1 = dyn_cast<ConstantInt>(E1->getOperand(1)))) { 02521 // fold (C1 >> C2) ^ C3 02522 ConstantInt *C2 = Op0CI, *C3 = RHS; 02523 APInt FoldConst = C1->getValue().lshr(C2->getValue()); 02524 FoldConst ^= C3->getValue(); 02525 // Prepare the two operands. 02526 Value *Opnd0 = Builder->CreateLShr(E1->getOperand(0), C2); 02527 Opnd0->takeName(Op0I); 02528 cast<Instruction>(Opnd0)->setDebugLoc(I.getDebugLoc()); 02529 Value *FoldVal = ConstantInt::get(Opnd0->getType(), FoldConst); 02530 02531 return BinaryOperator::CreateXor(Opnd0, FoldVal); 02532 } 02533 } 02534 } 02535 } 02536 02537 // Try to fold constant and into select arguments. 02538 if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) 02539 if (Instruction *R = FoldOpIntoSelect(I, SI)) 02540 return R; 02541 if (isa<PHINode>(Op0)) 02542 if (Instruction *NV = FoldOpIntoPhi(I)) 02543 return NV; 02544 } 02545 02546 BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1); 02547 if (Op1I) { 02548 Value *A, *B; 02549 if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) { 02550 if (A == Op0) { // B^(B|A) == (A|B)^B 02551 Op1I->swapOperands(); 02552 I.swapOperands(); 02553 std::swap(Op0, Op1); 02554 } else if (B == Op0) { // B^(A|B) == (A|B)^B 02555 I.swapOperands(); // Simplified below. 02556 std::swap(Op0, Op1); 02557 } 02558 } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) && 02559 Op1I->hasOneUse()){ 02560 if (A == Op0) { // A^(A&B) -> A^(B&A) 02561 Op1I->swapOperands(); 02562 std::swap(A, B); 02563 } 02564 if (B == Op0) { // A^(B&A) -> (B&A)^A 02565 I.swapOperands(); // Simplified below. 02566 std::swap(Op0, Op1); 02567 } 02568 } 02569 } 02570 02571 BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0); 02572 if (Op0I) { 02573 Value *A, *B; 02574 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && 02575 Op0I->hasOneUse()) { 02576 if (A == Op1) // (B|A)^B == (A|B)^B 02577 std::swap(A, B); 02578 if (B == Op1) // (A|B)^B == A & ~B 02579 return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1)); 02580 } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) && 02581 Op0I->hasOneUse()){ 02582 if (A == Op1) // (A&B)^A -> (B&A)^A 02583 std::swap(A, B); 02584 if (B == Op1 && // (B&A)^A == ~B & A 02585 !isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C 02586 return BinaryOperator::CreateAnd(Builder->CreateNot(A), Op1); 02587 } 02588 } 02589 } 02590 02591 if (Op0I && Op1I) { 02592 Value *A, *B, *C, *D; 02593 // (A & B)^(A | B) -> A ^ B 02594 if (match(Op0I, m_And(m_Value(A), m_Value(B))) && 02595 match(Op1I, m_Or(m_Value(C), m_Value(D)))) { 02596 if ((A == C && B == D) || (A == D && B == C)) 02597 return BinaryOperator::CreateXor(A, B); 02598 } 02599 // (A | B)^(A & B) -> A ^ B 02600 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && 02601 match(Op1I, m_And(m_Value(C), m_Value(D)))) { 02602 if ((A == C && B == D) || (A == D && B == C)) 02603 return BinaryOperator::CreateXor(A, B); 02604 } 02605 // (A | ~B) ^ (~A | B) -> A ^ B 02606 if (match(Op0I, m_Or(m_Value(A), m_Not(m_Value(B)))) && 02607 match(Op1I, m_Or(m_Not(m_Specific(A)), m_Specific(B)))) { 02608 return BinaryOperator::CreateXor(A, B); 02609 } 02610 // (~A | B) ^ (A | ~B) -> A ^ B 02611 if (match(Op0I, m_Or(m_Not(m_Value(A)), m_Value(B))) && 02612 match(Op1I, m_Or(m_Specific(A), m_Not(m_Specific(B))))) { 02613 return BinaryOperator::CreateXor(A, B); 02614 } 02615 // (A & ~B) ^ (~A & B) -> A ^ B 02616 if (match(Op0I, m_And(m_Value(A), m_Not(m_Value(B)))) && 02617 match(Op1I, m_And(m_Not(m_Specific(A)), m_Specific(B)))) { 02618 return BinaryOperator::CreateXor(A, B); 02619 } 02620 // (~A & B) ^ (A & ~B) -> A ^ B 02621 if (match(Op0I, m_And(m_Not(m_Value(A)), m_Value(B))) && 02622 match(Op1I, m_And(m_Specific(A), m_Not(m_Specific(B))))) { 02623 return BinaryOperator::CreateXor(A, B); 02624 } 02625 // (A ^ C)^(A | B) -> ((~A) & B) ^ C 02626 if (match(Op0I, m_Xor(m_Value(D), m_Value(C))) && 02627 match(Op1I, m_Or(m_Value(A), m_Value(B)))) { 02628 if (D == A) 02629 return BinaryOperator::CreateXor( 02630 Builder->CreateAnd(Builder->CreateNot(A), B), C); 02631 if (D == B) 02632 return BinaryOperator::CreateXor( 02633 Builder->CreateAnd(Builder->CreateNot(B), A), C); 02634 } 02635 // (A | B)^(A ^ C) -> ((~A) & B) ^ C 02636 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && 02637 match(Op1I, m_Xor(m_Value(D), m_Value(C)))) { 02638 if (D == A) 02639 return BinaryOperator::CreateXor( 02640 Builder->CreateAnd(Builder->CreateNot(A), B), C); 02641 if (D == B) 02642 return BinaryOperator::CreateXor( 02643 Builder->CreateAnd(Builder->CreateNot(B), A), C); 02644 } 02645 // (A & B) ^ (A ^ B) -> (A | B) 02646 if (match(Op0I, m_And(m_Value(A), m_Value(B))) && 02647 match(Op1I, m_Xor(m_Specific(A), m_Specific(B)))) 02648 return BinaryOperator::CreateOr(A, B); 02649 // (A ^ B) ^ (A & B) -> (A | B) 02650 if (match(Op0I, m_Xor(m_Value(A), m_Value(B))) && 02651 match(Op1I, m_And(m_Specific(A), m_Specific(B)))) 02652 return BinaryOperator::CreateOr(A, B); 02653 } 02654 02655 Value *A = nullptr, *B = nullptr; 02656 // (A & ~B) ^ (~A) -> ~(A & B) 02657 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 02658 match(Op1, m_Not(m_Specific(A)))) 02659 return BinaryOperator::CreateNot(Builder->CreateAnd(A, B)); 02660 02661 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B) 02662 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) 02663 if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0))) 02664 if (PredicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) { 02665 if (LHS->getOperand(0) == RHS->getOperand(1) && 02666 LHS->getOperand(1) == RHS->getOperand(0)) 02667 LHS->swapOperands(); 02668 if (LHS->getOperand(0) == RHS->getOperand(0) && 02669 LHS->getOperand(1) == RHS->getOperand(1)) { 02670 Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1); 02671 unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS); 02672 bool isSigned = LHS->isSigned() || RHS->isSigned(); 02673 return ReplaceInstUsesWith(I, 02674 getNewICmpValue(isSigned, Code, Op0, Op1, 02675 Builder)); 02676 } 02677 } 02678 02679 // fold (xor (cast A), (cast B)) -> (cast (xor A, B)) 02680 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) { 02681 if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) 02682 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind? 02683 Type *SrcTy = Op0C->getOperand(0)->getType(); 02684 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isIntegerTy() && 02685 // Only do this if the casts both really cause code to be generated. 02686 ShouldOptimizeCast(Op0C->getOpcode(), Op0C->getOperand(0), 02687 I.getType()) && 02688 ShouldOptimizeCast(Op1C->getOpcode(), Op1C->getOperand(0), 02689 I.getType())) { 02690 Value *NewOp = Builder->CreateXor(Op0C->getOperand(0), 02691 Op1C->getOperand(0), I.getName()); 02692 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType()); 02693 } 02694 } 02695 } 02696 02697 return Changed ? &I : nullptr; 02698 }