LLVM API Documentation
00001 //===- InstCombineCasts.cpp -----------------------------------------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file implements the visit functions for cast operations. 00011 // 00012 //===----------------------------------------------------------------------===// 00013 00014 #include "InstCombine.h" 00015 #include "llvm/Analysis/ConstantFolding.h" 00016 #include "llvm/IR/DataLayout.h" 00017 #include "llvm/IR/PatternMatch.h" 00018 #include "llvm/Target/TargetLibraryInfo.h" 00019 using namespace llvm; 00020 using namespace PatternMatch; 00021 00022 #define DEBUG_TYPE "instcombine" 00023 00024 /// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear 00025 /// expression. If so, decompose it, returning some value X, such that Val is 00026 /// X*Scale+Offset. 00027 /// 00028 static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale, 00029 uint64_t &Offset) { 00030 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 00031 Offset = CI->getZExtValue(); 00032 Scale = 0; 00033 return ConstantInt::get(Val->getType(), 0); 00034 } 00035 00036 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { 00037 // Cannot look past anything that might overflow. 00038 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val); 00039 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) { 00040 Scale = 1; 00041 Offset = 0; 00042 return Val; 00043 } 00044 00045 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 00046 if (I->getOpcode() == Instruction::Shl) { 00047 // This is a value scaled by '1 << the shift amt'. 00048 Scale = UINT64_C(1) << RHS->getZExtValue(); 00049 Offset = 0; 00050 return I->getOperand(0); 00051 } 00052 00053 if (I->getOpcode() == Instruction::Mul) { 00054 // This value is scaled by 'RHS'. 00055 Scale = RHS->getZExtValue(); 00056 Offset = 0; 00057 return I->getOperand(0); 00058 } 00059 00060 if (I->getOpcode() == Instruction::Add) { 00061 // We have X+C. Check to see if we really have (X*C2)+C1, 00062 // where C1 is divisible by C2. 00063 unsigned SubScale; 00064 Value *SubVal = 00065 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); 00066 Offset += RHS->getZExtValue(); 00067 Scale = SubScale; 00068 return SubVal; 00069 } 00070 } 00071 } 00072 00073 // Otherwise, we can't look past this. 00074 Scale = 1; 00075 Offset = 0; 00076 return Val; 00077 } 00078 00079 /// PromoteCastOfAllocation - If we find a cast of an allocation instruction, 00080 /// try to eliminate the cast by moving the type information into the alloc. 00081 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, 00082 AllocaInst &AI) { 00083 // This requires DataLayout to get the alloca alignment and size information. 00084 if (!DL) return nullptr; 00085 00086 PointerType *PTy = cast<PointerType>(CI.getType()); 00087 00088 BuilderTy AllocaBuilder(*Builder); 00089 AllocaBuilder.SetInsertPoint(AI.getParent(), &AI); 00090 00091 // Get the type really allocated and the type casted to. 00092 Type *AllocElTy = AI.getAllocatedType(); 00093 Type *CastElTy = PTy->getElementType(); 00094 if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr; 00095 00096 unsigned AllocElTyAlign = DL->getABITypeAlignment(AllocElTy); 00097 unsigned CastElTyAlign = DL->getABITypeAlignment(CastElTy); 00098 if (CastElTyAlign < AllocElTyAlign) return nullptr; 00099 00100 // If the allocation has multiple uses, only promote it if we are strictly 00101 // increasing the alignment of the resultant allocation. If we keep it the 00102 // same, we open the door to infinite loops of various kinds. 00103 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr; 00104 00105 uint64_t AllocElTySize = DL->getTypeAllocSize(AllocElTy); 00106 uint64_t CastElTySize = DL->getTypeAllocSize(CastElTy); 00107 if (CastElTySize == 0 || AllocElTySize == 0) return nullptr; 00108 00109 // If the allocation has multiple uses, only promote it if we're not 00110 // shrinking the amount of memory being allocated. 00111 uint64_t AllocElTyStoreSize = DL->getTypeStoreSize(AllocElTy); 00112 uint64_t CastElTyStoreSize = DL->getTypeStoreSize(CastElTy); 00113 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr; 00114 00115 // See if we can satisfy the modulus by pulling a scale out of the array 00116 // size argument. 00117 unsigned ArraySizeScale; 00118 uint64_t ArrayOffset; 00119 Value *NumElements = // See if the array size is a decomposable linear expr. 00120 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); 00121 00122 // If we can now satisfy the modulus, by using a non-1 scale, we really can 00123 // do the xform. 00124 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || 00125 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr; 00126 00127 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; 00128 Value *Amt = nullptr; 00129 if (Scale == 1) { 00130 Amt = NumElements; 00131 } else { 00132 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale); 00133 // Insert before the alloca, not before the cast. 00134 Amt = AllocaBuilder.CreateMul(Amt, NumElements); 00135 } 00136 00137 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { 00138 Value *Off = ConstantInt::get(AI.getArraySize()->getType(), 00139 Offset, true); 00140 Amt = AllocaBuilder.CreateAdd(Amt, Off); 00141 } 00142 00143 AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt); 00144 New->setAlignment(AI.getAlignment()); 00145 New->takeName(&AI); 00146 New->setUsedWithInAlloca(AI.isUsedWithInAlloca()); 00147 00148 // If the allocation has multiple real uses, insert a cast and change all 00149 // things that used it to use the new cast. This will also hack on CI, but it 00150 // will die soon. 00151 if (!AI.hasOneUse()) { 00152 // New is the allocation instruction, pointer typed. AI is the original 00153 // allocation instruction, also pointer typed. Thus, cast to use is BitCast. 00154 Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast"); 00155 ReplaceInstUsesWith(AI, NewCast); 00156 } 00157 return ReplaceInstUsesWith(CI, New); 00158 } 00159 00160 /// EvaluateInDifferentType - Given an expression that 00161 /// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually 00162 /// insert the code to evaluate the expression. 00163 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, 00164 bool isSigned) { 00165 if (Constant *C = dyn_cast<Constant>(V)) { 00166 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); 00167 // If we got a constantexpr back, try to simplify it with DL info. 00168 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 00169 C = ConstantFoldConstantExpression(CE, DL, TLI); 00170 return C; 00171 } 00172 00173 // Otherwise, it must be an instruction. 00174 Instruction *I = cast<Instruction>(V); 00175 Instruction *Res = nullptr; 00176 unsigned Opc = I->getOpcode(); 00177 switch (Opc) { 00178 case Instruction::Add: 00179 case Instruction::Sub: 00180 case Instruction::Mul: 00181 case Instruction::And: 00182 case Instruction::Or: 00183 case Instruction::Xor: 00184 case Instruction::AShr: 00185 case Instruction::LShr: 00186 case Instruction::Shl: 00187 case Instruction::UDiv: 00188 case Instruction::URem: { 00189 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); 00190 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 00191 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 00192 break; 00193 } 00194 case Instruction::Trunc: 00195 case Instruction::ZExt: 00196 case Instruction::SExt: 00197 // If the source type of the cast is the type we're trying for then we can 00198 // just return the source. There's no need to insert it because it is not 00199 // new. 00200 if (I->getOperand(0)->getType() == Ty) 00201 return I->getOperand(0); 00202 00203 // Otherwise, must be the same type of cast, so just reinsert a new one. 00204 // This also handles the case of zext(trunc(x)) -> zext(x). 00205 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, 00206 Opc == Instruction::SExt); 00207 break; 00208 case Instruction::Select: { 00209 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 00210 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); 00211 Res = SelectInst::Create(I->getOperand(0), True, False); 00212 break; 00213 } 00214 case Instruction::PHI: { 00215 PHINode *OPN = cast<PHINode>(I); 00216 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); 00217 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { 00218 Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); 00219 NPN->addIncoming(V, OPN->getIncomingBlock(i)); 00220 } 00221 Res = NPN; 00222 break; 00223 } 00224 default: 00225 // TODO: Can handle more cases here. 00226 llvm_unreachable("Unreachable!"); 00227 } 00228 00229 Res->takeName(I); 00230 return InsertNewInstWith(Res, *I); 00231 } 00232 00233 00234 /// This function is a wrapper around CastInst::isEliminableCastPair. It 00235 /// simply extracts arguments and returns what that function returns. 00236 static Instruction::CastOps 00237 isEliminableCastPair( 00238 const CastInst *CI, ///< The first cast instruction 00239 unsigned opcode, ///< The opcode of the second cast instruction 00240 Type *DstTy, ///< The target type for the second cast instruction 00241 const DataLayout *DL ///< The target data for pointer size 00242 ) { 00243 00244 Type *SrcTy = CI->getOperand(0)->getType(); // A from above 00245 Type *MidTy = CI->getType(); // B from above 00246 00247 // Get the opcodes of the two Cast instructions 00248 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode()); 00249 Instruction::CastOps secondOp = Instruction::CastOps(opcode); 00250 Type *SrcIntPtrTy = DL && SrcTy->isPtrOrPtrVectorTy() ? 00251 DL->getIntPtrType(SrcTy) : nullptr; 00252 Type *MidIntPtrTy = DL && MidTy->isPtrOrPtrVectorTy() ? 00253 DL->getIntPtrType(MidTy) : nullptr; 00254 Type *DstIntPtrTy = DL && DstTy->isPtrOrPtrVectorTy() ? 00255 DL->getIntPtrType(DstTy) : nullptr; 00256 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, 00257 DstTy, SrcIntPtrTy, MidIntPtrTy, 00258 DstIntPtrTy); 00259 00260 // We don't want to form an inttoptr or ptrtoint that converts to an integer 00261 // type that differs from the pointer size. 00262 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || 00263 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) 00264 Res = 0; 00265 00266 return Instruction::CastOps(Res); 00267 } 00268 00269 /// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually 00270 /// results in any code being generated and is interesting to optimize out. If 00271 /// the cast can be eliminated by some other simple transformation, we prefer 00272 /// to do the simplification first. 00273 bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V, 00274 Type *Ty) { 00275 // Noop casts and casts of constants should be eliminated trivially. 00276 if (V->getType() == Ty || isa<Constant>(V)) return false; 00277 00278 // If this is another cast that can be eliminated, we prefer to have it 00279 // eliminated. 00280 if (const CastInst *CI = dyn_cast<CastInst>(V)) 00281 if (isEliminableCastPair(CI, opc, Ty, DL)) 00282 return false; 00283 00284 // If this is a vector sext from a compare, then we don't want to break the 00285 // idiom where each element of the extended vector is either zero or all ones. 00286 if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy()) 00287 return false; 00288 00289 return true; 00290 } 00291 00292 00293 /// @brief Implement the transforms common to all CastInst visitors. 00294 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { 00295 Value *Src = CI.getOperand(0); 00296 00297 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just 00298 // eliminate it now. 00299 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast 00300 if (Instruction::CastOps opc = 00301 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), DL)) { 00302 // The first cast (CSrc) is eliminable so we need to fix up or replace 00303 // the second cast (CI). CSrc will then have a good chance of being dead. 00304 return CastInst::Create(opc, CSrc->getOperand(0), CI.getType()); 00305 } 00306 } 00307 00308 // If we are casting a select then fold the cast into the select 00309 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) 00310 if (Instruction *NV = FoldOpIntoSelect(CI, SI)) 00311 return NV; 00312 00313 // If we are casting a PHI then fold the cast into the PHI 00314 if (isa<PHINode>(Src)) { 00315 // We don't do this if this would create a PHI node with an illegal type if 00316 // it is currently legal. 00317 if (!Src->getType()->isIntegerTy() || 00318 !CI.getType()->isIntegerTy() || 00319 ShouldChangeType(CI.getType(), Src->getType())) 00320 if (Instruction *NV = FoldOpIntoPhi(CI)) 00321 return NV; 00322 } 00323 00324 return nullptr; 00325 } 00326 00327 /// CanEvaluateTruncated - Return true if we can evaluate the specified 00328 /// expression tree as type Ty instead of its larger type, and arrive with the 00329 /// same value. This is used by code that tries to eliminate truncates. 00330 /// 00331 /// Ty will always be a type smaller than V. We should return true if trunc(V) 00332 /// can be computed by computing V in the smaller type. If V is an instruction, 00333 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only 00334 /// makes sense if x and y can be efficiently truncated. 00335 /// 00336 /// This function works on both vectors and scalars. 00337 /// 00338 static bool CanEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC, 00339 Instruction *CxtI) { 00340 // We can always evaluate constants in another type. 00341 if (isa<Constant>(V)) 00342 return true; 00343 00344 Instruction *I = dyn_cast<Instruction>(V); 00345 if (!I) return false; 00346 00347 Type *OrigTy = V->getType(); 00348 00349 // If this is an extension from the dest type, we can eliminate it, even if it 00350 // has multiple uses. 00351 if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) && 00352 I->getOperand(0)->getType() == Ty) 00353 return true; 00354 00355 // We can't extend or shrink something that has multiple uses: doing so would 00356 // require duplicating the instruction in general, which isn't profitable. 00357 if (!I->hasOneUse()) return false; 00358 00359 unsigned Opc = I->getOpcode(); 00360 switch (Opc) { 00361 case Instruction::Add: 00362 case Instruction::Sub: 00363 case Instruction::Mul: 00364 case Instruction::And: 00365 case Instruction::Or: 00366 case Instruction::Xor: 00367 // These operators can all arbitrarily be extended or truncated. 00368 return CanEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 00369 CanEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 00370 00371 case Instruction::UDiv: 00372 case Instruction::URem: { 00373 // UDiv and URem can be truncated if all the truncated bits are zero. 00374 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 00375 uint32_t BitWidth = Ty->getScalarSizeInBits(); 00376 if (BitWidth < OrigBitWidth) { 00377 APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth); 00378 if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) && 00379 IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) { 00380 return CanEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 00381 CanEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 00382 } 00383 } 00384 break; 00385 } 00386 case Instruction::Shl: 00387 // If we are truncating the result of this SHL, and if it's a shift of a 00388 // constant amount, we can always perform a SHL in a smaller type. 00389 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 00390 uint32_t BitWidth = Ty->getScalarSizeInBits(); 00391 if (CI->getLimitedValue(BitWidth) < BitWidth) 00392 return CanEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 00393 } 00394 break; 00395 case Instruction::LShr: 00396 // If this is a truncate of a logical shr, we can truncate it to a smaller 00397 // lshr iff we know that the bits we would otherwise be shifting in are 00398 // already zeros. 00399 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 00400 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 00401 uint32_t BitWidth = Ty->getScalarSizeInBits(); 00402 if (IC.MaskedValueIsZero(I->getOperand(0), 00403 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth), 0, CxtI) && 00404 CI->getLimitedValue(BitWidth) < BitWidth) { 00405 return CanEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 00406 } 00407 } 00408 break; 00409 case Instruction::Trunc: 00410 // trunc(trunc(x)) -> trunc(x) 00411 return true; 00412 case Instruction::ZExt: 00413 case Instruction::SExt: 00414 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest 00415 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest 00416 return true; 00417 case Instruction::Select: { 00418 SelectInst *SI = cast<SelectInst>(I); 00419 return CanEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) && 00420 CanEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI); 00421 } 00422 case Instruction::PHI: { 00423 // We can change a phi if we can change all operands. Note that we never 00424 // get into trouble with cyclic PHIs here because we only consider 00425 // instructions with a single use. 00426 PHINode *PN = cast<PHINode>(I); 00427 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 00428 if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty, IC, CxtI)) 00429 return false; 00430 return true; 00431 } 00432 default: 00433 // TODO: Can handle more cases here. 00434 break; 00435 } 00436 00437 return false; 00438 } 00439 00440 Instruction *InstCombiner::visitTrunc(TruncInst &CI) { 00441 if (Instruction *Result = commonCastTransforms(CI)) 00442 return Result; 00443 00444 // See if we can simplify any instructions used by the input whose sole 00445 // purpose is to compute bits we don't care about. 00446 if (SimplifyDemandedInstructionBits(CI)) 00447 return &CI; 00448 00449 Value *Src = CI.getOperand(0); 00450 Type *DestTy = CI.getType(), *SrcTy = Src->getType(); 00451 00452 // Attempt to truncate the entire input expression tree to the destination 00453 // type. Only do this if the dest type is a simple type, don't convert the 00454 // expression tree to something weird like i93 unless the source is also 00455 // strange. 00456 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && 00457 CanEvaluateTruncated(Src, DestTy, *this, &CI)) { 00458 00459 // If this cast is a truncate, evaluting in a different type always 00460 // eliminates the cast, so it is always a win. 00461 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 00462 " to avoid cast: " << CI << '\n'); 00463 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 00464 assert(Res->getType() == DestTy); 00465 return ReplaceInstUsesWith(CI, Res); 00466 } 00467 00468 // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector. 00469 if (DestTy->getScalarSizeInBits() == 1) { 00470 Constant *One = ConstantInt::get(Src->getType(), 1); 00471 Src = Builder->CreateAnd(Src, One); 00472 Value *Zero = Constant::getNullValue(Src->getType()); 00473 return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero); 00474 } 00475 00476 // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion. 00477 Value *A = nullptr; ConstantInt *Cst = nullptr; 00478 if (Src->hasOneUse() && 00479 match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) { 00480 // We have three types to worry about here, the type of A, the source of 00481 // the truncate (MidSize), and the destination of the truncate. We know that 00482 // ASize < MidSize and MidSize > ResultSize, but don't know the relation 00483 // between ASize and ResultSize. 00484 unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 00485 00486 // If the shift amount is larger than the size of A, then the result is 00487 // known to be zero because all the input bits got shifted out. 00488 if (Cst->getZExtValue() >= ASize) 00489 return ReplaceInstUsesWith(CI, Constant::getNullValue(CI.getType())); 00490 00491 // Since we're doing an lshr and a zero extend, and know that the shift 00492 // amount is smaller than ASize, it is always safe to do the shift in A's 00493 // type, then zero extend or truncate to the result. 00494 Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue()); 00495 Shift->takeName(Src); 00496 return CastInst::CreateIntegerCast(Shift, CI.getType(), false); 00497 } 00498 00499 // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest 00500 // type isn't non-native. 00501 if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) && 00502 ShouldChangeType(Src->getType(), CI.getType()) && 00503 match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) { 00504 Value *NewTrunc = Builder->CreateTrunc(A, CI.getType(), A->getName()+".tr"); 00505 return BinaryOperator::CreateAnd(NewTrunc, 00506 ConstantExpr::getTrunc(Cst, CI.getType())); 00507 } 00508 00509 return nullptr; 00510 } 00511 00512 /// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations 00513 /// in order to eliminate the icmp. 00514 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI, 00515 bool DoXform) { 00516 // If we are just checking for a icmp eq of a single bit and zext'ing it 00517 // to an integer, then shift the bit to the appropriate place and then 00518 // cast to integer to avoid the comparison. 00519 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) { 00520 const APInt &Op1CV = Op1C->getValue(); 00521 00522 // zext (x <s 0) to i32 --> x>>u31 true if signbit set. 00523 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear. 00524 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) || 00525 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) { 00526 if (!DoXform) return ICI; 00527 00528 Value *In = ICI->getOperand(0); 00529 Value *Sh = ConstantInt::get(In->getType(), 00530 In->getType()->getScalarSizeInBits()-1); 00531 In = Builder->CreateLShr(In, Sh, In->getName()+".lobit"); 00532 if (In->getType() != CI.getType()) 00533 In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/); 00534 00535 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) { 00536 Constant *One = ConstantInt::get(In->getType(), 1); 00537 In = Builder->CreateXor(In, One, In->getName()+".not"); 00538 } 00539 00540 return ReplaceInstUsesWith(CI, In); 00541 } 00542 00543 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. 00544 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 00545 // zext (X == 1) to i32 --> X iff X has only the low bit set. 00546 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set. 00547 // zext (X != 0) to i32 --> X iff X has only the low bit set. 00548 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. 00549 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. 00550 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 00551 if ((Op1CV == 0 || Op1CV.isPowerOf2()) && 00552 // This only works for EQ and NE 00553 ICI->isEquality()) { 00554 // If Op1C some other power of two, convert: 00555 uint32_t BitWidth = Op1C->getType()->getBitWidth(); 00556 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 00557 computeKnownBits(ICI->getOperand(0), KnownZero, KnownOne, 0, &CI); 00558 00559 APInt KnownZeroMask(~KnownZero); 00560 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? 00561 if (!DoXform) return ICI; 00562 00563 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE; 00564 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) { 00565 // (X&4) == 2 --> false 00566 // (X&4) != 2 --> true 00567 Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()), 00568 isNE); 00569 Res = ConstantExpr::getZExt(Res, CI.getType()); 00570 return ReplaceInstUsesWith(CI, Res); 00571 } 00572 00573 uint32_t ShiftAmt = KnownZeroMask.logBase2(); 00574 Value *In = ICI->getOperand(0); 00575 if (ShiftAmt) { 00576 // Perform a logical shr by shiftamt. 00577 // Insert the shift to put the result in the low bit. 00578 In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt), 00579 In->getName()+".lobit"); 00580 } 00581 00582 if ((Op1CV != 0) == isNE) { // Toggle the low bit. 00583 Constant *One = ConstantInt::get(In->getType(), 1); 00584 In = Builder->CreateXor(In, One); 00585 } 00586 00587 if (CI.getType() == In->getType()) 00588 return ReplaceInstUsesWith(CI, In); 00589 return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/); 00590 } 00591 } 00592 } 00593 00594 // icmp ne A, B is equal to xor A, B when A and B only really have one bit. 00595 // It is also profitable to transform icmp eq into not(xor(A, B)) because that 00596 // may lead to additional simplifications. 00597 if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) { 00598 if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) { 00599 uint32_t BitWidth = ITy->getBitWidth(); 00600 Value *LHS = ICI->getOperand(0); 00601 Value *RHS = ICI->getOperand(1); 00602 00603 APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0); 00604 APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0); 00605 computeKnownBits(LHS, KnownZeroLHS, KnownOneLHS, 0, &CI); 00606 computeKnownBits(RHS, KnownZeroRHS, KnownOneRHS, 0, &CI); 00607 00608 if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) { 00609 APInt KnownBits = KnownZeroLHS | KnownOneLHS; 00610 APInt UnknownBit = ~KnownBits; 00611 if (UnknownBit.countPopulation() == 1) { 00612 if (!DoXform) return ICI; 00613 00614 Value *Result = Builder->CreateXor(LHS, RHS); 00615 00616 // Mask off any bits that are set and won't be shifted away. 00617 if (KnownOneLHS.uge(UnknownBit)) 00618 Result = Builder->CreateAnd(Result, 00619 ConstantInt::get(ITy, UnknownBit)); 00620 00621 // Shift the bit we're testing down to the lsb. 00622 Result = Builder->CreateLShr( 00623 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); 00624 00625 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 00626 Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1)); 00627 Result->takeName(ICI); 00628 return ReplaceInstUsesWith(CI, Result); 00629 } 00630 } 00631 } 00632 } 00633 00634 return nullptr; 00635 } 00636 00637 /// CanEvaluateZExtd - Determine if the specified value can be computed in the 00638 /// specified wider type and produce the same low bits. If not, return false. 00639 /// 00640 /// If this function returns true, it can also return a non-zero number of bits 00641 /// (in BitsToClear) which indicates that the value it computes is correct for 00642 /// the zero extend, but that the additional BitsToClear bits need to be zero'd 00643 /// out. For example, to promote something like: 00644 /// 00645 /// %B = trunc i64 %A to i32 00646 /// %C = lshr i32 %B, 8 00647 /// %E = zext i32 %C to i64 00648 /// 00649 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be 00650 /// set to 8 to indicate that the promoted value needs to have bits 24-31 00651 /// cleared in addition to bits 32-63. Since an 'and' will be generated to 00652 /// clear the top bits anyway, doing this has no extra cost. 00653 /// 00654 /// This function works on both vectors and scalars. 00655 static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear, 00656 InstCombiner &IC, Instruction *CxtI) { 00657 BitsToClear = 0; 00658 if (isa<Constant>(V)) 00659 return true; 00660 00661 Instruction *I = dyn_cast<Instruction>(V); 00662 if (!I) return false; 00663 00664 // If the input is a truncate from the destination type, we can trivially 00665 // eliminate it. 00666 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) 00667 return true; 00668 00669 // We can't extend or shrink something that has multiple uses: doing so would 00670 // require duplicating the instruction in general, which isn't profitable. 00671 if (!I->hasOneUse()) return false; 00672 00673 unsigned Opc = I->getOpcode(), Tmp; 00674 switch (Opc) { 00675 case Instruction::ZExt: // zext(zext(x)) -> zext(x). 00676 case Instruction::SExt: // zext(sext(x)) -> sext(x). 00677 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) 00678 return true; 00679 case Instruction::And: 00680 case Instruction::Or: 00681 case Instruction::Xor: 00682 case Instruction::Add: 00683 case Instruction::Sub: 00684 case Instruction::Mul: 00685 if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) || 00686 !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI)) 00687 return false; 00688 // These can all be promoted if neither operand has 'bits to clear'. 00689 if (BitsToClear == 0 && Tmp == 0) 00690 return true; 00691 00692 // If the operation is an AND/OR/XOR and the bits to clear are zero in the 00693 // other side, BitsToClear is ok. 00694 if (Tmp == 0 && 00695 (Opc == Instruction::And || Opc == Instruction::Or || 00696 Opc == Instruction::Xor)) { 00697 // We use MaskedValueIsZero here for generality, but the case we care 00698 // about the most is constant RHS. 00699 unsigned VSize = V->getType()->getScalarSizeInBits(); 00700 if (IC.MaskedValueIsZero(I->getOperand(1), 00701 APInt::getHighBitsSet(VSize, BitsToClear), 00702 0, CxtI)) 00703 return true; 00704 } 00705 00706 // Otherwise, we don't know how to analyze this BitsToClear case yet. 00707 return false; 00708 00709 case Instruction::Shl: 00710 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the 00711 // upper bits we can reduce BitsToClear by the shift amount. 00712 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) { 00713 if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 00714 return false; 00715 uint64_t ShiftAmt = Amt->getZExtValue(); 00716 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; 00717 return true; 00718 } 00719 return false; 00720 case Instruction::LShr: 00721 // We can promote lshr(x, cst) if we can promote x. This requires the 00722 // ultimate 'and' to clear out the high zero bits we're clearing out though. 00723 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) { 00724 if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 00725 return false; 00726 BitsToClear += Amt->getZExtValue(); 00727 if (BitsToClear > V->getType()->getScalarSizeInBits()) 00728 BitsToClear = V->getType()->getScalarSizeInBits(); 00729 return true; 00730 } 00731 // Cannot promote variable LSHR. 00732 return false; 00733 case Instruction::Select: 00734 if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) || 00735 !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) || 00736 // TODO: If important, we could handle the case when the BitsToClear are 00737 // known zero in the disagreeing side. 00738 Tmp != BitsToClear) 00739 return false; 00740 return true; 00741 00742 case Instruction::PHI: { 00743 // We can change a phi if we can change all operands. Note that we never 00744 // get into trouble with cyclic PHIs here because we only consider 00745 // instructions with a single use. 00746 PHINode *PN = cast<PHINode>(I); 00747 if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI)) 00748 return false; 00749 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) 00750 if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) || 00751 // TODO: If important, we could handle the case when the BitsToClear 00752 // are known zero in the disagreeing input. 00753 Tmp != BitsToClear) 00754 return false; 00755 return true; 00756 } 00757 default: 00758 // TODO: Can handle more cases here. 00759 return false; 00760 } 00761 } 00762 00763 Instruction *InstCombiner::visitZExt(ZExtInst &CI) { 00764 // If this zero extend is only used by a truncate, let the truncate be 00765 // eliminated before we try to optimize this zext. 00766 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 00767 return nullptr; 00768 00769 // If one of the common conversion will work, do it. 00770 if (Instruction *Result = commonCastTransforms(CI)) 00771 return Result; 00772 00773 // See if we can simplify any instructions used by the input whose sole 00774 // purpose is to compute bits we don't care about. 00775 if (SimplifyDemandedInstructionBits(CI)) 00776 return &CI; 00777 00778 Value *Src = CI.getOperand(0); 00779 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 00780 00781 // Attempt to extend the entire input expression tree to the destination 00782 // type. Only do this if the dest type is a simple type, don't convert the 00783 // expression tree to something weird like i93 unless the source is also 00784 // strange. 00785 unsigned BitsToClear; 00786 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && 00787 CanEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) { 00788 assert(BitsToClear < SrcTy->getScalarSizeInBits() && 00789 "Unreasonable BitsToClear"); 00790 00791 // Okay, we can transform this! Insert the new expression now. 00792 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 00793 " to avoid zero extend: " << CI); 00794 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 00795 assert(Res->getType() == DestTy); 00796 00797 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; 00798 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 00799 00800 // If the high bits are already filled with zeros, just replace this 00801 // cast with the result. 00802 if (MaskedValueIsZero(Res, 00803 APInt::getHighBitsSet(DestBitSize, 00804 DestBitSize-SrcBitsKept), 00805 0, &CI)) 00806 return ReplaceInstUsesWith(CI, Res); 00807 00808 // We need to emit an AND to clear the high bits. 00809 Constant *C = ConstantInt::get(Res->getType(), 00810 APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); 00811 return BinaryOperator::CreateAnd(Res, C); 00812 } 00813 00814 // If this is a TRUNC followed by a ZEXT then we are dealing with integral 00815 // types and if the sizes are just right we can convert this into a logical 00816 // 'and' which will be much cheaper than the pair of casts. 00817 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast 00818 // TODO: Subsume this into EvaluateInDifferentType. 00819 00820 // Get the sizes of the types involved. We know that the intermediate type 00821 // will be smaller than A or C, but don't know the relation between A and C. 00822 Value *A = CSrc->getOperand(0); 00823 unsigned SrcSize = A->getType()->getScalarSizeInBits(); 00824 unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); 00825 unsigned DstSize = CI.getType()->getScalarSizeInBits(); 00826 // If we're actually extending zero bits, then if 00827 // SrcSize < DstSize: zext(a & mask) 00828 // SrcSize == DstSize: a & mask 00829 // SrcSize > DstSize: trunc(a) & mask 00830 if (SrcSize < DstSize) { 00831 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 00832 Constant *AndConst = ConstantInt::get(A->getType(), AndValue); 00833 Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask"); 00834 return new ZExtInst(And, CI.getType()); 00835 } 00836 00837 if (SrcSize == DstSize) { 00838 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 00839 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), 00840 AndValue)); 00841 } 00842 if (SrcSize > DstSize) { 00843 Value *Trunc = Builder->CreateTrunc(A, CI.getType()); 00844 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); 00845 return BinaryOperator::CreateAnd(Trunc, 00846 ConstantInt::get(Trunc->getType(), 00847 AndValue)); 00848 } 00849 } 00850 00851 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 00852 return transformZExtICmp(ICI, CI); 00853 00854 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src); 00855 if (SrcI && SrcI->getOpcode() == Instruction::Or) { 00856 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one 00857 // of the (zext icmp) will be transformed. 00858 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0)); 00859 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1)); 00860 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() && 00861 (transformZExtICmp(LHS, CI, false) || 00862 transformZExtICmp(RHS, CI, false))) { 00863 Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName()); 00864 Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName()); 00865 return BinaryOperator::Create(Instruction::Or, LCast, RCast); 00866 } 00867 } 00868 00869 // zext(trunc(X) & C) -> (X & zext(C)). 00870 Constant *C; 00871 Value *X; 00872 if (SrcI && 00873 match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) && 00874 X->getType() == CI.getType()) 00875 return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType())); 00876 00877 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)). 00878 Value *And; 00879 if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) && 00880 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) && 00881 X->getType() == CI.getType()) { 00882 Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); 00883 return BinaryOperator::CreateXor(Builder->CreateAnd(X, ZC), ZC); 00884 } 00885 00886 // zext (xor i1 X, true) to i32 --> xor (zext i1 X to i32), 1 00887 if (SrcI && SrcI->hasOneUse() && 00888 SrcI->getType()->getScalarType()->isIntegerTy(1) && 00889 match(SrcI, m_Not(m_Value(X))) && (!X->hasOneUse() || !isa<CmpInst>(X))) { 00890 Value *New = Builder->CreateZExt(X, CI.getType()); 00891 return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1)); 00892 } 00893 00894 return nullptr; 00895 } 00896 00897 /// transformSExtICmp - Transform (sext icmp) to bitwise / integer operations 00898 /// in order to eliminate the icmp. 00899 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) { 00900 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1); 00901 ICmpInst::Predicate Pred = ICI->getPredicate(); 00902 00903 if (Constant *Op1C = dyn_cast<Constant>(Op1)) { 00904 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative 00905 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive 00906 if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) || 00907 (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) { 00908 00909 Value *Sh = ConstantInt::get(Op0->getType(), 00910 Op0->getType()->getScalarSizeInBits()-1); 00911 Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit"); 00912 if (In->getType() != CI.getType()) 00913 In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/); 00914 00915 if (Pred == ICmpInst::ICMP_SGT) 00916 In = Builder->CreateNot(In, In->getName()+".not"); 00917 return ReplaceInstUsesWith(CI, In); 00918 } 00919 } 00920 00921 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 00922 // If we know that only one bit of the LHS of the icmp can be set and we 00923 // have an equality comparison with zero or a power of 2, we can transform 00924 // the icmp and sext into bitwise/integer operations. 00925 if (ICI->hasOneUse() && 00926 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ 00927 unsigned BitWidth = Op1C->getType()->getBitWidth(); 00928 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 00929 computeKnownBits(Op0, KnownZero, KnownOne, 0, &CI); 00930 00931 APInt KnownZeroMask(~KnownZero); 00932 if (KnownZeroMask.isPowerOf2()) { 00933 Value *In = ICI->getOperand(0); 00934 00935 // If the icmp tests for a known zero bit we can constant fold it. 00936 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { 00937 Value *V = Pred == ICmpInst::ICMP_NE ? 00938 ConstantInt::getAllOnesValue(CI.getType()) : 00939 ConstantInt::getNullValue(CI.getType()); 00940 return ReplaceInstUsesWith(CI, V); 00941 } 00942 00943 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { 00944 // sext ((x & 2^n) == 0) -> (x >> n) - 1 00945 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 00946 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros(); 00947 // Perform a right shift to place the desired bit in the LSB. 00948 if (ShiftAmt) 00949 In = Builder->CreateLShr(In, 00950 ConstantInt::get(In->getType(), ShiftAmt)); 00951 00952 // At this point "In" is either 1 or 0. Subtract 1 to turn 00953 // {1, 0} -> {0, -1}. 00954 In = Builder->CreateAdd(In, 00955 ConstantInt::getAllOnesValue(In->getType()), 00956 "sext"); 00957 } else { 00958 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 00959 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 00960 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros(); 00961 // Perform a left shift to place the desired bit in the MSB. 00962 if (ShiftAmt) 00963 In = Builder->CreateShl(In, 00964 ConstantInt::get(In->getType(), ShiftAmt)); 00965 00966 // Distribute the bit over the whole bit width. 00967 In = Builder->CreateAShr(In, ConstantInt::get(In->getType(), 00968 BitWidth - 1), "sext"); 00969 } 00970 00971 if (CI.getType() == In->getType()) 00972 return ReplaceInstUsesWith(CI, In); 00973 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/); 00974 } 00975 } 00976 } 00977 00978 return nullptr; 00979 } 00980 00981 /// CanEvaluateSExtd - Return true if we can take the specified value 00982 /// and return it as type Ty without inserting any new casts and without 00983 /// changing the value of the common low bits. This is used by code that tries 00984 /// to promote integer operations to a wider types will allow us to eliminate 00985 /// the extension. 00986 /// 00987 /// This function works on both vectors and scalars. 00988 /// 00989 static bool CanEvaluateSExtd(Value *V, Type *Ty) { 00990 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && 00991 "Can't sign extend type to a smaller type"); 00992 // If this is a constant, it can be trivially promoted. 00993 if (isa<Constant>(V)) 00994 return true; 00995 00996 Instruction *I = dyn_cast<Instruction>(V); 00997 if (!I) return false; 00998 00999 // If this is a truncate from the dest type, we can trivially eliminate it. 01000 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) 01001 return true; 01002 01003 // We can't extend or shrink something that has multiple uses: doing so would 01004 // require duplicating the instruction in general, which isn't profitable. 01005 if (!I->hasOneUse()) return false; 01006 01007 switch (I->getOpcode()) { 01008 case Instruction::SExt: // sext(sext(x)) -> sext(x) 01009 case Instruction::ZExt: // sext(zext(x)) -> zext(x) 01010 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) 01011 return true; 01012 case Instruction::And: 01013 case Instruction::Or: 01014 case Instruction::Xor: 01015 case Instruction::Add: 01016 case Instruction::Sub: 01017 case Instruction::Mul: 01018 // These operators can all arbitrarily be extended if their inputs can. 01019 return CanEvaluateSExtd(I->getOperand(0), Ty) && 01020 CanEvaluateSExtd(I->getOperand(1), Ty); 01021 01022 //case Instruction::Shl: TODO 01023 //case Instruction::LShr: TODO 01024 01025 case Instruction::Select: 01026 return CanEvaluateSExtd(I->getOperand(1), Ty) && 01027 CanEvaluateSExtd(I->getOperand(2), Ty); 01028 01029 case Instruction::PHI: { 01030 // We can change a phi if we can change all operands. Note that we never 01031 // get into trouble with cyclic PHIs here because we only consider 01032 // instructions with a single use. 01033 PHINode *PN = cast<PHINode>(I); 01034 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 01035 if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false; 01036 return true; 01037 } 01038 default: 01039 // TODO: Can handle more cases here. 01040 break; 01041 } 01042 01043 return false; 01044 } 01045 01046 Instruction *InstCombiner::visitSExt(SExtInst &CI) { 01047 // If this sign extend is only used by a truncate, let the truncate be 01048 // eliminated before we try to optimize this sext. 01049 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 01050 return nullptr; 01051 01052 if (Instruction *I = commonCastTransforms(CI)) 01053 return I; 01054 01055 // See if we can simplify any instructions used by the input whose sole 01056 // purpose is to compute bits we don't care about. 01057 if (SimplifyDemandedInstructionBits(CI)) 01058 return &CI; 01059 01060 Value *Src = CI.getOperand(0); 01061 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 01062 01063 // Attempt to extend the entire input expression tree to the destination 01064 // type. Only do this if the dest type is a simple type, don't convert the 01065 // expression tree to something weird like i93 unless the source is also 01066 // strange. 01067 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && 01068 CanEvaluateSExtd(Src, DestTy)) { 01069 // Okay, we can transform this! Insert the new expression now. 01070 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 01071 " to avoid sign extend: " << CI); 01072 Value *Res = EvaluateInDifferentType(Src, DestTy, true); 01073 assert(Res->getType() == DestTy); 01074 01075 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 01076 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 01077 01078 // If the high bits are already filled with sign bit, just replace this 01079 // cast with the result. 01080 if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize) 01081 return ReplaceInstUsesWith(CI, Res); 01082 01083 // We need to emit a shl + ashr to do the sign extend. 01084 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 01085 return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"), 01086 ShAmt); 01087 } 01088 01089 // If this input is a trunc from our destination, then turn sext(trunc(x)) 01090 // into shifts. 01091 if (TruncInst *TI = dyn_cast<TruncInst>(Src)) 01092 if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) { 01093 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 01094 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 01095 01096 // We need to emit a shl + ashr to do the sign extend. 01097 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 01098 Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext"); 01099 return BinaryOperator::CreateAShr(Res, ShAmt); 01100 } 01101 01102 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 01103 return transformSExtICmp(ICI, CI); 01104 01105 // If the input is a shl/ashr pair of a same constant, then this is a sign 01106 // extension from a smaller value. If we could trust arbitrary bitwidth 01107 // integers, we could turn this into a truncate to the smaller bit and then 01108 // use a sext for the whole extension. Since we don't, look deeper and check 01109 // for a truncate. If the source and dest are the same type, eliminate the 01110 // trunc and extend and just do shifts. For example, turn: 01111 // %a = trunc i32 %i to i8 01112 // %b = shl i8 %a, 6 01113 // %c = ashr i8 %b, 6 01114 // %d = sext i8 %c to i32 01115 // into: 01116 // %a = shl i32 %i, 30 01117 // %d = ashr i32 %a, 30 01118 Value *A = nullptr; 01119 // TODO: Eventually this could be subsumed by EvaluateInDifferentType. 01120 ConstantInt *BA = nullptr, *CA = nullptr; 01121 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)), 01122 m_ConstantInt(CA))) && 01123 BA == CA && A->getType() == CI.getType()) { 01124 unsigned MidSize = Src->getType()->getScalarSizeInBits(); 01125 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits(); 01126 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize; 01127 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt); 01128 A = Builder->CreateShl(A, ShAmtV, CI.getName()); 01129 return BinaryOperator::CreateAShr(A, ShAmtV); 01130 } 01131 01132 return nullptr; 01133 } 01134 01135 01136 /// FitsInFPType - Return a Constant* for the specified FP constant if it fits 01137 /// in the specified FP type without changing its value. 01138 static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { 01139 bool losesInfo; 01140 APFloat F = CFP->getValueAPF(); 01141 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); 01142 if (!losesInfo) 01143 return ConstantFP::get(CFP->getContext(), F); 01144 return nullptr; 01145 } 01146 01147 /// LookThroughFPExtensions - If this is an fp extension instruction, look 01148 /// through it until we get the source value. 01149 static Value *LookThroughFPExtensions(Value *V) { 01150 if (Instruction *I = dyn_cast<Instruction>(V)) 01151 if (I->getOpcode() == Instruction::FPExt) 01152 return LookThroughFPExtensions(I->getOperand(0)); 01153 01154 // If this value is a constant, return the constant in the smallest FP type 01155 // that can accurately represent it. This allows us to turn 01156 // (float)((double)X+2.0) into x+2.0f. 01157 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 01158 if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext())) 01159 return V; // No constant folding of this. 01160 // See if the value can be truncated to half and then reextended. 01161 if (Value *V = FitsInFPType(CFP, APFloat::IEEEhalf)) 01162 return V; 01163 // See if the value can be truncated to float and then reextended. 01164 if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle)) 01165 return V; 01166 if (CFP->getType()->isDoubleTy()) 01167 return V; // Won't shrink. 01168 if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble)) 01169 return V; 01170 // Don't try to shrink to various long double types. 01171 } 01172 01173 return V; 01174 } 01175 01176 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { 01177 if (Instruction *I = commonCastTransforms(CI)) 01178 return I; 01179 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to 01180 // simpilify this expression to avoid one or more of the trunc/extend 01181 // operations if we can do so without changing the numerical results. 01182 // 01183 // The exact manner in which the widths of the operands interact to limit 01184 // what we can and cannot do safely varies from operation to operation, and 01185 // is explained below in the various case statements. 01186 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0)); 01187 if (OpI && OpI->hasOneUse()) { 01188 Value *LHSOrig = LookThroughFPExtensions(OpI->getOperand(0)); 01189 Value *RHSOrig = LookThroughFPExtensions(OpI->getOperand(1)); 01190 unsigned OpWidth = OpI->getType()->getFPMantissaWidth(); 01191 unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth(); 01192 unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth(); 01193 unsigned SrcWidth = std::max(LHSWidth, RHSWidth); 01194 unsigned DstWidth = CI.getType()->getFPMantissaWidth(); 01195 switch (OpI->getOpcode()) { 01196 default: break; 01197 case Instruction::FAdd: 01198 case Instruction::FSub: 01199 // For addition and subtraction, the infinitely precise result can 01200 // essentially be arbitrarily wide; proving that double rounding 01201 // will not occur because the result of OpI is exact (as we will for 01202 // FMul, for example) is hopeless. However, we *can* nonetheless 01203 // frequently know that double rounding cannot occur (or that it is 01204 // innocuous) by taking advantage of the specific structure of 01205 // infinitely-precise results that admit double rounding. 01206 // 01207 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient 01208 // to represent both sources, we can guarantee that the double 01209 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis, 01210 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..." 01211 // for proof of this fact). 01212 // 01213 // Note: Figueroa does not consider the case where DstFormat != 01214 // SrcFormat. It's possible (likely even!) that this analysis 01215 // could be tightened for those cases, but they are rare (the main 01216 // case of interest here is (float)((double)float + float)). 01217 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) { 01218 if (LHSOrig->getType() != CI.getType()) 01219 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType()); 01220 if (RHSOrig->getType() != CI.getType()) 01221 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType()); 01222 Instruction *RI = 01223 BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig); 01224 RI->copyFastMathFlags(OpI); 01225 return RI; 01226 } 01227 break; 01228 case Instruction::FMul: 01229 // For multiplication, the infinitely precise result has at most 01230 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient 01231 // that such a value can be exactly represented, then no double 01232 // rounding can possibly occur; we can safely perform the operation 01233 // in the destination format if it can represent both sources. 01234 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) { 01235 if (LHSOrig->getType() != CI.getType()) 01236 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType()); 01237 if (RHSOrig->getType() != CI.getType()) 01238 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType()); 01239 Instruction *RI = 01240 BinaryOperator::CreateFMul(LHSOrig, RHSOrig); 01241 RI->copyFastMathFlags(OpI); 01242 return RI; 01243 } 01244 break; 01245 case Instruction::FDiv: 01246 // For division, we use again use the bound from Figueroa's 01247 // dissertation. I am entirely certain that this bound can be 01248 // tightened in the unbalanced operand case by an analysis based on 01249 // the diophantine rational approximation bound, but the well-known 01250 // condition used here is a good conservative first pass. 01251 // TODO: Tighten bound via rigorous analysis of the unbalanced case. 01252 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) { 01253 if (LHSOrig->getType() != CI.getType()) 01254 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType()); 01255 if (RHSOrig->getType() != CI.getType()) 01256 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType()); 01257 Instruction *RI = 01258 BinaryOperator::CreateFDiv(LHSOrig, RHSOrig); 01259 RI->copyFastMathFlags(OpI); 01260 return RI; 01261 } 01262 break; 01263 case Instruction::FRem: 01264 // Remainder is straightforward. Remainder is always exact, so the 01265 // type of OpI doesn't enter into things at all. We simply evaluate 01266 // in whichever source type is larger, then convert to the 01267 // destination type. 01268 if (LHSWidth < SrcWidth) 01269 LHSOrig = Builder->CreateFPExt(LHSOrig, RHSOrig->getType()); 01270 else if (RHSWidth <= SrcWidth) 01271 RHSOrig = Builder->CreateFPExt(RHSOrig, LHSOrig->getType()); 01272 Value *ExactResult = Builder->CreateFRem(LHSOrig, RHSOrig); 01273 if (Instruction *RI = dyn_cast<Instruction>(ExactResult)) 01274 RI->copyFastMathFlags(OpI); 01275 return CastInst::CreateFPCast(ExactResult, CI.getType()); 01276 } 01277 01278 // (fptrunc (fneg x)) -> (fneg (fptrunc x)) 01279 if (BinaryOperator::isFNeg(OpI)) { 01280 Value *InnerTrunc = Builder->CreateFPTrunc(OpI->getOperand(1), 01281 CI.getType()); 01282 Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc); 01283 RI->copyFastMathFlags(OpI); 01284 return RI; 01285 } 01286 } 01287 01288 // (fptrunc (select cond, R1, Cst)) --> 01289 // (select cond, (fptrunc R1), (fptrunc Cst)) 01290 SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)); 01291 if (SI && 01292 (isa<ConstantFP>(SI->getOperand(1)) || 01293 isa<ConstantFP>(SI->getOperand(2)))) { 01294 Value *LHSTrunc = Builder->CreateFPTrunc(SI->getOperand(1), 01295 CI.getType()); 01296 Value *RHSTrunc = Builder->CreateFPTrunc(SI->getOperand(2), 01297 CI.getType()); 01298 return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc); 01299 } 01300 01301 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0)); 01302 if (II) { 01303 switch (II->getIntrinsicID()) { 01304 default: break; 01305 case Intrinsic::fabs: { 01306 // (fptrunc (fabs x)) -> (fabs (fptrunc x)) 01307 Value *InnerTrunc = Builder->CreateFPTrunc(II->getArgOperand(0), 01308 CI.getType()); 01309 Type *IntrinsicType[] = { CI.getType() }; 01310 Function *Overload = 01311 Intrinsic::getDeclaration(CI.getParent()->getParent()->getParent(), 01312 II->getIntrinsicID(), IntrinsicType); 01313 01314 Value *Args[] = { InnerTrunc }; 01315 return CallInst::Create(Overload, Args, II->getName()); 01316 } 01317 } 01318 } 01319 01320 // Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x) 01321 // Note that we restrict this transformation based on 01322 // TLI->has(LibFunc::sqrtf), even for the sqrt intrinsic, because 01323 // TLI->has(LibFunc::sqrtf) is sufficient to guarantee that the 01324 // single-precision intrinsic can be expanded in the backend. 01325 CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0)); 01326 if (Call && Call->getCalledFunction() && TLI->has(LibFunc::sqrtf) && 01327 (Call->getCalledFunction()->getName() == TLI->getName(LibFunc::sqrt) || 01328 Call->getCalledFunction()->getIntrinsicID() == Intrinsic::sqrt) && 01329 Call->getNumArgOperands() == 1 && 01330 Call->hasOneUse()) { 01331 CastInst *Arg = dyn_cast<CastInst>(Call->getArgOperand(0)); 01332 if (Arg && Arg->getOpcode() == Instruction::FPExt && 01333 CI.getType()->isFloatTy() && 01334 Call->getType()->isDoubleTy() && 01335 Arg->getType()->isDoubleTy() && 01336 Arg->getOperand(0)->getType()->isFloatTy()) { 01337 Function *Callee = Call->getCalledFunction(); 01338 Module *M = CI.getParent()->getParent()->getParent(); 01339 Constant *SqrtfFunc = (Callee->getIntrinsicID() == Intrinsic::sqrt) ? 01340 Intrinsic::getDeclaration(M, Intrinsic::sqrt, Builder->getFloatTy()) : 01341 M->getOrInsertFunction("sqrtf", Callee->getAttributes(), 01342 Builder->getFloatTy(), Builder->getFloatTy(), 01343 NULL); 01344 CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0), 01345 "sqrtfcall"); 01346 ret->setAttributes(Callee->getAttributes()); 01347 01348 01349 // Remove the old Call. With -fmath-errno, it won't get marked readnone. 01350 ReplaceInstUsesWith(*Call, UndefValue::get(Call->getType())); 01351 EraseInstFromFunction(*Call); 01352 return ret; 01353 } 01354 } 01355 01356 return nullptr; 01357 } 01358 01359 Instruction *InstCombiner::visitFPExt(CastInst &CI) { 01360 return commonCastTransforms(CI); 01361 } 01362 01363 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) { 01364 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 01365 if (!OpI) 01366 return commonCastTransforms(FI); 01367 01368 // fptoui(uitofp(X)) --> X 01369 // fptoui(sitofp(X)) --> X 01370 // This is safe if the intermediate type has enough bits in its mantissa to 01371 // accurately represent all values of X. For example, do not do this with 01372 // i64->float->i64. This is also safe for sitofp case, because any negative 01373 // 'X' value would cause an undefined result for the fptoui. 01374 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) && 01375 OpI->getOperand(0)->getType() == FI.getType() && 01376 (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */ 01377 OpI->getType()->getFPMantissaWidth()) 01378 return ReplaceInstUsesWith(FI, OpI->getOperand(0)); 01379 01380 return commonCastTransforms(FI); 01381 } 01382 01383 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) { 01384 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 01385 if (!OpI) 01386 return commonCastTransforms(FI); 01387 01388 // fptosi(sitofp(X)) --> X 01389 // fptosi(uitofp(X)) --> X 01390 // This is safe if the intermediate type has enough bits in its mantissa to 01391 // accurately represent all values of X. For example, do not do this with 01392 // i64->float->i64. This is also safe for sitofp case, because any negative 01393 // 'X' value would cause an undefined result for the fptoui. 01394 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) && 01395 OpI->getOperand(0)->getType() == FI.getType() && 01396 (int)FI.getType()->getScalarSizeInBits() <= 01397 OpI->getType()->getFPMantissaWidth()) 01398 return ReplaceInstUsesWith(FI, OpI->getOperand(0)); 01399 01400 return commonCastTransforms(FI); 01401 } 01402 01403 Instruction *InstCombiner::visitUIToFP(CastInst &CI) { 01404 return commonCastTransforms(CI); 01405 } 01406 01407 Instruction *InstCombiner::visitSIToFP(CastInst &CI) { 01408 return commonCastTransforms(CI); 01409 } 01410 01411 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { 01412 // If the source integer type is not the intptr_t type for this target, do a 01413 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the 01414 // cast to be exposed to other transforms. 01415 01416 if (DL) { 01417 unsigned AS = CI.getAddressSpace(); 01418 if (CI.getOperand(0)->getType()->getScalarSizeInBits() != 01419 DL->getPointerSizeInBits(AS)) { 01420 Type *Ty = DL->getIntPtrType(CI.getContext(), AS); 01421 if (CI.getType()->isVectorTy()) // Handle vectors of pointers. 01422 Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements()); 01423 01424 Value *P = Builder->CreateZExtOrTrunc(CI.getOperand(0), Ty); 01425 return new IntToPtrInst(P, CI.getType()); 01426 } 01427 } 01428 01429 if (Instruction *I = commonCastTransforms(CI)) 01430 return I; 01431 01432 return nullptr; 01433 } 01434 01435 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint) 01436 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { 01437 Value *Src = CI.getOperand(0); 01438 01439 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { 01440 // If casting the result of a getelementptr instruction with no offset, turn 01441 // this into a cast of the original pointer! 01442 if (GEP->hasAllZeroIndices() && 01443 // If CI is an addrspacecast and GEP changes the poiner type, merging 01444 // GEP into CI would undo canonicalizing addrspacecast with different 01445 // pointer types, causing infinite loops. 01446 (!isa<AddrSpaceCastInst>(CI) || 01447 GEP->getType() == GEP->getPointerOperand()->getType())) { 01448 // Changing the cast operand is usually not a good idea but it is safe 01449 // here because the pointer operand is being replaced with another 01450 // pointer operand so the opcode doesn't need to change. 01451 Worklist.Add(GEP); 01452 CI.setOperand(0, GEP->getOperand(0)); 01453 return &CI; 01454 } 01455 01456 if (!DL) 01457 return commonCastTransforms(CI); 01458 01459 // If the GEP has a single use, and the base pointer is a bitcast, and the 01460 // GEP computes a constant offset, see if we can convert these three 01461 // instructions into fewer. This typically happens with unions and other 01462 // non-type-safe code. 01463 unsigned AS = GEP->getPointerAddressSpace(); 01464 unsigned OffsetBits = DL->getPointerSizeInBits(AS); 01465 APInt Offset(OffsetBits, 0); 01466 BitCastInst *BCI = dyn_cast<BitCastInst>(GEP->getOperand(0)); 01467 if (GEP->hasOneUse() && 01468 BCI && 01469 GEP->accumulateConstantOffset(*DL, Offset)) { 01470 // Get the base pointer input of the bitcast, and the type it points to. 01471 Value *OrigBase = BCI->getOperand(0); 01472 SmallVector<Value*, 8> NewIndices; 01473 if (FindElementAtOffset(OrigBase->getType(), 01474 Offset.getSExtValue(), 01475 NewIndices)) { 01476 // If we were able to index down into an element, create the GEP 01477 // and bitcast the result. This eliminates one bitcast, potentially 01478 // two. 01479 Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ? 01480 Builder->CreateInBoundsGEP(OrigBase, NewIndices) : 01481 Builder->CreateGEP(OrigBase, NewIndices); 01482 NGEP->takeName(GEP); 01483 01484 if (isa<BitCastInst>(CI)) 01485 return new BitCastInst(NGEP, CI.getType()); 01486 assert(isa<PtrToIntInst>(CI)); 01487 return new PtrToIntInst(NGEP, CI.getType()); 01488 } 01489 } 01490 } 01491 01492 return commonCastTransforms(CI); 01493 } 01494 01495 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) { 01496 // If the destination integer type is not the intptr_t type for this target, 01497 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast 01498 // to be exposed to other transforms. 01499 01500 if (!DL) 01501 return commonPointerCastTransforms(CI); 01502 01503 Type *Ty = CI.getType(); 01504 unsigned AS = CI.getPointerAddressSpace(); 01505 01506 if (Ty->getScalarSizeInBits() == DL->getPointerSizeInBits(AS)) 01507 return commonPointerCastTransforms(CI); 01508 01509 Type *PtrTy = DL->getIntPtrType(CI.getContext(), AS); 01510 if (Ty->isVectorTy()) // Handle vectors of pointers. 01511 PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements()); 01512 01513 Value *P = Builder->CreatePtrToInt(CI.getOperand(0), PtrTy); 01514 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false); 01515 } 01516 01517 /// OptimizeVectorResize - This input value (which is known to have vector type) 01518 /// is being zero extended or truncated to the specified vector type. Try to 01519 /// replace it with a shuffle (and vector/vector bitcast) if possible. 01520 /// 01521 /// The source and destination vector types may have different element types. 01522 static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy, 01523 InstCombiner &IC) { 01524 // We can only do this optimization if the output is a multiple of the input 01525 // element size, or the input is a multiple of the output element size. 01526 // Convert the input type to have the same element type as the output. 01527 VectorType *SrcTy = cast<VectorType>(InVal->getType()); 01528 01529 if (SrcTy->getElementType() != DestTy->getElementType()) { 01530 // The input types don't need to be identical, but for now they must be the 01531 // same size. There is no specific reason we couldn't handle things like 01532 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten 01533 // there yet. 01534 if (SrcTy->getElementType()->getPrimitiveSizeInBits() != 01535 DestTy->getElementType()->getPrimitiveSizeInBits()) 01536 return nullptr; 01537 01538 SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements()); 01539 InVal = IC.Builder->CreateBitCast(InVal, SrcTy); 01540 } 01541 01542 // Now that the element types match, get the shuffle mask and RHS of the 01543 // shuffle to use, which depends on whether we're increasing or decreasing the 01544 // size of the input. 01545 SmallVector<uint32_t, 16> ShuffleMask; 01546 Value *V2; 01547 01548 if (SrcTy->getNumElements() > DestTy->getNumElements()) { 01549 // If we're shrinking the number of elements, just shuffle in the low 01550 // elements from the input and use undef as the second shuffle input. 01551 V2 = UndefValue::get(SrcTy); 01552 for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i) 01553 ShuffleMask.push_back(i); 01554 01555 } else { 01556 // If we're increasing the number of elements, shuffle in all of the 01557 // elements from InVal and fill the rest of the result elements with zeros 01558 // from a constant zero. 01559 V2 = Constant::getNullValue(SrcTy); 01560 unsigned SrcElts = SrcTy->getNumElements(); 01561 for (unsigned i = 0, e = SrcElts; i != e; ++i) 01562 ShuffleMask.push_back(i); 01563 01564 // The excess elements reference the first element of the zero input. 01565 for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i) 01566 ShuffleMask.push_back(SrcElts); 01567 } 01568 01569 return new ShuffleVectorInst(InVal, V2, 01570 ConstantDataVector::get(V2->getContext(), 01571 ShuffleMask)); 01572 } 01573 01574 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { 01575 return Value % Ty->getPrimitiveSizeInBits() == 0; 01576 } 01577 01578 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { 01579 return Value / Ty->getPrimitiveSizeInBits(); 01580 } 01581 01582 /// CollectInsertionElements - V is a value which is inserted into a vector of 01583 /// VecEltTy. Look through the value to see if we can decompose it into 01584 /// insertions into the vector. See the example in the comment for 01585 /// OptimizeIntegerToVectorInsertions for the pattern this handles. 01586 /// The type of V is always a non-zero multiple of VecEltTy's size. 01587 /// Shift is the number of bits between the lsb of V and the lsb of 01588 /// the vector. 01589 /// 01590 /// This returns false if the pattern can't be matched or true if it can, 01591 /// filling in Elements with the elements found here. 01592 static bool CollectInsertionElements(Value *V, unsigned Shift, 01593 SmallVectorImpl<Value*> &Elements, 01594 Type *VecEltTy, InstCombiner &IC) { 01595 assert(isMultipleOfTypeSize(Shift, VecEltTy) && 01596 "Shift should be a multiple of the element type size"); 01597 01598 // Undef values never contribute useful bits to the result. 01599 if (isa<UndefValue>(V)) return true; 01600 01601 // If we got down to a value of the right type, we win, try inserting into the 01602 // right element. 01603 if (V->getType() == VecEltTy) { 01604 // Inserting null doesn't actually insert any elements. 01605 if (Constant *C = dyn_cast<Constant>(V)) 01606 if (C->isNullValue()) 01607 return true; 01608 01609 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy); 01610 if (IC.getDataLayout()->isBigEndian()) 01611 ElementIndex = Elements.size() - ElementIndex - 1; 01612 01613 // Fail if multiple elements are inserted into this slot. 01614 if (Elements[ElementIndex]) 01615 return false; 01616 01617 Elements[ElementIndex] = V; 01618 return true; 01619 } 01620 01621 if (Constant *C = dyn_cast<Constant>(V)) { 01622 // Figure out the # elements this provides, and bitcast it or slice it up 01623 // as required. 01624 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), 01625 VecEltTy); 01626 // If the constant is the size of a vector element, we just need to bitcast 01627 // it to the right type so it gets properly inserted. 01628 if (NumElts == 1) 01629 return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), 01630 Shift, Elements, VecEltTy, IC); 01631 01632 // Okay, this is a constant that covers multiple elements. Slice it up into 01633 // pieces and insert each element-sized piece into the vector. 01634 if (!isa<IntegerType>(C->getType())) 01635 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), 01636 C->getType()->getPrimitiveSizeInBits())); 01637 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); 01638 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); 01639 01640 for (unsigned i = 0; i != NumElts; ++i) { 01641 unsigned ShiftI = Shift+i*ElementSize; 01642 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), 01643 ShiftI)); 01644 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); 01645 if (!CollectInsertionElements(Piece, ShiftI, Elements, VecEltTy, IC)) 01646 return false; 01647 } 01648 return true; 01649 } 01650 01651 if (!V->hasOneUse()) return false; 01652 01653 Instruction *I = dyn_cast<Instruction>(V); 01654 if (!I) return false; 01655 switch (I->getOpcode()) { 01656 default: return false; // Unhandled case. 01657 case Instruction::BitCast: 01658 return CollectInsertionElements(I->getOperand(0), Shift, 01659 Elements, VecEltTy, IC); 01660 case Instruction::ZExt: 01661 if (!isMultipleOfTypeSize( 01662 I->getOperand(0)->getType()->getPrimitiveSizeInBits(), 01663 VecEltTy)) 01664 return false; 01665 return CollectInsertionElements(I->getOperand(0), Shift, 01666 Elements, VecEltTy, IC); 01667 case Instruction::Or: 01668 return CollectInsertionElements(I->getOperand(0), Shift, 01669 Elements, VecEltTy, IC) && 01670 CollectInsertionElements(I->getOperand(1), Shift, 01671 Elements, VecEltTy, IC); 01672 case Instruction::Shl: { 01673 // Must be shifting by a constant that is a multiple of the element size. 01674 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 01675 if (!CI) return false; 01676 Shift += CI->getZExtValue(); 01677 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false; 01678 return CollectInsertionElements(I->getOperand(0), Shift, 01679 Elements, VecEltTy, IC); 01680 } 01681 01682 } 01683 } 01684 01685 01686 /// OptimizeIntegerToVectorInsertions - If the input is an 'or' instruction, we 01687 /// may be doing shifts and ors to assemble the elements of the vector manually. 01688 /// Try to rip the code out and replace it with insertelements. This is to 01689 /// optimize code like this: 01690 /// 01691 /// %tmp37 = bitcast float %inc to i32 01692 /// %tmp38 = zext i32 %tmp37 to i64 01693 /// %tmp31 = bitcast float %inc5 to i32 01694 /// %tmp32 = zext i32 %tmp31 to i64 01695 /// %tmp33 = shl i64 %tmp32, 32 01696 /// %ins35 = or i64 %tmp33, %tmp38 01697 /// %tmp43 = bitcast i64 %ins35 to <2 x float> 01698 /// 01699 /// Into two insertelements that do "buildvector{%inc, %inc5}". 01700 static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI, 01701 InstCombiner &IC) { 01702 // We need to know the target byte order to perform this optimization. 01703 if (!IC.getDataLayout()) return nullptr; 01704 01705 VectorType *DestVecTy = cast<VectorType>(CI.getType()); 01706 Value *IntInput = CI.getOperand(0); 01707 01708 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); 01709 if (!CollectInsertionElements(IntInput, 0, Elements, 01710 DestVecTy->getElementType(), IC)) 01711 return nullptr; 01712 01713 // If we succeeded, we know that all of the element are specified by Elements 01714 // or are zero if Elements has a null entry. Recast this as a set of 01715 // insertions. 01716 Value *Result = Constant::getNullValue(CI.getType()); 01717 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 01718 if (!Elements[i]) continue; // Unset element. 01719 01720 Result = IC.Builder->CreateInsertElement(Result, Elements[i], 01721 IC.Builder->getInt32(i)); 01722 } 01723 01724 return Result; 01725 } 01726 01727 01728 /// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double 01729 /// bitcast. The various long double bitcasts can't get in here. 01730 static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){ 01731 // We need to know the target byte order to perform this optimization. 01732 if (!IC.getDataLayout()) return nullptr; 01733 01734 Value *Src = CI.getOperand(0); 01735 Type *DestTy = CI.getType(); 01736 01737 // If this is a bitcast from int to float, check to see if the int is an 01738 // extraction from a vector. 01739 Value *VecInput = nullptr; 01740 // bitcast(trunc(bitcast(somevector))) 01741 if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) && 01742 isa<VectorType>(VecInput->getType())) { 01743 VectorType *VecTy = cast<VectorType>(VecInput->getType()); 01744 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 01745 01746 if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) { 01747 // If the element type of the vector doesn't match the result type, 01748 // bitcast it to be a vector type we can extract from. 01749 if (VecTy->getElementType() != DestTy) { 01750 VecTy = VectorType::get(DestTy, 01751 VecTy->getPrimitiveSizeInBits() / DestWidth); 01752 VecInput = IC.Builder->CreateBitCast(VecInput, VecTy); 01753 } 01754 01755 unsigned Elt = 0; 01756 if (IC.getDataLayout()->isBigEndian()) 01757 Elt = VecTy->getPrimitiveSizeInBits() / DestWidth - 1; 01758 return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt)); 01759 } 01760 } 01761 01762 // bitcast(trunc(lshr(bitcast(somevector), cst)) 01763 ConstantInt *ShAmt = nullptr; 01764 if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)), 01765 m_ConstantInt(ShAmt)))) && 01766 isa<VectorType>(VecInput->getType())) { 01767 VectorType *VecTy = cast<VectorType>(VecInput->getType()); 01768 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 01769 if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 && 01770 ShAmt->getZExtValue() % DestWidth == 0) { 01771 // If the element type of the vector doesn't match the result type, 01772 // bitcast it to be a vector type we can extract from. 01773 if (VecTy->getElementType() != DestTy) { 01774 VecTy = VectorType::get(DestTy, 01775 VecTy->getPrimitiveSizeInBits() / DestWidth); 01776 VecInput = IC.Builder->CreateBitCast(VecInput, VecTy); 01777 } 01778 01779 unsigned Elt = ShAmt->getZExtValue() / DestWidth; 01780 if (IC.getDataLayout()->isBigEndian()) 01781 Elt = VecTy->getPrimitiveSizeInBits() / DestWidth - 1 - Elt; 01782 return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt)); 01783 } 01784 } 01785 return nullptr; 01786 } 01787 01788 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { 01789 // If the operands are integer typed then apply the integer transforms, 01790 // otherwise just apply the common ones. 01791 Value *Src = CI.getOperand(0); 01792 Type *SrcTy = Src->getType(); 01793 Type *DestTy = CI.getType(); 01794 01795 // Get rid of casts from one type to the same type. These are useless and can 01796 // be replaced by the operand. 01797 if (DestTy == Src->getType()) 01798 return ReplaceInstUsesWith(CI, Src); 01799 01800 if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) { 01801 PointerType *SrcPTy = cast<PointerType>(SrcTy); 01802 Type *DstElTy = DstPTy->getElementType(); 01803 Type *SrcElTy = SrcPTy->getElementType(); 01804 01805 // If we are casting a alloca to a pointer to a type of the same 01806 // size, rewrite the allocation instruction to allocate the "right" type. 01807 // There is no need to modify malloc calls because it is their bitcast that 01808 // needs to be cleaned up. 01809 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) 01810 if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) 01811 return V; 01812 01813 // If the source and destination are pointers, and this cast is equivalent 01814 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. 01815 // This can enhance SROA and other transforms that want type-safe pointers. 01816 Constant *ZeroUInt = 01817 Constant::getNullValue(Type::getInt32Ty(CI.getContext())); 01818 unsigned NumZeros = 0; 01819 while (SrcElTy != DstElTy && 01820 isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() && 01821 SrcElTy->getNumContainedTypes() /* not "{}" */) { 01822 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt); 01823 ++NumZeros; 01824 } 01825 01826 // If we found a path from the src to dest, create the getelementptr now. 01827 if (SrcElTy == DstElTy) { 01828 SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt); 01829 return GetElementPtrInst::CreateInBounds(Src, Idxs); 01830 } 01831 } 01832 01833 // Try to optimize int -> float bitcasts. 01834 if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy)) 01835 if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this)) 01836 return I; 01837 01838 if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) { 01839 if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) { 01840 Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType()); 01841 return InsertElementInst::Create(UndefValue::get(DestTy), Elem, 01842 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 01843 // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast) 01844 } 01845 01846 if (isa<IntegerType>(SrcTy)) { 01847 // If this is a cast from an integer to vector, check to see if the input 01848 // is a trunc or zext of a bitcast from vector. If so, we can replace all 01849 // the casts with a shuffle and (potentially) a bitcast. 01850 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { 01851 CastInst *SrcCast = cast<CastInst>(Src); 01852 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) 01853 if (isa<VectorType>(BCIn->getOperand(0)->getType())) 01854 if (Instruction *I = OptimizeVectorResize(BCIn->getOperand(0), 01855 cast<VectorType>(DestTy), *this)) 01856 return I; 01857 } 01858 01859 // If the input is an 'or' instruction, we may be doing shifts and ors to 01860 // assemble the elements of the vector manually. Try to rip the code out 01861 // and replace it with insertelements. 01862 if (Value *V = OptimizeIntegerToVectorInsertions(CI, *this)) 01863 return ReplaceInstUsesWith(CI, V); 01864 } 01865 } 01866 01867 if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) { 01868 if (SrcVTy->getNumElements() == 1) { 01869 // If our destination is not a vector, then make this a straight 01870 // scalar-scalar cast. 01871 if (!DestTy->isVectorTy()) { 01872 Value *Elem = 01873 Builder->CreateExtractElement(Src, 01874 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 01875 return CastInst::Create(Instruction::BitCast, Elem, DestTy); 01876 } 01877 01878 // Otherwise, see if our source is an insert. If so, then use the scalar 01879 // component directly. 01880 if (InsertElementInst *IEI = 01881 dyn_cast<InsertElementInst>(CI.getOperand(0))) 01882 return CastInst::Create(Instruction::BitCast, IEI->getOperand(1), 01883 DestTy); 01884 } 01885 } 01886 01887 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) { 01888 // Okay, we have (bitcast (shuffle ..)). Check to see if this is 01889 // a bitcast to a vector with the same # elts. 01890 if (SVI->hasOneUse() && DestTy->isVectorTy() && 01891 DestTy->getVectorNumElements() == SVI->getType()->getNumElements() && 01892 SVI->getType()->getNumElements() == 01893 SVI->getOperand(0)->getType()->getVectorNumElements()) { 01894 BitCastInst *Tmp; 01895 // If either of the operands is a cast from CI.getType(), then 01896 // evaluating the shuffle in the casted destination's type will allow 01897 // us to eliminate at least one cast. 01898 if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) && 01899 Tmp->getOperand(0)->getType() == DestTy) || 01900 ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) && 01901 Tmp->getOperand(0)->getType() == DestTy)) { 01902 Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy); 01903 Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy); 01904 // Return a new shuffle vector. Use the same element ID's, as we 01905 // know the vector types match #elts. 01906 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2)); 01907 } 01908 } 01909 } 01910 01911 if (SrcTy->isPointerTy()) 01912 return commonPointerCastTransforms(CI); 01913 return commonCastTransforms(CI); 01914 } 01915 01916 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) { 01917 // If the destination pointer element type is not the same as the source's 01918 // first do a bitcast to the destination type, and then the addrspacecast. 01919 // This allows the cast to be exposed to other transforms. 01920 Value *Src = CI.getOperand(0); 01921 PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType()); 01922 PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType()); 01923 01924 Type *DestElemTy = DestTy->getElementType(); 01925 if (SrcTy->getElementType() != DestElemTy) { 01926 Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace()); 01927 if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) { 01928 // Handle vectors of pointers. 01929 MidTy = VectorType::get(MidTy, VT->getNumElements()); 01930 } 01931 01932 Value *NewBitCast = Builder->CreateBitCast(Src, MidTy); 01933 return new AddrSpaceCastInst(NewBitCast, CI.getType()); 01934 } 01935 01936 return commonPointerCastTransforms(CI); 01937 }