LLVM API Documentation
00001 //===- InstCombineSelect.cpp ----------------------------------------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file implements the visitSelect function. 00011 // 00012 //===----------------------------------------------------------------------===// 00013 00014 #include "InstCombine.h" 00015 #include "llvm/Analysis/ConstantFolding.h" 00016 #include "llvm/Analysis/InstructionSimplify.h" 00017 #include "llvm/IR/PatternMatch.h" 00018 using namespace llvm; 00019 using namespace PatternMatch; 00020 00021 #define DEBUG_TYPE "instcombine" 00022 00023 /// MatchSelectPattern - Pattern match integer [SU]MIN, [SU]MAX, and ABS idioms, 00024 /// returning the kind and providing the out parameter results if we 00025 /// successfully match. 00026 static SelectPatternFlavor 00027 MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) { 00028 SelectInst *SI = dyn_cast<SelectInst>(V); 00029 if (!SI) return SPF_UNKNOWN; 00030 00031 ICmpInst *ICI = dyn_cast<ICmpInst>(SI->getCondition()); 00032 if (!ICI) return SPF_UNKNOWN; 00033 00034 ICmpInst::Predicate Pred = ICI->getPredicate(); 00035 Value *CmpLHS = ICI->getOperand(0); 00036 Value *CmpRHS = ICI->getOperand(1); 00037 Value *TrueVal = SI->getTrueValue(); 00038 Value *FalseVal = SI->getFalseValue(); 00039 00040 LHS = CmpLHS; 00041 RHS = CmpRHS; 00042 00043 // (icmp X, Y) ? X : Y 00044 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 00045 switch (Pred) { 00046 default: return SPF_UNKNOWN; // Equality. 00047 case ICmpInst::ICMP_UGT: 00048 case ICmpInst::ICMP_UGE: return SPF_UMAX; 00049 case ICmpInst::ICMP_SGT: 00050 case ICmpInst::ICMP_SGE: return SPF_SMAX; 00051 case ICmpInst::ICMP_ULT: 00052 case ICmpInst::ICMP_ULE: return SPF_UMIN; 00053 case ICmpInst::ICMP_SLT: 00054 case ICmpInst::ICMP_SLE: return SPF_SMIN; 00055 } 00056 } 00057 00058 // (icmp X, Y) ? Y : X 00059 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 00060 switch (Pred) { 00061 default: return SPF_UNKNOWN; // Equality. 00062 case ICmpInst::ICMP_UGT: 00063 case ICmpInst::ICMP_UGE: return SPF_UMIN; 00064 case ICmpInst::ICMP_SGT: 00065 case ICmpInst::ICMP_SGE: return SPF_SMIN; 00066 case ICmpInst::ICMP_ULT: 00067 case ICmpInst::ICMP_ULE: return SPF_UMAX; 00068 case ICmpInst::ICMP_SLT: 00069 case ICmpInst::ICMP_SLE: return SPF_SMAX; 00070 } 00071 } 00072 00073 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) { 00074 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 00075 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 00076 00077 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 00078 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 00079 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) { 00080 return (CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS; 00081 } 00082 00083 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 00084 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 00085 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) { 00086 return (CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS; 00087 } 00088 } 00089 } 00090 00091 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5) 00092 00093 return SPF_UNKNOWN; 00094 } 00095 00096 00097 /// GetSelectFoldableOperands - We want to turn code that looks like this: 00098 /// %C = or %A, %B 00099 /// %D = select %cond, %C, %A 00100 /// into: 00101 /// %C = select %cond, %B, 0 00102 /// %D = or %A, %C 00103 /// 00104 /// Assuming that the specified instruction is an operand to the select, return 00105 /// a bitmask indicating which operands of this instruction are foldable if they 00106 /// equal the other incoming value of the select. 00107 /// 00108 static unsigned GetSelectFoldableOperands(Instruction *I) { 00109 switch (I->getOpcode()) { 00110 case Instruction::Add: 00111 case Instruction::Mul: 00112 case Instruction::And: 00113 case Instruction::Or: 00114 case Instruction::Xor: 00115 return 3; // Can fold through either operand. 00116 case Instruction::Sub: // Can only fold on the amount subtracted. 00117 case Instruction::Shl: // Can only fold on the shift amount. 00118 case Instruction::LShr: 00119 case Instruction::AShr: 00120 return 1; 00121 default: 00122 return 0; // Cannot fold 00123 } 00124 } 00125 00126 /// GetSelectFoldableConstant - For the same transformation as the previous 00127 /// function, return the identity constant that goes into the select. 00128 static Constant *GetSelectFoldableConstant(Instruction *I) { 00129 switch (I->getOpcode()) { 00130 default: llvm_unreachable("This cannot happen!"); 00131 case Instruction::Add: 00132 case Instruction::Sub: 00133 case Instruction::Or: 00134 case Instruction::Xor: 00135 case Instruction::Shl: 00136 case Instruction::LShr: 00137 case Instruction::AShr: 00138 return Constant::getNullValue(I->getType()); 00139 case Instruction::And: 00140 return Constant::getAllOnesValue(I->getType()); 00141 case Instruction::Mul: 00142 return ConstantInt::get(I->getType(), 1); 00143 } 00144 } 00145 00146 /// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI 00147 /// have the same opcode and only one use each. Try to simplify this. 00148 Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI, 00149 Instruction *FI) { 00150 if (TI->getNumOperands() == 1) { 00151 // If this is a non-volatile load or a cast from the same type, 00152 // merge. 00153 if (TI->isCast()) { 00154 Type *FIOpndTy = FI->getOperand(0)->getType(); 00155 if (TI->getOperand(0)->getType() != FIOpndTy) 00156 return nullptr; 00157 // The select condition may be a vector. We may only change the operand 00158 // type if the vector width remains the same (and matches the condition). 00159 Type *CondTy = SI.getCondition()->getType(); 00160 if (CondTy->isVectorTy() && (!FIOpndTy->isVectorTy() || 00161 CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements())) 00162 return nullptr; 00163 } else { 00164 return nullptr; // unknown unary op. 00165 } 00166 00167 // Fold this by inserting a select from the input values. 00168 Value *NewSI = Builder->CreateSelect(SI.getCondition(), TI->getOperand(0), 00169 FI->getOperand(0), SI.getName()+".v"); 00170 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 00171 TI->getType()); 00172 } 00173 00174 // Only handle binary operators here. 00175 if (!isa<BinaryOperator>(TI)) 00176 return nullptr; 00177 00178 // Figure out if the operations have any operands in common. 00179 Value *MatchOp, *OtherOpT, *OtherOpF; 00180 bool MatchIsOpZero; 00181 if (TI->getOperand(0) == FI->getOperand(0)) { 00182 MatchOp = TI->getOperand(0); 00183 OtherOpT = TI->getOperand(1); 00184 OtherOpF = FI->getOperand(1); 00185 MatchIsOpZero = true; 00186 } else if (TI->getOperand(1) == FI->getOperand(1)) { 00187 MatchOp = TI->getOperand(1); 00188 OtherOpT = TI->getOperand(0); 00189 OtherOpF = FI->getOperand(0); 00190 MatchIsOpZero = false; 00191 } else if (!TI->isCommutative()) { 00192 return nullptr; 00193 } else if (TI->getOperand(0) == FI->getOperand(1)) { 00194 MatchOp = TI->getOperand(0); 00195 OtherOpT = TI->getOperand(1); 00196 OtherOpF = FI->getOperand(0); 00197 MatchIsOpZero = true; 00198 } else if (TI->getOperand(1) == FI->getOperand(0)) { 00199 MatchOp = TI->getOperand(1); 00200 OtherOpT = TI->getOperand(0); 00201 OtherOpF = FI->getOperand(1); 00202 MatchIsOpZero = true; 00203 } else { 00204 return nullptr; 00205 } 00206 00207 // If we reach here, they do have operations in common. 00208 Value *NewSI = Builder->CreateSelect(SI.getCondition(), OtherOpT, 00209 OtherOpF, SI.getName()+".v"); 00210 00211 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) { 00212 if (MatchIsOpZero) 00213 return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI); 00214 else 00215 return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp); 00216 } 00217 llvm_unreachable("Shouldn't get here"); 00218 } 00219 00220 static bool isSelect01(Constant *C1, Constant *C2) { 00221 ConstantInt *C1I = dyn_cast<ConstantInt>(C1); 00222 if (!C1I) 00223 return false; 00224 ConstantInt *C2I = dyn_cast<ConstantInt>(C2); 00225 if (!C2I) 00226 return false; 00227 if (!C1I->isZero() && !C2I->isZero()) // One side must be zero. 00228 return false; 00229 return C1I->isOne() || C1I->isAllOnesValue() || 00230 C2I->isOne() || C2I->isAllOnesValue(); 00231 } 00232 00233 /// FoldSelectIntoOp - Try fold the select into one of the operands to 00234 /// facilitate further optimization. 00235 Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal, 00236 Value *FalseVal) { 00237 // See the comment above GetSelectFoldableOperands for a description of the 00238 // transformation we are doing here. 00239 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) { 00240 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 && 00241 !isa<Constant>(FalseVal)) { 00242 if (unsigned SFO = GetSelectFoldableOperands(TVI)) { 00243 unsigned OpToFold = 0; 00244 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { 00245 OpToFold = 1; 00246 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { 00247 OpToFold = 2; 00248 } 00249 00250 if (OpToFold) { 00251 Constant *C = GetSelectFoldableConstant(TVI); 00252 Value *OOp = TVI->getOperand(2-OpToFold); 00253 // Avoid creating select between 2 constants unless it's selecting 00254 // between 0, 1 and -1. 00255 if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) { 00256 Value *NewSel = Builder->CreateSelect(SI.getCondition(), OOp, C); 00257 NewSel->takeName(TVI); 00258 BinaryOperator *TVI_BO = cast<BinaryOperator>(TVI); 00259 BinaryOperator *BO = BinaryOperator::Create(TVI_BO->getOpcode(), 00260 FalseVal, NewSel); 00261 if (isa<PossiblyExactOperator>(BO)) 00262 BO->setIsExact(TVI_BO->isExact()); 00263 if (isa<OverflowingBinaryOperator>(BO)) { 00264 BO->setHasNoUnsignedWrap(TVI_BO->hasNoUnsignedWrap()); 00265 BO->setHasNoSignedWrap(TVI_BO->hasNoSignedWrap()); 00266 } 00267 return BO; 00268 } 00269 } 00270 } 00271 } 00272 } 00273 00274 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) { 00275 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 && 00276 !isa<Constant>(TrueVal)) { 00277 if (unsigned SFO = GetSelectFoldableOperands(FVI)) { 00278 unsigned OpToFold = 0; 00279 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { 00280 OpToFold = 1; 00281 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { 00282 OpToFold = 2; 00283 } 00284 00285 if (OpToFold) { 00286 Constant *C = GetSelectFoldableConstant(FVI); 00287 Value *OOp = FVI->getOperand(2-OpToFold); 00288 // Avoid creating select between 2 constants unless it's selecting 00289 // between 0, 1 and -1. 00290 if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) { 00291 Value *NewSel = Builder->CreateSelect(SI.getCondition(), C, OOp); 00292 NewSel->takeName(FVI); 00293 BinaryOperator *FVI_BO = cast<BinaryOperator>(FVI); 00294 BinaryOperator *BO = BinaryOperator::Create(FVI_BO->getOpcode(), 00295 TrueVal, NewSel); 00296 if (isa<PossiblyExactOperator>(BO)) 00297 BO->setIsExact(FVI_BO->isExact()); 00298 if (isa<OverflowingBinaryOperator>(BO)) { 00299 BO->setHasNoUnsignedWrap(FVI_BO->hasNoUnsignedWrap()); 00300 BO->setHasNoSignedWrap(FVI_BO->hasNoSignedWrap()); 00301 } 00302 return BO; 00303 } 00304 } 00305 } 00306 } 00307 } 00308 00309 return nullptr; 00310 } 00311 00312 /// SimplifyWithOpReplaced - See if V simplifies when its operand Op is 00313 /// replaced with RepOp. 00314 static Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 00315 const DataLayout *TD, 00316 const TargetLibraryInfo *TLI, 00317 DominatorTree *DT, 00318 AssumptionTracker *AT) { 00319 // Trivial replacement. 00320 if (V == Op) 00321 return RepOp; 00322 00323 Instruction *I = dyn_cast<Instruction>(V); 00324 if (!I) 00325 return nullptr; 00326 00327 // If this is a binary operator, try to simplify it with the replaced op. 00328 if (BinaryOperator *B = dyn_cast<BinaryOperator>(I)) { 00329 if (B->getOperand(0) == Op) 00330 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), TD, TLI); 00331 if (B->getOperand(1) == Op) 00332 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, TD, TLI); 00333 } 00334 00335 // Same for CmpInsts. 00336 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 00337 if (C->getOperand(0) == Op) 00338 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), TD, 00339 TLI, DT, AT); 00340 if (C->getOperand(1) == Op) 00341 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, TD, 00342 TLI, DT, AT); 00343 } 00344 00345 // TODO: We could hand off more cases to instsimplify here. 00346 00347 // If all operands are constant after substituting Op for RepOp then we can 00348 // constant fold the instruction. 00349 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 00350 // Build a list of all constant operands. 00351 SmallVector<Constant*, 8> ConstOps; 00352 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 00353 if (I->getOperand(i) == Op) 00354 ConstOps.push_back(CRepOp); 00355 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 00356 ConstOps.push_back(COp); 00357 else 00358 break; 00359 } 00360 00361 // All operands were constants, fold it. 00362 if (ConstOps.size() == I->getNumOperands()) { 00363 if (CmpInst *C = dyn_cast<CmpInst>(I)) 00364 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 00365 ConstOps[1], TD, TLI); 00366 00367 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 00368 if (!LI->isVolatile()) 00369 return ConstantFoldLoadFromConstPtr(ConstOps[0], TD); 00370 00371 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), 00372 ConstOps, TD, TLI); 00373 } 00374 } 00375 00376 return nullptr; 00377 } 00378 00379 /// foldSelectICmpAndOr - We want to turn: 00380 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) 00381 /// into: 00382 /// (or (shl (and X, C1), C3), y) 00383 /// iff: 00384 /// C1 and C2 are both powers of 2 00385 /// where: 00386 /// C3 = Log(C2) - Log(C1) 00387 /// 00388 /// This transform handles cases where: 00389 /// 1. The icmp predicate is inverted 00390 /// 2. The select operands are reversed 00391 /// 3. The magnitude of C2 and C1 are flipped 00392 /// 00393 /// This also tries to turn 00394 /// --- Single bit tests: 00395 /// if ((x & C) == 0) x |= C to x |= C 00396 /// if ((x & C) != 0) x ^= C to x &= ~C 00397 /// if ((x & C) == 0) x ^= C to x |= C 00398 /// if ((x & C) != 0) x &= ~C to x &= ~C 00399 /// if ((x & C) == 0) x &= ~C to nothing 00400 static Value *foldSelectICmpAndOr(SelectInst &SI, Value *TrueVal, 00401 Value *FalseVal, 00402 InstCombiner::BuilderTy *Builder) { 00403 const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition()); 00404 if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy()) 00405 return nullptr; 00406 00407 Value *CmpLHS = IC->getOperand(0); 00408 Value *CmpRHS = IC->getOperand(1); 00409 00410 if (!match(CmpRHS, m_Zero())) 00411 return nullptr; 00412 00413 Value *X; 00414 const APInt *C1; 00415 if (!match(CmpLHS, m_And(m_Value(X), m_Power2(C1)))) 00416 return nullptr; 00417 00418 const APInt *C2; 00419 if (match(TrueVal, m_Specific(X))) { 00420 // if ((X & C) != 0) X ^= C becomes X &= ~C 00421 if (match(FalseVal, m_Xor(m_Specific(X), m_APInt(C2))) && C1 == C2) 00422 return Builder->CreateAnd(X, ~(*C1)); 00423 // if ((X & C) != 0) X &= ~C becomes X &= ~C 00424 if (match(FalseVal, m_And(m_Specific(X), m_APInt(C2))) && *C1 == ~(*C2)) 00425 return FalseVal; 00426 } else if (match(FalseVal, m_Specific(X))) { 00427 // if ((X & C) == 0) X ^= C becomes X |= C 00428 if (match(TrueVal, m_Xor(m_Specific(X), m_APInt(C2))) && C1 == C2) 00429 return Builder->CreateOr(X, *C1); 00430 // if ((X & C) == 0) X &= ~C becomes nothing 00431 if (match(TrueVal, m_And(m_Specific(X), m_APInt(C2))) && *C1 == ~(*C2)) 00432 return X; 00433 // if ((X & C) == 0) X |= C becomes X |= C 00434 if (match(TrueVal, m_Or(m_Specific(X), m_APInt(C2))) && C1 == C2) 00435 return TrueVal; 00436 } 00437 00438 bool OrOnTrueVal = false; 00439 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); 00440 if (!OrOnFalseVal) 00441 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); 00442 00443 if (!OrOnFalseVal && !OrOnTrueVal) 00444 return nullptr; 00445 00446 Value *V = CmpLHS; 00447 Value *Y = OrOnFalseVal ? TrueVal : FalseVal; 00448 00449 unsigned C1Log = C1->logBase2(); 00450 unsigned C2Log = C2->logBase2(); 00451 if (C2Log > C1Log) { 00452 V = Builder->CreateZExtOrTrunc(V, Y->getType()); 00453 V = Builder->CreateShl(V, C2Log - C1Log); 00454 } else if (C1Log > C2Log) { 00455 V = Builder->CreateLShr(V, C1Log - C2Log); 00456 V = Builder->CreateZExtOrTrunc(V, Y->getType()); 00457 } else 00458 V = Builder->CreateZExtOrTrunc(V, Y->getType()); 00459 00460 ICmpInst::Predicate Pred = IC->getPredicate(); 00461 if ((Pred == ICmpInst::ICMP_NE && OrOnFalseVal) || 00462 (Pred == ICmpInst::ICMP_EQ && OrOnTrueVal)) 00463 V = Builder->CreateXor(V, *C2); 00464 00465 return Builder->CreateOr(V, Y); 00466 } 00467 00468 /// visitSelectInstWithICmp - Visit a SelectInst that has an 00469 /// ICmpInst as its first operand. 00470 /// 00471 Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI, 00472 ICmpInst *ICI) { 00473 bool Changed = false; 00474 ICmpInst::Predicate Pred = ICI->getPredicate(); 00475 Value *CmpLHS = ICI->getOperand(0); 00476 Value *CmpRHS = ICI->getOperand(1); 00477 Value *TrueVal = SI.getTrueValue(); 00478 Value *FalseVal = SI.getFalseValue(); 00479 00480 // Check cases where the comparison is with a constant that 00481 // can be adjusted to fit the min/max idiom. We may move or edit ICI 00482 // here, so make sure the select is the only user. 00483 if (ICI->hasOneUse()) 00484 if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) { 00485 // X < MIN ? T : F --> F 00486 if ((Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT) 00487 && CI->isMinValue(Pred == ICmpInst::ICMP_SLT)) 00488 return ReplaceInstUsesWith(SI, FalseVal); 00489 // X > MAX ? T : F --> F 00490 else if ((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT) 00491 && CI->isMaxValue(Pred == ICmpInst::ICMP_SGT)) 00492 return ReplaceInstUsesWith(SI, FalseVal); 00493 switch (Pred) { 00494 default: break; 00495 case ICmpInst::ICMP_ULT: 00496 case ICmpInst::ICMP_SLT: 00497 case ICmpInst::ICMP_UGT: 00498 case ICmpInst::ICMP_SGT: { 00499 // These transformations only work for selects over integers. 00500 IntegerType *SelectTy = dyn_cast<IntegerType>(SI.getType()); 00501 if (!SelectTy) 00502 break; 00503 00504 Constant *AdjustedRHS; 00505 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) 00506 AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() + 1); 00507 else // (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) 00508 AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() - 1); 00509 00510 // X > C ? X : C+1 --> X < C+1 ? C+1 : X 00511 // X < C ? X : C-1 --> X > C-1 ? C-1 : X 00512 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || 00513 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) 00514 ; // Nothing to do here. Values match without any sign/zero extension. 00515 00516 // Types do not match. Instead of calculating this with mixed types 00517 // promote all to the larger type. This enables scalar evolution to 00518 // analyze this expression. 00519 else if (CmpRHS->getType()->getScalarSizeInBits() 00520 < SelectTy->getBitWidth()) { 00521 Constant *sextRHS = ConstantExpr::getSExt(AdjustedRHS, SelectTy); 00522 00523 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X 00524 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X 00525 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X 00526 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X 00527 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && 00528 sextRHS == FalseVal) { 00529 CmpLHS = TrueVal; 00530 AdjustedRHS = sextRHS; 00531 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && 00532 sextRHS == TrueVal) { 00533 CmpLHS = FalseVal; 00534 AdjustedRHS = sextRHS; 00535 } else if (ICI->isUnsigned()) { 00536 Constant *zextRHS = ConstantExpr::getZExt(AdjustedRHS, SelectTy); 00537 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X 00538 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X 00539 // zext + signed compare cannot be changed: 00540 // 0xff <s 0x00, but 0x00ff >s 0x0000 00541 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && 00542 zextRHS == FalseVal) { 00543 CmpLHS = TrueVal; 00544 AdjustedRHS = zextRHS; 00545 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && 00546 zextRHS == TrueVal) { 00547 CmpLHS = FalseVal; 00548 AdjustedRHS = zextRHS; 00549 } else 00550 break; 00551 } else 00552 break; 00553 } else 00554 break; 00555 00556 Pred = ICmpInst::getSwappedPredicate(Pred); 00557 CmpRHS = AdjustedRHS; 00558 std::swap(FalseVal, TrueVal); 00559 ICI->setPredicate(Pred); 00560 ICI->setOperand(0, CmpLHS); 00561 ICI->setOperand(1, CmpRHS); 00562 SI.setOperand(1, TrueVal); 00563 SI.setOperand(2, FalseVal); 00564 00565 // Move ICI instruction right before the select instruction. Otherwise 00566 // the sext/zext value may be defined after the ICI instruction uses it. 00567 ICI->moveBefore(&SI); 00568 00569 Changed = true; 00570 break; 00571 } 00572 } 00573 } 00574 00575 // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1 00576 // and (X <s 0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1 00577 // FIXME: Type and constness constraints could be lifted, but we have to 00578 // watch code size carefully. We should consider xor instead of 00579 // sub/add when we decide to do that. 00580 if (IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) { 00581 if (TrueVal->getType() == Ty) { 00582 if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) { 00583 ConstantInt *C1 = nullptr, *C2 = nullptr; 00584 if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) { 00585 C1 = dyn_cast<ConstantInt>(TrueVal); 00586 C2 = dyn_cast<ConstantInt>(FalseVal); 00587 } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) { 00588 C1 = dyn_cast<ConstantInt>(FalseVal); 00589 C2 = dyn_cast<ConstantInt>(TrueVal); 00590 } 00591 if (C1 && C2) { 00592 // This shift results in either -1 or 0. 00593 Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1); 00594 00595 // Check if we can express the operation with a single or. 00596 if (C2->isAllOnesValue()) 00597 return ReplaceInstUsesWith(SI, Builder->CreateOr(AShr, C1)); 00598 00599 Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue()); 00600 return ReplaceInstUsesWith(SI, Builder->CreateAdd(And, C1)); 00601 } 00602 } 00603 } 00604 } 00605 00606 // If we have an equality comparison then we know the value in one of the 00607 // arms of the select. See if substituting this value into the arm and 00608 // simplifying the result yields the same value as the other arm. 00609 if (Pred == ICmpInst::ICMP_EQ) { 00610 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, DL, TLI, 00611 DT, AT) == TrueVal || 00612 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, DL, TLI, 00613 DT, AT) == TrueVal) 00614 return ReplaceInstUsesWith(SI, FalseVal); 00615 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, DL, TLI, 00616 DT, AT) == FalseVal || 00617 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, DL, TLI, 00618 DT, AT) == FalseVal) 00619 return ReplaceInstUsesWith(SI, FalseVal); 00620 } else if (Pred == ICmpInst::ICMP_NE) { 00621 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, DL, TLI, 00622 DT, AT) == FalseVal || 00623 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, DL, TLI, 00624 DT, AT) == FalseVal) 00625 return ReplaceInstUsesWith(SI, TrueVal); 00626 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, DL, TLI, 00627 DT, AT) == TrueVal || 00628 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, DL, TLI, 00629 DT, AT) == TrueVal) 00630 return ReplaceInstUsesWith(SI, TrueVal); 00631 } 00632 00633 // NOTE: if we wanted to, this is where to detect integer MIN/MAX 00634 00635 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { 00636 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { 00637 // Transform (X == C) ? X : Y -> (X == C) ? C : Y 00638 SI.setOperand(1, CmpRHS); 00639 Changed = true; 00640 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { 00641 // Transform (X != C) ? Y : X -> (X != C) ? Y : C 00642 SI.setOperand(2, CmpRHS); 00643 Changed = true; 00644 } 00645 } 00646 00647 if (Value *V = foldSelectICmpAndOr(SI, TrueVal, FalseVal, Builder)) 00648 return ReplaceInstUsesWith(SI, V); 00649 00650 return Changed ? &SI : nullptr; 00651 } 00652 00653 00654 /// CanSelectOperandBeMappingIntoPredBlock - SI is a select whose condition is a 00655 /// PHI node (but the two may be in different blocks). See if the true/false 00656 /// values (V) are live in all of the predecessor blocks of the PHI. For 00657 /// example, cases like this cannot be mapped: 00658 /// 00659 /// X = phi [ C1, BB1], [C2, BB2] 00660 /// Y = add 00661 /// Z = select X, Y, 0 00662 /// 00663 /// because Y is not live in BB1/BB2. 00664 /// 00665 static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V, 00666 const SelectInst &SI) { 00667 // If the value is a non-instruction value like a constant or argument, it 00668 // can always be mapped. 00669 const Instruction *I = dyn_cast<Instruction>(V); 00670 if (!I) return true; 00671 00672 // If V is a PHI node defined in the same block as the condition PHI, we can 00673 // map the arguments. 00674 const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); 00675 00676 if (const PHINode *VP = dyn_cast<PHINode>(I)) 00677 if (VP->getParent() == CondPHI->getParent()) 00678 return true; 00679 00680 // Otherwise, if the PHI and select are defined in the same block and if V is 00681 // defined in a different block, then we can transform it. 00682 if (SI.getParent() == CondPHI->getParent() && 00683 I->getParent() != CondPHI->getParent()) 00684 return true; 00685 00686 // Otherwise we have a 'hard' case and we can't tell without doing more 00687 // detailed dominator based analysis, punt. 00688 return false; 00689 } 00690 00691 /// FoldSPFofSPF - We have an SPF (e.g. a min or max) of an SPF of the form: 00692 /// SPF2(SPF1(A, B), C) 00693 Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner, 00694 SelectPatternFlavor SPF1, 00695 Value *A, Value *B, 00696 Instruction &Outer, 00697 SelectPatternFlavor SPF2, Value *C) { 00698 if (C == A || C == B) { 00699 // MAX(MAX(A, B), B) -> MAX(A, B) 00700 // MIN(MIN(a, b), a) -> MIN(a, b) 00701 if (SPF1 == SPF2) 00702 return ReplaceInstUsesWith(Outer, Inner); 00703 00704 // MAX(MIN(a, b), a) -> a 00705 // MIN(MAX(a, b), a) -> a 00706 if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || 00707 (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || 00708 (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || 00709 (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) 00710 return ReplaceInstUsesWith(Outer, C); 00711 } 00712 00713 if (SPF1 == SPF2) { 00714 if (ConstantInt *CB = dyn_cast<ConstantInt>(B)) { 00715 if (ConstantInt *CC = dyn_cast<ConstantInt>(C)) { 00716 APInt ACB = CB->getValue(); 00717 APInt ACC = CC->getValue(); 00718 00719 // MIN(MIN(A, 23), 97) -> MIN(A, 23) 00720 // MAX(MAX(A, 97), 23) -> MAX(A, 97) 00721 if ((SPF1 == SPF_UMIN && ACB.ule(ACC)) || 00722 (SPF1 == SPF_SMIN && ACB.sle(ACC)) || 00723 (SPF1 == SPF_UMAX && ACB.uge(ACC)) || 00724 (SPF1 == SPF_SMAX && ACB.sge(ACC))) 00725 return ReplaceInstUsesWith(Outer, Inner); 00726 00727 // MIN(MIN(A, 97), 23) -> MIN(A, 23) 00728 // MAX(MAX(A, 23), 97) -> MAX(A, 97) 00729 if ((SPF1 == SPF_UMIN && ACB.ugt(ACC)) || 00730 (SPF1 == SPF_SMIN && ACB.sgt(ACC)) || 00731 (SPF1 == SPF_UMAX && ACB.ult(ACC)) || 00732 (SPF1 == SPF_SMAX && ACB.slt(ACC))) { 00733 Outer.replaceUsesOfWith(Inner, A); 00734 return &Outer; 00735 } 00736 } 00737 } 00738 } 00739 00740 // ABS(ABS(X)) -> ABS(X) 00741 // NABS(NABS(X)) -> NABS(X) 00742 if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) { 00743 return ReplaceInstUsesWith(Outer, Inner); 00744 } 00745 00746 // ABS(NABS(X)) -> ABS(X) 00747 // NABS(ABS(X)) -> NABS(X) 00748 if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) || 00749 (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) { 00750 SelectInst *SI = cast<SelectInst>(Inner); 00751 Value *NewSI = Builder->CreateSelect( 00752 SI->getCondition(), SI->getFalseValue(), SI->getTrueValue()); 00753 return ReplaceInstUsesWith(Outer, NewSI); 00754 } 00755 return nullptr; 00756 } 00757 00758 /// foldSelectICmpAnd - If one of the constants is zero (we know they can't 00759 /// both be) and we have an icmp instruction with zero, and we have an 'and' 00760 /// with the non-constant value and a power of two we can turn the select 00761 /// into a shift on the result of the 'and'. 00762 static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal, 00763 ConstantInt *FalseVal, 00764 InstCombiner::BuilderTy *Builder) { 00765 const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition()); 00766 if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy()) 00767 return nullptr; 00768 00769 if (!match(IC->getOperand(1), m_Zero())) 00770 return nullptr; 00771 00772 ConstantInt *AndRHS; 00773 Value *LHS = IC->getOperand(0); 00774 if (!match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS)))) 00775 return nullptr; 00776 00777 // If both select arms are non-zero see if we have a select of the form 00778 // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic 00779 // for 'x ? 2^n : 0' and fix the thing up at the end. 00780 ConstantInt *Offset = nullptr; 00781 if (!TrueVal->isZero() && !FalseVal->isZero()) { 00782 if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2()) 00783 Offset = FalseVal; 00784 else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2()) 00785 Offset = TrueVal; 00786 else 00787 return nullptr; 00788 00789 // Adjust TrueVal and FalseVal to the offset. 00790 TrueVal = ConstantInt::get(Builder->getContext(), 00791 TrueVal->getValue() - Offset->getValue()); 00792 FalseVal = ConstantInt::get(Builder->getContext(), 00793 FalseVal->getValue() - Offset->getValue()); 00794 } 00795 00796 // Make sure the mask in the 'and' and one of the select arms is a power of 2. 00797 if (!AndRHS->getValue().isPowerOf2() || 00798 (!TrueVal->getValue().isPowerOf2() && 00799 !FalseVal->getValue().isPowerOf2())) 00800 return nullptr; 00801 00802 // Determine which shift is needed to transform result of the 'and' into the 00803 // desired result. 00804 ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal; 00805 unsigned ValZeros = ValC->getValue().logBase2(); 00806 unsigned AndZeros = AndRHS->getValue().logBase2(); 00807 00808 // If types don't match we can still convert the select by introducing a zext 00809 // or a trunc of the 'and'. The trunc case requires that all of the truncated 00810 // bits are zero, we can figure that out by looking at the 'and' mask. 00811 if (AndZeros >= ValC->getBitWidth()) 00812 return nullptr; 00813 00814 Value *V = Builder->CreateZExtOrTrunc(LHS, SI.getType()); 00815 if (ValZeros > AndZeros) 00816 V = Builder->CreateShl(V, ValZeros - AndZeros); 00817 else if (ValZeros < AndZeros) 00818 V = Builder->CreateLShr(V, AndZeros - ValZeros); 00819 00820 // Okay, now we know that everything is set up, we just don't know whether we 00821 // have a icmp_ne or icmp_eq and whether the true or false val is the zero. 00822 bool ShouldNotVal = !TrueVal->isZero(); 00823 ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE; 00824 if (ShouldNotVal) 00825 V = Builder->CreateXor(V, ValC); 00826 00827 // Apply an offset if needed. 00828 if (Offset) 00829 V = Builder->CreateAdd(V, Offset); 00830 return V; 00831 } 00832 00833 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { 00834 Value *CondVal = SI.getCondition(); 00835 Value *TrueVal = SI.getTrueValue(); 00836 Value *FalseVal = SI.getFalseValue(); 00837 00838 if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, DL, TLI, 00839 DT, AT)) 00840 return ReplaceInstUsesWith(SI, V); 00841 00842 if (SI.getType()->isIntegerTy(1)) { 00843 if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) { 00844 if (C->getZExtValue()) { 00845 // Change: A = select B, true, C --> A = or B, C 00846 return BinaryOperator::CreateOr(CondVal, FalseVal); 00847 } 00848 // Change: A = select B, false, C --> A = and !B, C 00849 Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName()); 00850 return BinaryOperator::CreateAnd(NotCond, FalseVal); 00851 } 00852 if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) { 00853 if (C->getZExtValue() == false) { 00854 // Change: A = select B, C, false --> A = and B, C 00855 return BinaryOperator::CreateAnd(CondVal, TrueVal); 00856 } 00857 // Change: A = select B, C, true --> A = or !B, C 00858 Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName()); 00859 return BinaryOperator::CreateOr(NotCond, TrueVal); 00860 } 00861 00862 // select a, b, a -> a&b 00863 // select a, a, b -> a|b 00864 if (CondVal == TrueVal) 00865 return BinaryOperator::CreateOr(CondVal, FalseVal); 00866 if (CondVal == FalseVal) 00867 return BinaryOperator::CreateAnd(CondVal, TrueVal); 00868 00869 // select a, ~a, b -> (~a)&b 00870 // select a, b, ~a -> (~a)|b 00871 if (match(TrueVal, m_Not(m_Specific(CondVal)))) 00872 return BinaryOperator::CreateAnd(TrueVal, FalseVal); 00873 if (match(FalseVal, m_Not(m_Specific(CondVal)))) 00874 return BinaryOperator::CreateOr(TrueVal, FalseVal); 00875 } 00876 00877 // Selecting between two integer constants? 00878 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal)) 00879 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) { 00880 // select C, 1, 0 -> zext C to int 00881 if (FalseValC->isZero() && TrueValC->getValue() == 1) 00882 return new ZExtInst(CondVal, SI.getType()); 00883 00884 // select C, -1, 0 -> sext C to int 00885 if (FalseValC->isZero() && TrueValC->isAllOnesValue()) 00886 return new SExtInst(CondVal, SI.getType()); 00887 00888 // select C, 0, 1 -> zext !C to int 00889 if (TrueValC->isZero() && FalseValC->getValue() == 1) { 00890 Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName()); 00891 return new ZExtInst(NotCond, SI.getType()); 00892 } 00893 00894 // select C, 0, -1 -> sext !C to int 00895 if (TrueValC->isZero() && FalseValC->isAllOnesValue()) { 00896 Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName()); 00897 return new SExtInst(NotCond, SI.getType()); 00898 } 00899 00900 if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder)) 00901 return ReplaceInstUsesWith(SI, V); 00902 } 00903 00904 // See if we are selecting two values based on a comparison of the two values. 00905 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) { 00906 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) { 00907 // Transform (X == Y) ? X : Y -> Y 00908 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { 00909 // This is not safe in general for floating point: 00910 // consider X== -0, Y== +0. 00911 // It becomes safe if either operand is a nonzero constant. 00912 ConstantFP *CFPt, *CFPf; 00913 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 00914 !CFPt->getValueAPF().isZero()) || 00915 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 00916 !CFPf->getValueAPF().isZero())) 00917 return ReplaceInstUsesWith(SI, FalseVal); 00918 } 00919 // Transform (X une Y) ? X : Y -> X 00920 if (FCI->getPredicate() == FCmpInst::FCMP_UNE) { 00921 // This is not safe in general for floating point: 00922 // consider X== -0, Y== +0. 00923 // It becomes safe if either operand is a nonzero constant. 00924 ConstantFP *CFPt, *CFPf; 00925 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 00926 !CFPt->getValueAPF().isZero()) || 00927 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 00928 !CFPf->getValueAPF().isZero())) 00929 return ReplaceInstUsesWith(SI, TrueVal); 00930 } 00931 // NOTE: if we wanted to, this is where to detect MIN/MAX 00932 00933 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){ 00934 // Transform (X == Y) ? Y : X -> X 00935 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { 00936 // This is not safe in general for floating point: 00937 // consider X== -0, Y== +0. 00938 // It becomes safe if either operand is a nonzero constant. 00939 ConstantFP *CFPt, *CFPf; 00940 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 00941 !CFPt->getValueAPF().isZero()) || 00942 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 00943 !CFPf->getValueAPF().isZero())) 00944 return ReplaceInstUsesWith(SI, FalseVal); 00945 } 00946 // Transform (X une Y) ? Y : X -> Y 00947 if (FCI->getPredicate() == FCmpInst::FCMP_UNE) { 00948 // This is not safe in general for floating point: 00949 // consider X== -0, Y== +0. 00950 // It becomes safe if either operand is a nonzero constant. 00951 ConstantFP *CFPt, *CFPf; 00952 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 00953 !CFPt->getValueAPF().isZero()) || 00954 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 00955 !CFPf->getValueAPF().isZero())) 00956 return ReplaceInstUsesWith(SI, TrueVal); 00957 } 00958 // NOTE: if we wanted to, this is where to detect MIN/MAX 00959 } 00960 // NOTE: if we wanted to, this is where to detect ABS 00961 } 00962 00963 // See if we are selecting two values based on a comparison of the two values. 00964 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) 00965 if (Instruction *Result = visitSelectInstWithICmp(SI, ICI)) 00966 return Result; 00967 00968 if (Instruction *TI = dyn_cast<Instruction>(TrueVal)) 00969 if (Instruction *FI = dyn_cast<Instruction>(FalseVal)) 00970 if (TI->hasOneUse() && FI->hasOneUse()) { 00971 Instruction *AddOp = nullptr, *SubOp = nullptr; 00972 00973 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) 00974 if (TI->getOpcode() == FI->getOpcode()) 00975 if (Instruction *IV = FoldSelectOpOp(SI, TI, FI)) 00976 return IV; 00977 00978 // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is 00979 // even legal for FP. 00980 if ((TI->getOpcode() == Instruction::Sub && 00981 FI->getOpcode() == Instruction::Add) || 00982 (TI->getOpcode() == Instruction::FSub && 00983 FI->getOpcode() == Instruction::FAdd)) { 00984 AddOp = FI; SubOp = TI; 00985 } else if ((FI->getOpcode() == Instruction::Sub && 00986 TI->getOpcode() == Instruction::Add) || 00987 (FI->getOpcode() == Instruction::FSub && 00988 TI->getOpcode() == Instruction::FAdd)) { 00989 AddOp = TI; SubOp = FI; 00990 } 00991 00992 if (AddOp) { 00993 Value *OtherAddOp = nullptr; 00994 if (SubOp->getOperand(0) == AddOp->getOperand(0)) { 00995 OtherAddOp = AddOp->getOperand(1); 00996 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { 00997 OtherAddOp = AddOp->getOperand(0); 00998 } 00999 01000 if (OtherAddOp) { 01001 // So at this point we know we have (Y -> OtherAddOp): 01002 // select C, (add X, Y), (sub X, Z) 01003 Value *NegVal; // Compute -Z 01004 if (SI.getType()->isFPOrFPVectorTy()) { 01005 NegVal = Builder->CreateFNeg(SubOp->getOperand(1)); 01006 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { 01007 FastMathFlags Flags = AddOp->getFastMathFlags(); 01008 Flags &= SubOp->getFastMathFlags(); 01009 NegInst->setFastMathFlags(Flags); 01010 } 01011 } else { 01012 NegVal = Builder->CreateNeg(SubOp->getOperand(1)); 01013 } 01014 01015 Value *NewTrueOp = OtherAddOp; 01016 Value *NewFalseOp = NegVal; 01017 if (AddOp != TI) 01018 std::swap(NewTrueOp, NewFalseOp); 01019 Value *NewSel = 01020 Builder->CreateSelect(CondVal, NewTrueOp, 01021 NewFalseOp, SI.getName() + ".p"); 01022 01023 if (SI.getType()->isFPOrFPVectorTy()) { 01024 Instruction *RI = 01025 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); 01026 01027 FastMathFlags Flags = AddOp->getFastMathFlags(); 01028 Flags &= SubOp->getFastMathFlags(); 01029 RI->setFastMathFlags(Flags); 01030 return RI; 01031 } else 01032 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); 01033 } 01034 } 01035 } 01036 01037 // See if we can fold the select into one of our operands. 01038 if (SI.getType()->isIntegerTy()) { 01039 if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal)) 01040 return FoldI; 01041 01042 // MAX(MAX(a, b), a) -> MAX(a, b) 01043 // MIN(MIN(a, b), a) -> MIN(a, b) 01044 // MAX(MIN(a, b), a) -> a 01045 // MIN(MAX(a, b), a) -> a 01046 Value *LHS, *RHS, *LHS2, *RHS2; 01047 if (SelectPatternFlavor SPF = MatchSelectPattern(&SI, LHS, RHS)) { 01048 if (SelectPatternFlavor SPF2 = MatchSelectPattern(LHS, LHS2, RHS2)) 01049 if (Instruction *R = FoldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2, 01050 SI, SPF, RHS)) 01051 return R; 01052 if (SelectPatternFlavor SPF2 = MatchSelectPattern(RHS, LHS2, RHS2)) 01053 if (Instruction *R = FoldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2, 01054 SI, SPF, LHS)) 01055 return R; 01056 } 01057 01058 // TODO. 01059 // ABS(-X) -> ABS(X) 01060 } 01061 01062 // See if we can fold the select into a phi node if the condition is a select. 01063 if (isa<PHINode>(SI.getCondition())) 01064 // The true/false values have to be live in the PHI predecessor's blocks. 01065 if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && 01066 CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) 01067 if (Instruction *NV = FoldOpIntoPhi(SI)) 01068 return NV; 01069 01070 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { 01071 if (TrueSI->getCondition() == CondVal) { 01072 if (SI.getTrueValue() == TrueSI->getTrueValue()) 01073 return nullptr; 01074 SI.setOperand(1, TrueSI->getTrueValue()); 01075 return &SI; 01076 } 01077 } 01078 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { 01079 if (FalseSI->getCondition() == CondVal) { 01080 if (SI.getFalseValue() == FalseSI->getFalseValue()) 01081 return nullptr; 01082 SI.setOperand(2, FalseSI->getFalseValue()); 01083 return &SI; 01084 } 01085 } 01086 01087 if (BinaryOperator::isNot(CondVal)) { 01088 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal)); 01089 SI.setOperand(1, FalseVal); 01090 SI.setOperand(2, TrueVal); 01091 return &SI; 01092 } 01093 01094 if (VectorType* VecTy = dyn_cast<VectorType>(SI.getType())) { 01095 unsigned VWidth = VecTy->getNumElements(); 01096 APInt UndefElts(VWidth, 0); 01097 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 01098 if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) { 01099 if (V != &SI) 01100 return ReplaceInstUsesWith(SI, V); 01101 return &SI; 01102 } 01103 01104 if (isa<ConstantAggregateZero>(CondVal)) { 01105 return ReplaceInstUsesWith(SI, FalseVal); 01106 } 01107 } 01108 01109 return nullptr; 01110 }