LLVM API Documentation
00001 //===-- LiveInterval.cpp - Live Interval Representation -------------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file implements the LiveRange and LiveInterval classes. Given some 00011 // numbering of each the machine instructions an interval [i, j) is said to be a 00012 // live range for register v if there is no instruction with number j' >= j 00013 // such that v is live at j' and there is no instruction with number i' < i such 00014 // that v is live at i'. In this implementation ranges can have holes, 00015 // i.e. a range might look like [1,20), [50,65), [1000,1001). Each 00016 // individual segment is represented as an instance of LiveRange::Segment, 00017 // and the whole range is represented as an instance of LiveRange. 00018 // 00019 //===----------------------------------------------------------------------===// 00020 00021 #include "llvm/CodeGen/LiveInterval.h" 00022 #include "RegisterCoalescer.h" 00023 #include "llvm/ADT/DenseMap.h" 00024 #include "llvm/ADT/STLExtras.h" 00025 #include "llvm/ADT/SmallSet.h" 00026 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 00027 #include "llvm/CodeGen/MachineRegisterInfo.h" 00028 #include "llvm/Support/Debug.h" 00029 #include "llvm/Support/raw_ostream.h" 00030 #include "llvm/Target/TargetRegisterInfo.h" 00031 #include <algorithm> 00032 using namespace llvm; 00033 00034 LiveRange::iterator LiveRange::find(SlotIndex Pos) { 00035 // This algorithm is basically std::upper_bound. 00036 // Unfortunately, std::upper_bound cannot be used with mixed types until we 00037 // adopt C++0x. Many libraries can do it, but not all. 00038 if (empty() || Pos >= endIndex()) 00039 return end(); 00040 iterator I = begin(); 00041 size_t Len = size(); 00042 do { 00043 size_t Mid = Len >> 1; 00044 if (Pos < I[Mid].end) 00045 Len = Mid; 00046 else 00047 I += Mid + 1, Len -= Mid + 1; 00048 } while (Len); 00049 return I; 00050 } 00051 00052 VNInfo *LiveRange::createDeadDef(SlotIndex Def, 00053 VNInfo::Allocator &VNInfoAllocator) { 00054 assert(!Def.isDead() && "Cannot define a value at the dead slot"); 00055 iterator I = find(Def); 00056 if (I == end()) { 00057 VNInfo *VNI = getNextValue(Def, VNInfoAllocator); 00058 segments.push_back(Segment(Def, Def.getDeadSlot(), VNI)); 00059 return VNI; 00060 } 00061 if (SlotIndex::isSameInstr(Def, I->start)) { 00062 assert(I->valno->def == I->start && "Inconsistent existing value def"); 00063 00064 // It is possible to have both normal and early-clobber defs of the same 00065 // register on an instruction. It doesn't make a lot of sense, but it is 00066 // possible to specify in inline assembly. 00067 // 00068 // Just convert everything to early-clobber. 00069 Def = std::min(Def, I->start); 00070 if (Def != I->start) 00071 I->start = I->valno->def = Def; 00072 return I->valno; 00073 } 00074 assert(SlotIndex::isEarlierInstr(Def, I->start) && "Already live at def"); 00075 VNInfo *VNI = getNextValue(Def, VNInfoAllocator); 00076 segments.insert(I, Segment(Def, Def.getDeadSlot(), VNI)); 00077 return VNI; 00078 } 00079 00080 // overlaps - Return true if the intersection of the two live ranges is 00081 // not empty. 00082 // 00083 // An example for overlaps(): 00084 // 00085 // 0: A = ... 00086 // 4: B = ... 00087 // 8: C = A + B ;; last use of A 00088 // 00089 // The live ranges should look like: 00090 // 00091 // A = [3, 11) 00092 // B = [7, x) 00093 // C = [11, y) 00094 // 00095 // A->overlaps(C) should return false since we want to be able to join 00096 // A and C. 00097 // 00098 bool LiveRange::overlapsFrom(const LiveRange& other, 00099 const_iterator StartPos) const { 00100 assert(!empty() && "empty range"); 00101 const_iterator i = begin(); 00102 const_iterator ie = end(); 00103 const_iterator j = StartPos; 00104 const_iterator je = other.end(); 00105 00106 assert((StartPos->start <= i->start || StartPos == other.begin()) && 00107 StartPos != other.end() && "Bogus start position hint!"); 00108 00109 if (i->start < j->start) { 00110 i = std::upper_bound(i, ie, j->start); 00111 if (i != begin()) --i; 00112 } else if (j->start < i->start) { 00113 ++StartPos; 00114 if (StartPos != other.end() && StartPos->start <= i->start) { 00115 assert(StartPos < other.end() && i < end()); 00116 j = std::upper_bound(j, je, i->start); 00117 if (j != other.begin()) --j; 00118 } 00119 } else { 00120 return true; 00121 } 00122 00123 if (j == je) return false; 00124 00125 while (i != ie) { 00126 if (i->start > j->start) { 00127 std::swap(i, j); 00128 std::swap(ie, je); 00129 } 00130 00131 if (i->end > j->start) 00132 return true; 00133 ++i; 00134 } 00135 00136 return false; 00137 } 00138 00139 bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP, 00140 const SlotIndexes &Indexes) const { 00141 assert(!empty() && "empty range"); 00142 if (Other.empty()) 00143 return false; 00144 00145 // Use binary searches to find initial positions. 00146 const_iterator I = find(Other.beginIndex()); 00147 const_iterator IE = end(); 00148 if (I == IE) 00149 return false; 00150 const_iterator J = Other.find(I->start); 00151 const_iterator JE = Other.end(); 00152 if (J == JE) 00153 return false; 00154 00155 for (;;) { 00156 // J has just been advanced to satisfy: 00157 assert(J->end >= I->start); 00158 // Check for an overlap. 00159 if (J->start < I->end) { 00160 // I and J are overlapping. Find the later start. 00161 SlotIndex Def = std::max(I->start, J->start); 00162 // Allow the overlap if Def is a coalescable copy. 00163 if (Def.isBlock() || 00164 !CP.isCoalescable(Indexes.getInstructionFromIndex(Def))) 00165 return true; 00166 } 00167 // Advance the iterator that ends first to check for more overlaps. 00168 if (J->end > I->end) { 00169 std::swap(I, J); 00170 std::swap(IE, JE); 00171 } 00172 // Advance J until J->end >= I->start. 00173 do 00174 if (++J == JE) 00175 return false; 00176 while (J->end < I->start); 00177 } 00178 } 00179 00180 /// overlaps - Return true if the live range overlaps an interval specified 00181 /// by [Start, End). 00182 bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const { 00183 assert(Start < End && "Invalid range"); 00184 const_iterator I = std::lower_bound(begin(), end(), End); 00185 return I != begin() && (--I)->end > Start; 00186 } 00187 00188 00189 /// ValNo is dead, remove it. If it is the largest value number, just nuke it 00190 /// (and any other deleted values neighboring it), otherwise mark it as ~1U so 00191 /// it can be nuked later. 00192 void LiveRange::markValNoForDeletion(VNInfo *ValNo) { 00193 if (ValNo->id == getNumValNums()-1) { 00194 do { 00195 valnos.pop_back(); 00196 } while (!valnos.empty() && valnos.back()->isUnused()); 00197 } else { 00198 ValNo->markUnused(); 00199 } 00200 } 00201 00202 /// RenumberValues - Renumber all values in order of appearance and delete the 00203 /// remaining unused values. 00204 void LiveRange::RenumberValues() { 00205 SmallPtrSet<VNInfo*, 8> Seen; 00206 valnos.clear(); 00207 for (const_iterator I = begin(), E = end(); I != E; ++I) { 00208 VNInfo *VNI = I->valno; 00209 if (!Seen.insert(VNI)) 00210 continue; 00211 assert(!VNI->isUnused() && "Unused valno used by live segment"); 00212 VNI->id = (unsigned)valnos.size(); 00213 valnos.push_back(VNI); 00214 } 00215 } 00216 00217 /// This method is used when we want to extend the segment specified by I to end 00218 /// at the specified endpoint. To do this, we should merge and eliminate all 00219 /// segments that this will overlap with. The iterator is not invalidated. 00220 void LiveRange::extendSegmentEndTo(iterator I, SlotIndex NewEnd) { 00221 assert(I != end() && "Not a valid segment!"); 00222 VNInfo *ValNo = I->valno; 00223 00224 // Search for the first segment that we can't merge with. 00225 iterator MergeTo = std::next(I); 00226 for (; MergeTo != end() && NewEnd >= MergeTo->end; ++MergeTo) { 00227 assert(MergeTo->valno == ValNo && "Cannot merge with differing values!"); 00228 } 00229 00230 // If NewEnd was in the middle of a segment, make sure to get its endpoint. 00231 I->end = std::max(NewEnd, std::prev(MergeTo)->end); 00232 00233 // If the newly formed segment now touches the segment after it and if they 00234 // have the same value number, merge the two segments into one segment. 00235 if (MergeTo != end() && MergeTo->start <= I->end && 00236 MergeTo->valno == ValNo) { 00237 I->end = MergeTo->end; 00238 ++MergeTo; 00239 } 00240 00241 // Erase any dead segments. 00242 segments.erase(std::next(I), MergeTo); 00243 } 00244 00245 00246 /// This method is used when we want to extend the segment specified by I to 00247 /// start at the specified endpoint. To do this, we should merge and eliminate 00248 /// all segments that this will overlap with. 00249 LiveRange::iterator 00250 LiveRange::extendSegmentStartTo(iterator I, SlotIndex NewStart) { 00251 assert(I != end() && "Not a valid segment!"); 00252 VNInfo *ValNo = I->valno; 00253 00254 // Search for the first segment that we can't merge with. 00255 iterator MergeTo = I; 00256 do { 00257 if (MergeTo == begin()) { 00258 I->start = NewStart; 00259 segments.erase(MergeTo, I); 00260 return I; 00261 } 00262 assert(MergeTo->valno == ValNo && "Cannot merge with differing values!"); 00263 --MergeTo; 00264 } while (NewStart <= MergeTo->start); 00265 00266 // If we start in the middle of another segment, just delete a range and 00267 // extend that segment. 00268 if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) { 00269 MergeTo->end = I->end; 00270 } else { 00271 // Otherwise, extend the segment right after. 00272 ++MergeTo; 00273 MergeTo->start = NewStart; 00274 MergeTo->end = I->end; 00275 } 00276 00277 segments.erase(std::next(MergeTo), std::next(I)); 00278 return MergeTo; 00279 } 00280 00281 LiveRange::iterator LiveRange::addSegmentFrom(Segment S, iterator From) { 00282 SlotIndex Start = S.start, End = S.end; 00283 iterator it = std::upper_bound(From, end(), Start); 00284 00285 // If the inserted segment starts in the middle or right at the end of 00286 // another segment, just extend that segment to contain the segment of S. 00287 if (it != begin()) { 00288 iterator B = std::prev(it); 00289 if (S.valno == B->valno) { 00290 if (B->start <= Start && B->end >= Start) { 00291 extendSegmentEndTo(B, End); 00292 return B; 00293 } 00294 } else { 00295 // Check to make sure that we are not overlapping two live segments with 00296 // different valno's. 00297 assert(B->end <= Start && 00298 "Cannot overlap two segments with differing ValID's" 00299 " (did you def the same reg twice in a MachineInstr?)"); 00300 } 00301 } 00302 00303 // Otherwise, if this segment ends in the middle of, or right next to, another 00304 // segment, merge it into that segment. 00305 if (it != end()) { 00306 if (S.valno == it->valno) { 00307 if (it->start <= End) { 00308 it = extendSegmentStartTo(it, Start); 00309 00310 // If S is a complete superset of a segment, we may need to grow its 00311 // endpoint as well. 00312 if (End > it->end) 00313 extendSegmentEndTo(it, End); 00314 return it; 00315 } 00316 } else { 00317 // Check to make sure that we are not overlapping two live segments with 00318 // different valno's. 00319 assert(it->start >= End && 00320 "Cannot overlap two segments with differing ValID's"); 00321 } 00322 } 00323 00324 // Otherwise, this is just a new segment that doesn't interact with anything. 00325 // Insert it. 00326 return segments.insert(it, S); 00327 } 00328 00329 /// extendInBlock - If this range is live before Kill in the basic 00330 /// block that starts at StartIdx, extend it to be live up to Kill and return 00331 /// the value. If there is no live range before Kill, return NULL. 00332 VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) { 00333 if (empty()) 00334 return nullptr; 00335 iterator I = std::upper_bound(begin(), end(), Kill.getPrevSlot()); 00336 if (I == begin()) 00337 return nullptr; 00338 --I; 00339 if (I->end <= StartIdx) 00340 return nullptr; 00341 if (I->end < Kill) 00342 extendSegmentEndTo(I, Kill); 00343 return I->valno; 00344 } 00345 00346 /// Remove the specified segment from this range. Note that the segment must 00347 /// be in a single Segment in its entirety. 00348 void LiveRange::removeSegment(SlotIndex Start, SlotIndex End, 00349 bool RemoveDeadValNo) { 00350 // Find the Segment containing this span. 00351 iterator I = find(Start); 00352 assert(I != end() && "Segment is not in range!"); 00353 assert(I->containsInterval(Start, End) 00354 && "Segment is not entirely in range!"); 00355 00356 // If the span we are removing is at the start of the Segment, adjust it. 00357 VNInfo *ValNo = I->valno; 00358 if (I->start == Start) { 00359 if (I->end == End) { 00360 if (RemoveDeadValNo) { 00361 // Check if val# is dead. 00362 bool isDead = true; 00363 for (const_iterator II = begin(), EE = end(); II != EE; ++II) 00364 if (II != I && II->valno == ValNo) { 00365 isDead = false; 00366 break; 00367 } 00368 if (isDead) { 00369 // Now that ValNo is dead, remove it. 00370 markValNoForDeletion(ValNo); 00371 } 00372 } 00373 00374 segments.erase(I); // Removed the whole Segment. 00375 } else 00376 I->start = End; 00377 return; 00378 } 00379 00380 // Otherwise if the span we are removing is at the end of the Segment, 00381 // adjust the other way. 00382 if (I->end == End) { 00383 I->end = Start; 00384 return; 00385 } 00386 00387 // Otherwise, we are splitting the Segment into two pieces. 00388 SlotIndex OldEnd = I->end; 00389 I->end = Start; // Trim the old segment. 00390 00391 // Insert the new one. 00392 segments.insert(std::next(I), Segment(End, OldEnd, ValNo)); 00393 } 00394 00395 /// removeValNo - Remove all the segments defined by the specified value#. 00396 /// Also remove the value# from value# list. 00397 void LiveRange::removeValNo(VNInfo *ValNo) { 00398 if (empty()) return; 00399 iterator I = end(); 00400 iterator E = begin(); 00401 do { 00402 --I; 00403 if (I->valno == ValNo) 00404 segments.erase(I); 00405 } while (I != E); 00406 // Now that ValNo is dead, remove it. 00407 markValNoForDeletion(ValNo); 00408 } 00409 00410 void LiveRange::join(LiveRange &Other, 00411 const int *LHSValNoAssignments, 00412 const int *RHSValNoAssignments, 00413 SmallVectorImpl<VNInfo *> &NewVNInfo) { 00414 verify(); 00415 00416 // Determine if any of our values are mapped. This is uncommon, so we want 00417 // to avoid the range scan if not. 00418 bool MustMapCurValNos = false; 00419 unsigned NumVals = getNumValNums(); 00420 unsigned NumNewVals = NewVNInfo.size(); 00421 for (unsigned i = 0; i != NumVals; ++i) { 00422 unsigned LHSValID = LHSValNoAssignments[i]; 00423 if (i != LHSValID || 00424 (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) { 00425 MustMapCurValNos = true; 00426 break; 00427 } 00428 } 00429 00430 // If we have to apply a mapping to our base range assignment, rewrite it now. 00431 if (MustMapCurValNos && !empty()) { 00432 // Map the first live range. 00433 00434 iterator OutIt = begin(); 00435 OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]]; 00436 for (iterator I = std::next(OutIt), E = end(); I != E; ++I) { 00437 VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]]; 00438 assert(nextValNo && "Huh?"); 00439 00440 // If this live range has the same value # as its immediate predecessor, 00441 // and if they are neighbors, remove one Segment. This happens when we 00442 // have [0,4:0)[4,7:1) and map 0/1 onto the same value #. 00443 if (OutIt->valno == nextValNo && OutIt->end == I->start) { 00444 OutIt->end = I->end; 00445 } else { 00446 // Didn't merge. Move OutIt to the next segment, 00447 ++OutIt; 00448 OutIt->valno = nextValNo; 00449 if (OutIt != I) { 00450 OutIt->start = I->start; 00451 OutIt->end = I->end; 00452 } 00453 } 00454 } 00455 // If we merge some segments, chop off the end. 00456 ++OutIt; 00457 segments.erase(OutIt, end()); 00458 } 00459 00460 // Rewrite Other values before changing the VNInfo ids. 00461 // This can leave Other in an invalid state because we're not coalescing 00462 // touching segments that now have identical values. That's OK since Other is 00463 // not supposed to be valid after calling join(); 00464 for (iterator I = Other.begin(), E = Other.end(); I != E; ++I) 00465 I->valno = NewVNInfo[RHSValNoAssignments[I->valno->id]]; 00466 00467 // Update val# info. Renumber them and make sure they all belong to this 00468 // LiveRange now. Also remove dead val#'s. 00469 unsigned NumValNos = 0; 00470 for (unsigned i = 0; i < NumNewVals; ++i) { 00471 VNInfo *VNI = NewVNInfo[i]; 00472 if (VNI) { 00473 if (NumValNos >= NumVals) 00474 valnos.push_back(VNI); 00475 else 00476 valnos[NumValNos] = VNI; 00477 VNI->id = NumValNos++; // Renumber val#. 00478 } 00479 } 00480 if (NumNewVals < NumVals) 00481 valnos.resize(NumNewVals); // shrinkify 00482 00483 // Okay, now insert the RHS live segments into the LHS. 00484 LiveRangeUpdater Updater(this); 00485 for (iterator I = Other.begin(), E = Other.end(); I != E; ++I) 00486 Updater.add(*I); 00487 } 00488 00489 /// Merge all of the segments in RHS into this live range as the specified 00490 /// value number. The segments in RHS are allowed to overlap with segments in 00491 /// the current range, but only if the overlapping segments have the 00492 /// specified value number. 00493 void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS, 00494 VNInfo *LHSValNo) { 00495 LiveRangeUpdater Updater(this); 00496 for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) 00497 Updater.add(I->start, I->end, LHSValNo); 00498 } 00499 00500 /// MergeValueInAsValue - Merge all of the live segments of a specific val# 00501 /// in RHS into this live range as the specified value number. 00502 /// The segments in RHS are allowed to overlap with segments in the 00503 /// current range, it will replace the value numbers of the overlaped 00504 /// segments with the specified value number. 00505 void LiveRange::MergeValueInAsValue(const LiveRange &RHS, 00506 const VNInfo *RHSValNo, 00507 VNInfo *LHSValNo) { 00508 LiveRangeUpdater Updater(this); 00509 for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) 00510 if (I->valno == RHSValNo) 00511 Updater.add(I->start, I->end, LHSValNo); 00512 } 00513 00514 /// MergeValueNumberInto - This method is called when two value nubmers 00515 /// are found to be equivalent. This eliminates V1, replacing all 00516 /// segments with the V1 value number with the V2 value number. This can 00517 /// cause merging of V1/V2 values numbers and compaction of the value space. 00518 VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) { 00519 assert(V1 != V2 && "Identical value#'s are always equivalent!"); 00520 00521 // This code actually merges the (numerically) larger value number into the 00522 // smaller value number, which is likely to allow us to compactify the value 00523 // space. The only thing we have to be careful of is to preserve the 00524 // instruction that defines the result value. 00525 00526 // Make sure V2 is smaller than V1. 00527 if (V1->id < V2->id) { 00528 V1->copyFrom(*V2); 00529 std::swap(V1, V2); 00530 } 00531 00532 // Merge V1 segments into V2. 00533 for (iterator I = begin(); I != end(); ) { 00534 iterator S = I++; 00535 if (S->valno != V1) continue; // Not a V1 Segment. 00536 00537 // Okay, we found a V1 live range. If it had a previous, touching, V2 live 00538 // range, extend it. 00539 if (S != begin()) { 00540 iterator Prev = S-1; 00541 if (Prev->valno == V2 && Prev->end == S->start) { 00542 Prev->end = S->end; 00543 00544 // Erase this live-range. 00545 segments.erase(S); 00546 I = Prev+1; 00547 S = Prev; 00548 } 00549 } 00550 00551 // Okay, now we have a V1 or V2 live range that is maximally merged forward. 00552 // Ensure that it is a V2 live-range. 00553 S->valno = V2; 00554 00555 // If we can merge it into later V2 segments, do so now. We ignore any 00556 // following V1 segments, as they will be merged in subsequent iterations 00557 // of the loop. 00558 if (I != end()) { 00559 if (I->start == S->end && I->valno == V2) { 00560 S->end = I->end; 00561 segments.erase(I); 00562 I = S+1; 00563 } 00564 } 00565 } 00566 00567 // Now that V1 is dead, remove it. 00568 markValNoForDeletion(V1); 00569 00570 return V2; 00571 } 00572 00573 unsigned LiveInterval::getSize() const { 00574 unsigned Sum = 0; 00575 for (const_iterator I = begin(), E = end(); I != E; ++I) 00576 Sum += I->start.distance(I->end); 00577 return Sum; 00578 } 00579 00580 raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange::Segment &S) { 00581 return os << '[' << S.start << ',' << S.end << ':' << S.valno->id << ")"; 00582 } 00583 00584 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 00585 void LiveRange::Segment::dump() const { 00586 dbgs() << *this << "\n"; 00587 } 00588 #endif 00589 00590 void LiveRange::print(raw_ostream &OS) const { 00591 if (empty()) 00592 OS << "EMPTY"; 00593 else { 00594 for (const_iterator I = begin(), E = end(); I != E; ++I) { 00595 OS << *I; 00596 assert(I->valno == getValNumInfo(I->valno->id) && "Bad VNInfo"); 00597 } 00598 } 00599 00600 // Print value number info. 00601 if (getNumValNums()) { 00602 OS << " "; 00603 unsigned vnum = 0; 00604 for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e; 00605 ++i, ++vnum) { 00606 const VNInfo *vni = *i; 00607 if (vnum) OS << " "; 00608 OS << vnum << "@"; 00609 if (vni->isUnused()) { 00610 OS << "x"; 00611 } else { 00612 OS << vni->def; 00613 if (vni->isPHIDef()) 00614 OS << "-phi"; 00615 } 00616 } 00617 } 00618 } 00619 00620 void LiveInterval::print(raw_ostream &OS) const { 00621 OS << PrintReg(reg) << ' '; 00622 super::print(OS); 00623 } 00624 00625 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 00626 void LiveRange::dump() const { 00627 dbgs() << *this << "\n"; 00628 } 00629 00630 void LiveInterval::dump() const { 00631 dbgs() << *this << "\n"; 00632 } 00633 #endif 00634 00635 #ifndef NDEBUG 00636 void LiveRange::verify() const { 00637 for (const_iterator I = begin(), E = end(); I != E; ++I) { 00638 assert(I->start.isValid()); 00639 assert(I->end.isValid()); 00640 assert(I->start < I->end); 00641 assert(I->valno != nullptr); 00642 assert(I->valno->id < valnos.size()); 00643 assert(I->valno == valnos[I->valno->id]); 00644 if (std::next(I) != E) { 00645 assert(I->end <= std::next(I)->start); 00646 if (I->end == std::next(I)->start) 00647 assert(I->valno != std::next(I)->valno); 00648 } 00649 } 00650 } 00651 #endif 00652 00653 00654 //===----------------------------------------------------------------------===// 00655 // LiveRangeUpdater class 00656 //===----------------------------------------------------------------------===// 00657 // 00658 // The LiveRangeUpdater class always maintains these invariants: 00659 // 00660 // - When LastStart is invalid, Spills is empty and the iterators are invalid. 00661 // This is the initial state, and the state created by flush(). 00662 // In this state, isDirty() returns false. 00663 // 00664 // Otherwise, segments are kept in three separate areas: 00665 // 00666 // 1. [begin; WriteI) at the front of LR. 00667 // 2. [ReadI; end) at the back of LR. 00668 // 3. Spills. 00669 // 00670 // - LR.begin() <= WriteI <= ReadI <= LR.end(). 00671 // - Segments in all three areas are fully ordered and coalesced. 00672 // - Segments in area 1 precede and can't coalesce with segments in area 2. 00673 // - Segments in Spills precede and can't coalesce with segments in area 2. 00674 // - No coalescing is possible between segments in Spills and segments in area 00675 // 1, and there are no overlapping segments. 00676 // 00677 // The segments in Spills are not ordered with respect to the segments in area 00678 // 1. They need to be merged. 00679 // 00680 // When they exist, Spills.back().start <= LastStart, 00681 // and WriteI[-1].start <= LastStart. 00682 00683 void LiveRangeUpdater::print(raw_ostream &OS) const { 00684 if (!isDirty()) { 00685 if (LR) 00686 OS << "Clean updater: " << *LR << '\n'; 00687 else 00688 OS << "Null updater.\n"; 00689 return; 00690 } 00691 assert(LR && "Can't have null LR in dirty updater."); 00692 OS << " updater with gap = " << (ReadI - WriteI) 00693 << ", last start = " << LastStart 00694 << ":\n Area 1:"; 00695 for (LiveRange::const_iterator I = LR->begin(); I != WriteI; ++I) 00696 OS << ' ' << *I; 00697 OS << "\n Spills:"; 00698 for (unsigned I = 0, E = Spills.size(); I != E; ++I) 00699 OS << ' ' << Spills[I]; 00700 OS << "\n Area 2:"; 00701 for (LiveRange::const_iterator I = ReadI, E = LR->end(); I != E; ++I) 00702 OS << ' ' << *I; 00703 OS << '\n'; 00704 } 00705 00706 void LiveRangeUpdater::dump() const 00707 { 00708 print(errs()); 00709 } 00710 00711 // Determine if A and B should be coalesced. 00712 static inline bool coalescable(const LiveRange::Segment &A, 00713 const LiveRange::Segment &B) { 00714 assert(A.start <= B.start && "Unordered live segments."); 00715 if (A.end == B.start) 00716 return A.valno == B.valno; 00717 if (A.end < B.start) 00718 return false; 00719 assert(A.valno == B.valno && "Cannot overlap different values"); 00720 return true; 00721 } 00722 00723 void LiveRangeUpdater::add(LiveRange::Segment Seg) { 00724 assert(LR && "Cannot add to a null destination"); 00725 00726 // Flush the state if Start moves backwards. 00727 if (!LastStart.isValid() || LastStart > Seg.start) { 00728 if (isDirty()) 00729 flush(); 00730 // This brings us to an uninitialized state. Reinitialize. 00731 assert(Spills.empty() && "Leftover spilled segments"); 00732 WriteI = ReadI = LR->begin(); 00733 } 00734 00735 // Remember start for next time. 00736 LastStart = Seg.start; 00737 00738 // Advance ReadI until it ends after Seg.start. 00739 LiveRange::iterator E = LR->end(); 00740 if (ReadI != E && ReadI->end <= Seg.start) { 00741 // First try to close the gap between WriteI and ReadI with spills. 00742 if (ReadI != WriteI) 00743 mergeSpills(); 00744 // Then advance ReadI. 00745 if (ReadI == WriteI) 00746 ReadI = WriteI = LR->find(Seg.start); 00747 else 00748 while (ReadI != E && ReadI->end <= Seg.start) 00749 *WriteI++ = *ReadI++; 00750 } 00751 00752 assert(ReadI == E || ReadI->end > Seg.start); 00753 00754 // Check if the ReadI segment begins early. 00755 if (ReadI != E && ReadI->start <= Seg.start) { 00756 assert(ReadI->valno == Seg.valno && "Cannot overlap different values"); 00757 // Bail if Seg is completely contained in ReadI. 00758 if (ReadI->end >= Seg.end) 00759 return; 00760 // Coalesce into Seg. 00761 Seg.start = ReadI->start; 00762 ++ReadI; 00763 } 00764 00765 // Coalesce as much as possible from ReadI into Seg. 00766 while (ReadI != E && coalescable(Seg, *ReadI)) { 00767 Seg.end = std::max(Seg.end, ReadI->end); 00768 ++ReadI; 00769 } 00770 00771 // Try coalescing Spills.back() into Seg. 00772 if (!Spills.empty() && coalescable(Spills.back(), Seg)) { 00773 Seg.start = Spills.back().start; 00774 Seg.end = std::max(Spills.back().end, Seg.end); 00775 Spills.pop_back(); 00776 } 00777 00778 // Try coalescing Seg into WriteI[-1]. 00779 if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) { 00780 WriteI[-1].end = std::max(WriteI[-1].end, Seg.end); 00781 return; 00782 } 00783 00784 // Seg doesn't coalesce with anything, and needs to be inserted somewhere. 00785 if (WriteI != ReadI) { 00786 *WriteI++ = Seg; 00787 return; 00788 } 00789 00790 // Finally, append to LR or Spills. 00791 if (WriteI == E) { 00792 LR->segments.push_back(Seg); 00793 WriteI = ReadI = LR->end(); 00794 } else 00795 Spills.push_back(Seg); 00796 } 00797 00798 // Merge as many spilled segments as possible into the gap between WriteI 00799 // and ReadI. Advance WriteI to reflect the inserted instructions. 00800 void LiveRangeUpdater::mergeSpills() { 00801 // Perform a backwards merge of Spills and [SpillI;WriteI). 00802 size_t GapSize = ReadI - WriteI; 00803 size_t NumMoved = std::min(Spills.size(), GapSize); 00804 LiveRange::iterator Src = WriteI; 00805 LiveRange::iterator Dst = Src + NumMoved; 00806 LiveRange::iterator SpillSrc = Spills.end(); 00807 LiveRange::iterator B = LR->begin(); 00808 00809 // This is the new WriteI position after merging spills. 00810 WriteI = Dst; 00811 00812 // Now merge Src and Spills backwards. 00813 while (Src != Dst) { 00814 if (Src != B && Src[-1].start > SpillSrc[-1].start) 00815 *--Dst = *--Src; 00816 else 00817 *--Dst = *--SpillSrc; 00818 } 00819 assert(NumMoved == size_t(Spills.end() - SpillSrc)); 00820 Spills.erase(SpillSrc, Spills.end()); 00821 } 00822 00823 void LiveRangeUpdater::flush() { 00824 if (!isDirty()) 00825 return; 00826 // Clear the dirty state. 00827 LastStart = SlotIndex(); 00828 00829 assert(LR && "Cannot add to a null destination"); 00830 00831 // Nothing to merge? 00832 if (Spills.empty()) { 00833 LR->segments.erase(WriteI, ReadI); 00834 LR->verify(); 00835 return; 00836 } 00837 00838 // Resize the WriteI - ReadI gap to match Spills. 00839 size_t GapSize = ReadI - WriteI; 00840 if (GapSize < Spills.size()) { 00841 // The gap is too small. Make some room. 00842 size_t WritePos = WriteI - LR->begin(); 00843 LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment()); 00844 // This also invalidated ReadI, but it is recomputed below. 00845 WriteI = LR->begin() + WritePos; 00846 } else { 00847 // Shrink the gap if necessary. 00848 LR->segments.erase(WriteI + Spills.size(), ReadI); 00849 } 00850 ReadI = WriteI + Spills.size(); 00851 mergeSpills(); 00852 LR->verify(); 00853 } 00854 00855 unsigned ConnectedVNInfoEqClasses::Classify(const LiveInterval *LI) { 00856 // Create initial equivalence classes. 00857 EqClass.clear(); 00858 EqClass.grow(LI->getNumValNums()); 00859 00860 const VNInfo *used = nullptr, *unused = nullptr; 00861 00862 // Determine connections. 00863 for (LiveInterval::const_vni_iterator I = LI->vni_begin(), E = LI->vni_end(); 00864 I != E; ++I) { 00865 const VNInfo *VNI = *I; 00866 // Group all unused values into one class. 00867 if (VNI->isUnused()) { 00868 if (unused) 00869 EqClass.join(unused->id, VNI->id); 00870 unused = VNI; 00871 continue; 00872 } 00873 used = VNI; 00874 if (VNI->isPHIDef()) { 00875 const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 00876 assert(MBB && "Phi-def has no defining MBB"); 00877 // Connect to values live out of predecessors. 00878 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 00879 PE = MBB->pred_end(); PI != PE; ++PI) 00880 if (const VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI))) 00881 EqClass.join(VNI->id, PVNI->id); 00882 } else { 00883 // Normal value defined by an instruction. Check for two-addr redef. 00884 // FIXME: This could be coincidental. Should we really check for a tied 00885 // operand constraint? 00886 // Note that VNI->def may be a use slot for an early clobber def. 00887 if (const VNInfo *UVNI = LI->getVNInfoBefore(VNI->def)) 00888 EqClass.join(VNI->id, UVNI->id); 00889 } 00890 } 00891 00892 // Lump all the unused values in with the last used value. 00893 if (used && unused) 00894 EqClass.join(used->id, unused->id); 00895 00896 EqClass.compress(); 00897 return EqClass.getNumClasses(); 00898 } 00899 00900 void ConnectedVNInfoEqClasses::Distribute(LiveInterval *LIV[], 00901 MachineRegisterInfo &MRI) { 00902 assert(LIV[0] && "LIV[0] must be set"); 00903 LiveInterval &LI = *LIV[0]; 00904 00905 // Rewrite instructions. 00906 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg), 00907 RE = MRI.reg_end(); RI != RE;) { 00908 MachineOperand &MO = *RI; 00909 MachineInstr *MI = RI->getParent(); 00910 ++RI; 00911 // DBG_VALUE instructions don't have slot indexes, so get the index of the 00912 // instruction before them. 00913 // Normally, DBG_VALUE instructions are removed before this function is 00914 // called, but it is not a requirement. 00915 SlotIndex Idx; 00916 if (MI->isDebugValue()) 00917 Idx = LIS.getSlotIndexes()->getIndexBefore(MI); 00918 else 00919 Idx = LIS.getInstructionIndex(MI); 00920 LiveQueryResult LRQ = LI.Query(Idx); 00921 const VNInfo *VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined(); 00922 // In the case of an <undef> use that isn't tied to any def, VNI will be 00923 // NULL. If the use is tied to a def, VNI will be the defined value. 00924 if (!VNI) 00925 continue; 00926 MO.setReg(LIV[getEqClass(VNI)]->reg); 00927 } 00928 00929 // Move runs to new intervals. 00930 LiveInterval::iterator J = LI.begin(), E = LI.end(); 00931 while (J != E && EqClass[J->valno->id] == 0) 00932 ++J; 00933 for (LiveInterval::iterator I = J; I != E; ++I) { 00934 if (unsigned eq = EqClass[I->valno->id]) { 00935 assert((LIV[eq]->empty() || LIV[eq]->expiredAt(I->start)) && 00936 "New intervals should be empty"); 00937 LIV[eq]->segments.push_back(*I); 00938 } else 00939 *J++ = *I; 00940 } 00941 LI.segments.erase(J, E); 00942 00943 // Transfer VNInfos to their new owners and renumber them. 00944 unsigned j = 0, e = LI.getNumValNums(); 00945 while (j != e && EqClass[j] == 0) 00946 ++j; 00947 for (unsigned i = j; i != e; ++i) { 00948 VNInfo *VNI = LI.getValNumInfo(i); 00949 if (unsigned eq = EqClass[i]) { 00950 VNI->id = LIV[eq]->getNumValNums(); 00951 LIV[eq]->valnos.push_back(VNI); 00952 } else { 00953 VNI->id = j; 00954 LI.valnos[j++] = VNI; 00955 } 00956 } 00957 LI.valnos.resize(j); 00958 }