LLVM API Documentation
00001 //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file contains some functions that are useful for math stuff. 00011 // 00012 //===----------------------------------------------------------------------===// 00013 00014 #ifndef LLVM_SUPPORT_MATHEXTRAS_H 00015 #define LLVM_SUPPORT_MATHEXTRAS_H 00016 00017 #include "llvm/Support/Compiler.h" 00018 #include "llvm/Support/SwapByteOrder.h" 00019 #include <cassert> 00020 #include <cstring> 00021 #include <type_traits> 00022 00023 #ifdef _MSC_VER 00024 #include <intrin.h> 00025 #include <limits> 00026 #endif 00027 00028 namespace llvm { 00029 /// \brief The behavior an operation has on an input of 0. 00030 enum ZeroBehavior { 00031 /// \brief The returned value is undefined. 00032 ZB_Undefined, 00033 /// \brief The returned value is numeric_limits<T>::max() 00034 ZB_Max, 00035 /// \brief The returned value is numeric_limits<T>::digits 00036 ZB_Width 00037 }; 00038 00039 /// \brief Count number of 0's from the least significant bit to the most 00040 /// stopping at the first 1. 00041 /// 00042 /// Only unsigned integral types are allowed. 00043 /// 00044 /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are 00045 /// valid arguments. 00046 template <typename T> 00047 typename std::enable_if<std::numeric_limits<T>::is_integer && 00048 !std::numeric_limits<T>::is_signed, std::size_t>::type 00049 countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) { 00050 (void)ZB; 00051 00052 if (!Val) 00053 return std::numeric_limits<T>::digits; 00054 if (Val & 0x1) 00055 return 0; 00056 00057 // Bisection method. 00058 std::size_t ZeroBits = 0; 00059 T Shift = std::numeric_limits<T>::digits >> 1; 00060 T Mask = std::numeric_limits<T>::max() >> Shift; 00061 while (Shift) { 00062 if ((Val & Mask) == 0) { 00063 Val >>= Shift; 00064 ZeroBits |= Shift; 00065 } 00066 Shift >>= 1; 00067 Mask >>= Shift; 00068 } 00069 return ZeroBits; 00070 } 00071 00072 // Disable signed. 00073 template <typename T> 00074 typename std::enable_if<std::numeric_limits<T>::is_integer && 00075 std::numeric_limits<T>::is_signed, std::size_t>::type 00076 countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) LLVM_DELETED_FUNCTION; 00077 00078 #if __GNUC__ >= 4 || _MSC_VER 00079 template <> 00080 inline std::size_t countTrailingZeros<uint32_t>(uint32_t Val, ZeroBehavior ZB) { 00081 if (ZB != ZB_Undefined && Val == 0) 00082 return 32; 00083 00084 #if __has_builtin(__builtin_ctz) || __GNUC_PREREQ(4, 0) 00085 return __builtin_ctz(Val); 00086 #elif _MSC_VER 00087 unsigned long Index; 00088 _BitScanForward(&Index, Val); 00089 return Index; 00090 #endif 00091 } 00092 00093 #if !defined(_MSC_VER) || defined(_M_X64) 00094 template <> 00095 inline std::size_t countTrailingZeros<uint64_t>(uint64_t Val, ZeroBehavior ZB) { 00096 if (ZB != ZB_Undefined && Val == 0) 00097 return 64; 00098 00099 #if __has_builtin(__builtin_ctzll) || __GNUC_PREREQ(4, 0) 00100 return __builtin_ctzll(Val); 00101 #elif _MSC_VER 00102 unsigned long Index; 00103 _BitScanForward64(&Index, Val); 00104 return Index; 00105 #endif 00106 } 00107 #endif 00108 #endif 00109 00110 /// \brief Count number of 0's from the most significant bit to the least 00111 /// stopping at the first 1. 00112 /// 00113 /// Only unsigned integral types are allowed. 00114 /// 00115 /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are 00116 /// valid arguments. 00117 template <typename T> 00118 typename std::enable_if<std::numeric_limits<T>::is_integer && 00119 !std::numeric_limits<T>::is_signed, std::size_t>::type 00120 countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) { 00121 (void)ZB; 00122 00123 if (!Val) 00124 return std::numeric_limits<T>::digits; 00125 00126 // Bisection method. 00127 std::size_t ZeroBits = 0; 00128 for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) { 00129 T Tmp = Val >> Shift; 00130 if (Tmp) 00131 Val = Tmp; 00132 else 00133 ZeroBits |= Shift; 00134 } 00135 return ZeroBits; 00136 } 00137 00138 // Disable signed. 00139 template <typename T> 00140 typename std::enable_if<std::numeric_limits<T>::is_integer && 00141 std::numeric_limits<T>::is_signed, std::size_t>::type 00142 countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) LLVM_DELETED_FUNCTION; 00143 00144 #if __GNUC__ >= 4 || _MSC_VER 00145 template <> 00146 inline std::size_t countLeadingZeros<uint32_t>(uint32_t Val, ZeroBehavior ZB) { 00147 if (ZB != ZB_Undefined && Val == 0) 00148 return 32; 00149 00150 #if __has_builtin(__builtin_clz) || __GNUC_PREREQ(4, 0) 00151 return __builtin_clz(Val); 00152 #elif _MSC_VER 00153 unsigned long Index; 00154 _BitScanReverse(&Index, Val); 00155 return Index ^ 31; 00156 #endif 00157 } 00158 00159 #if !defined(_MSC_VER) || defined(_M_X64) 00160 template <> 00161 inline std::size_t countLeadingZeros<uint64_t>(uint64_t Val, ZeroBehavior ZB) { 00162 if (ZB != ZB_Undefined && Val == 0) 00163 return 64; 00164 00165 #if __has_builtin(__builtin_clzll) || __GNUC_PREREQ(4, 0) 00166 return __builtin_clzll(Val); 00167 #elif _MSC_VER 00168 unsigned long Index; 00169 _BitScanReverse64(&Index, Val); 00170 return Index ^ 63; 00171 #endif 00172 } 00173 #endif 00174 #endif 00175 00176 /// \brief Get the index of the first set bit starting from the least 00177 /// significant bit. 00178 /// 00179 /// Only unsigned integral types are allowed. 00180 /// 00181 /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are 00182 /// valid arguments. 00183 template <typename T> 00184 typename std::enable_if<std::numeric_limits<T>::is_integer && 00185 !std::numeric_limits<T>::is_signed, T>::type 00186 findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) { 00187 if (ZB == ZB_Max && Val == 0) 00188 return std::numeric_limits<T>::max(); 00189 00190 return countTrailingZeros(Val, ZB_Undefined); 00191 } 00192 00193 // Disable signed. 00194 template <typename T> 00195 typename std::enable_if<std::numeric_limits<T>::is_integer && 00196 std::numeric_limits<T>::is_signed, T>::type 00197 findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) LLVM_DELETED_FUNCTION; 00198 00199 /// \brief Get the index of the last set bit starting from the least 00200 /// significant bit. 00201 /// 00202 /// Only unsigned integral types are allowed. 00203 /// 00204 /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are 00205 /// valid arguments. 00206 template <typename T> 00207 typename std::enable_if<std::numeric_limits<T>::is_integer && 00208 !std::numeric_limits<T>::is_signed, T>::type 00209 findLastSet(T Val, ZeroBehavior ZB = ZB_Max) { 00210 if (ZB == ZB_Max && Val == 0) 00211 return std::numeric_limits<T>::max(); 00212 00213 // Use ^ instead of - because both gcc and llvm can remove the associated ^ 00214 // in the __builtin_clz intrinsic on x86. 00215 return countLeadingZeros(Val, ZB_Undefined) ^ 00216 (std::numeric_limits<T>::digits - 1); 00217 } 00218 00219 // Disable signed. 00220 template <typename T> 00221 typename std::enable_if<std::numeric_limits<T>::is_integer && 00222 std::numeric_limits<T>::is_signed, T>::type 00223 findLastSet(T Val, ZeroBehavior ZB = ZB_Max) LLVM_DELETED_FUNCTION; 00224 00225 /// \brief Macro compressed bit reversal table for 256 bits. 00226 /// 00227 /// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable 00228 static const unsigned char BitReverseTable256[256] = { 00229 #define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64 00230 #define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16) 00231 #define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4) 00232 R6(0), R6(2), R6(1), R6(3) 00233 #undef R2 00234 #undef R4 00235 #undef R6 00236 }; 00237 00238 /// \brief Reverse the bits in \p Val. 00239 template <typename T> 00240 T reverseBits(T Val) { 00241 unsigned char in[sizeof(Val)]; 00242 unsigned char out[sizeof(Val)]; 00243 std::memcpy(in, &Val, sizeof(Val)); 00244 for (unsigned i = 0; i < sizeof(Val); ++i) 00245 out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]]; 00246 std::memcpy(&Val, out, sizeof(Val)); 00247 return Val; 00248 } 00249 00250 // NOTE: The following support functions use the _32/_64 extensions instead of 00251 // type overloading so that signed and unsigned integers can be used without 00252 // ambiguity. 00253 00254 /// Hi_32 - This function returns the high 32 bits of a 64 bit value. 00255 inline uint32_t Hi_32(uint64_t Value) { 00256 return static_cast<uint32_t>(Value >> 32); 00257 } 00258 00259 /// Lo_32 - This function returns the low 32 bits of a 64 bit value. 00260 inline uint32_t Lo_32(uint64_t Value) { 00261 return static_cast<uint32_t>(Value); 00262 } 00263 00264 /// Make_64 - This functions makes a 64-bit integer from a high / low pair of 00265 /// 32-bit integers. 00266 inline uint64_t Make_64(uint32_t High, uint32_t Low) { 00267 return ((uint64_t)High << 32) | (uint64_t)Low; 00268 } 00269 00270 /// isInt - Checks if an integer fits into the given bit width. 00271 template<unsigned N> 00272 inline bool isInt(int64_t x) { 00273 return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1))); 00274 } 00275 // Template specializations to get better code for common cases. 00276 template<> 00277 inline bool isInt<8>(int64_t x) { 00278 return static_cast<int8_t>(x) == x; 00279 } 00280 template<> 00281 inline bool isInt<16>(int64_t x) { 00282 return static_cast<int16_t>(x) == x; 00283 } 00284 template<> 00285 inline bool isInt<32>(int64_t x) { 00286 return static_cast<int32_t>(x) == x; 00287 } 00288 00289 /// isShiftedInt<N,S> - Checks if a signed integer is an N bit number shifted 00290 /// left by S. 00291 template<unsigned N, unsigned S> 00292 inline bool isShiftedInt(int64_t x) { 00293 return isInt<N+S>(x) && (x % (1<<S) == 0); 00294 } 00295 00296 /// isUInt - Checks if an unsigned integer fits into the given bit width. 00297 template<unsigned N> 00298 inline bool isUInt(uint64_t x) { 00299 return N >= 64 || x < (UINT64_C(1)<<(N)); 00300 } 00301 // Template specializations to get better code for common cases. 00302 template<> 00303 inline bool isUInt<8>(uint64_t x) { 00304 return static_cast<uint8_t>(x) == x; 00305 } 00306 template<> 00307 inline bool isUInt<16>(uint64_t x) { 00308 return static_cast<uint16_t>(x) == x; 00309 } 00310 template<> 00311 inline bool isUInt<32>(uint64_t x) { 00312 return static_cast<uint32_t>(x) == x; 00313 } 00314 00315 /// isShiftedUInt<N,S> - Checks if a unsigned integer is an N bit number shifted 00316 /// left by S. 00317 template<unsigned N, unsigned S> 00318 inline bool isShiftedUInt(uint64_t x) { 00319 return isUInt<N+S>(x) && (x % (1<<S) == 0); 00320 } 00321 00322 /// isUIntN - Checks if an unsigned integer fits into the given (dynamic) 00323 /// bit width. 00324 inline bool isUIntN(unsigned N, uint64_t x) { 00325 return x == (x & (~0ULL >> (64 - N))); 00326 } 00327 00328 /// isIntN - Checks if an signed integer fits into the given (dynamic) 00329 /// bit width. 00330 inline bool isIntN(unsigned N, int64_t x) { 00331 return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1))); 00332 } 00333 00334 /// isMask_32 - This function returns true if the argument is a sequence of ones 00335 /// starting at the least significant bit with the remainder zero (32 bit 00336 /// version). Ex. isMask_32(0x0000FFFFU) == true. 00337 inline bool isMask_32(uint32_t Value) { 00338 return Value && ((Value + 1) & Value) == 0; 00339 } 00340 00341 /// isMask_64 - This function returns true if the argument is a sequence of ones 00342 /// starting at the least significant bit with the remainder zero (64 bit 00343 /// version). 00344 inline bool isMask_64(uint64_t Value) { 00345 return Value && ((Value + 1) & Value) == 0; 00346 } 00347 00348 /// isShiftedMask_32 - This function returns true if the argument contains a 00349 /// sequence of ones with the remainder zero (32 bit version.) 00350 /// Ex. isShiftedMask_32(0x0000FF00U) == true. 00351 inline bool isShiftedMask_32(uint32_t Value) { 00352 return isMask_32((Value - 1) | Value); 00353 } 00354 00355 /// isShiftedMask_64 - This function returns true if the argument contains a 00356 /// sequence of ones with the remainder zero (64 bit version.) 00357 inline bool isShiftedMask_64(uint64_t Value) { 00358 return isMask_64((Value - 1) | Value); 00359 } 00360 00361 /// isPowerOf2_32 - This function returns true if the argument is a power of 00362 /// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.) 00363 inline bool isPowerOf2_32(uint32_t Value) { 00364 return Value && !(Value & (Value - 1)); 00365 } 00366 00367 /// isPowerOf2_64 - This function returns true if the argument is a power of two 00368 /// > 0 (64 bit edition.) 00369 inline bool isPowerOf2_64(uint64_t Value) { 00370 return Value && !(Value & (Value - int64_t(1L))); 00371 } 00372 00373 /// ByteSwap_16 - This function returns a byte-swapped representation of the 00374 /// 16-bit argument, Value. 00375 inline uint16_t ByteSwap_16(uint16_t Value) { 00376 return sys::SwapByteOrder_16(Value); 00377 } 00378 00379 /// ByteSwap_32 - This function returns a byte-swapped representation of the 00380 /// 32-bit argument, Value. 00381 inline uint32_t ByteSwap_32(uint32_t Value) { 00382 return sys::SwapByteOrder_32(Value); 00383 } 00384 00385 /// ByteSwap_64 - This function returns a byte-swapped representation of the 00386 /// 64-bit argument, Value. 00387 inline uint64_t ByteSwap_64(uint64_t Value) { 00388 return sys::SwapByteOrder_64(Value); 00389 } 00390 00391 /// CountLeadingOnes_32 - this function performs the operation of 00392 /// counting the number of ones from the most significant bit to the first zero 00393 /// bit. Ex. CountLeadingOnes_32(0xFF0FFF00) == 8. 00394 /// Returns 32 if the word is all ones. 00395 inline unsigned CountLeadingOnes_32(uint32_t Value) { 00396 return countLeadingZeros(~Value); 00397 } 00398 00399 /// CountLeadingOnes_64 - This function performs the operation 00400 /// of counting the number of ones from the most significant bit to the first 00401 /// zero bit (64 bit edition.) 00402 /// Returns 64 if the word is all ones. 00403 inline unsigned CountLeadingOnes_64(uint64_t Value) { 00404 return countLeadingZeros(~Value); 00405 } 00406 00407 /// CountTrailingOnes_32 - this function performs the operation of 00408 /// counting the number of ones from the least significant bit to the first zero 00409 /// bit. Ex. CountTrailingOnes_32(0x00FF00FF) == 8. 00410 /// Returns 32 if the word is all ones. 00411 inline unsigned CountTrailingOnes_32(uint32_t Value) { 00412 return countTrailingZeros(~Value); 00413 } 00414 00415 /// CountTrailingOnes_64 - This function performs the operation 00416 /// of counting the number of ones from the least significant bit to the first 00417 /// zero bit (64 bit edition.) 00418 /// Returns 64 if the word is all ones. 00419 inline unsigned CountTrailingOnes_64(uint64_t Value) { 00420 return countTrailingZeros(~Value); 00421 } 00422 00423 /// CountPopulation_32 - this function counts the number of set bits in a value. 00424 /// Ex. CountPopulation(0xF000F000) = 8 00425 /// Returns 0 if the word is zero. 00426 inline unsigned CountPopulation_32(uint32_t Value) { 00427 #if __GNUC__ >= 4 00428 return __builtin_popcount(Value); 00429 #else 00430 uint32_t v = Value - ((Value >> 1) & 0x55555555); 00431 v = (v & 0x33333333) + ((v >> 2) & 0x33333333); 00432 return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; 00433 #endif 00434 } 00435 00436 /// CountPopulation_64 - this function counts the number of set bits in a value, 00437 /// (64 bit edition.) 00438 inline unsigned CountPopulation_64(uint64_t Value) { 00439 #if __GNUC__ >= 4 00440 return __builtin_popcountll(Value); 00441 #else 00442 uint64_t v = Value - ((Value >> 1) & 0x5555555555555555ULL); 00443 v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL); 00444 v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL; 00445 return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56); 00446 #endif 00447 } 00448 00449 /// Log2_32 - This function returns the floor log base 2 of the specified value, 00450 /// -1 if the value is zero. (32 bit edition.) 00451 /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2 00452 inline unsigned Log2_32(uint32_t Value) { 00453 return 31 - countLeadingZeros(Value); 00454 } 00455 00456 /// Log2_64 - This function returns the floor log base 2 of the specified value, 00457 /// -1 if the value is zero. (64 bit edition.) 00458 inline unsigned Log2_64(uint64_t Value) { 00459 return 63 - countLeadingZeros(Value); 00460 } 00461 00462 /// Log2_32_Ceil - This function returns the ceil log base 2 of the specified 00463 /// value, 32 if the value is zero. (32 bit edition). 00464 /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3 00465 inline unsigned Log2_32_Ceil(uint32_t Value) { 00466 return 32 - countLeadingZeros(Value - 1); 00467 } 00468 00469 /// Log2_64_Ceil - This function returns the ceil log base 2 of the specified 00470 /// value, 64 if the value is zero. (64 bit edition.) 00471 inline unsigned Log2_64_Ceil(uint64_t Value) { 00472 return 64 - countLeadingZeros(Value - 1); 00473 } 00474 00475 /// GreatestCommonDivisor64 - Return the greatest common divisor of the two 00476 /// values using Euclid's algorithm. 00477 inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) { 00478 while (B) { 00479 uint64_t T = B; 00480 B = A % B; 00481 A = T; 00482 } 00483 return A; 00484 } 00485 00486 /// BitsToDouble - This function takes a 64-bit integer and returns the bit 00487 /// equivalent double. 00488 inline double BitsToDouble(uint64_t Bits) { 00489 union { 00490 uint64_t L; 00491 double D; 00492 } T; 00493 T.L = Bits; 00494 return T.D; 00495 } 00496 00497 /// BitsToFloat - This function takes a 32-bit integer and returns the bit 00498 /// equivalent float. 00499 inline float BitsToFloat(uint32_t Bits) { 00500 union { 00501 uint32_t I; 00502 float F; 00503 } T; 00504 T.I = Bits; 00505 return T.F; 00506 } 00507 00508 /// DoubleToBits - This function takes a double and returns the bit 00509 /// equivalent 64-bit integer. Note that copying doubles around 00510 /// changes the bits of NaNs on some hosts, notably x86, so this 00511 /// routine cannot be used if these bits are needed. 00512 inline uint64_t DoubleToBits(double Double) { 00513 union { 00514 uint64_t L; 00515 double D; 00516 } T; 00517 T.D = Double; 00518 return T.L; 00519 } 00520 00521 /// FloatToBits - This function takes a float and returns the bit 00522 /// equivalent 32-bit integer. Note that copying floats around 00523 /// changes the bits of NaNs on some hosts, notably x86, so this 00524 /// routine cannot be used if these bits are needed. 00525 inline uint32_t FloatToBits(float Float) { 00526 union { 00527 uint32_t I; 00528 float F; 00529 } T; 00530 T.F = Float; 00531 return T.I; 00532 } 00533 00534 /// Platform-independent wrappers for the C99 isnan() function. 00535 int IsNAN(float f); 00536 int IsNAN(double d); 00537 00538 /// Platform-independent wrappers for the C99 isinf() function. 00539 int IsInf(float f); 00540 int IsInf(double d); 00541 00542 /// MinAlign - A and B are either alignments or offsets. Return the minimum 00543 /// alignment that may be assumed after adding the two together. 00544 inline uint64_t MinAlign(uint64_t A, uint64_t B) { 00545 // The largest power of 2 that divides both A and B. 00546 // 00547 // Replace "-Value" by "1+~Value" in the following commented code to avoid 00548 // MSVC warning C4146 00549 // return (A | B) & -(A | B); 00550 return (A | B) & (1 + ~(A | B)); 00551 } 00552 00553 /// \brief Aligns \c Addr to \c Alignment bytes, rounding up. 00554 /// 00555 /// Alignment should be a power of two. This method rounds up, so 00556 /// alignAddr(7, 4) == 8 and alignAddr(8, 4) == 8. 00557 inline uintptr_t alignAddr(void *Addr, size_t Alignment) { 00558 assert(Alignment && isPowerOf2_64((uint64_t)Alignment) && 00559 "Alignment is not a power of two!"); 00560 00561 assert((uintptr_t)Addr + Alignment - 1 >= (uintptr_t)Addr); 00562 00563 return (((uintptr_t)Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1)); 00564 } 00565 00566 /// \brief Returns the necessary adjustment for aligning \c Ptr to \c Alignment 00567 /// bytes, rounding up. 00568 inline size_t alignmentAdjustment(void *Ptr, size_t Alignment) { 00569 return alignAddr(Ptr, Alignment) - (uintptr_t)Ptr; 00570 } 00571 00572 /// NextPowerOf2 - Returns the next power of two (in 64-bits) 00573 /// that is strictly greater than A. Returns zero on overflow. 00574 inline uint64_t NextPowerOf2(uint64_t A) { 00575 A |= (A >> 1); 00576 A |= (A >> 2); 00577 A |= (A >> 4); 00578 A |= (A >> 8); 00579 A |= (A >> 16); 00580 A |= (A >> 32); 00581 return A + 1; 00582 } 00583 00584 /// Returns the power of two which is less than or equal to the given value. 00585 /// Essentially, it is a floor operation across the domain of powers of two. 00586 inline uint64_t PowerOf2Floor(uint64_t A) { 00587 if (!A) return 0; 00588 return 1ull << (63 - countLeadingZeros(A, ZB_Undefined)); 00589 } 00590 00591 /// Returns the next integer (mod 2**64) that is greater than or equal to 00592 /// \p Value and is a multiple of \p Align. \p Align must be non-zero. 00593 /// 00594 /// Examples: 00595 /// \code 00596 /// RoundUpToAlignment(5, 8) = 8 00597 /// RoundUpToAlignment(17, 8) = 24 00598 /// RoundUpToAlignment(~0LL, 8) = 0 00599 /// \endcode 00600 inline uint64_t RoundUpToAlignment(uint64_t Value, uint64_t Align) { 00601 return ((Value + Align - 1) / Align) * Align; 00602 } 00603 00604 /// Returns the offset to the next integer (mod 2**64) that is greater than 00605 /// or equal to \p Value and is a multiple of \p Align. \p Align must be 00606 /// non-zero. 00607 inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) { 00608 return RoundUpToAlignment(Value, Align) - Value; 00609 } 00610 00611 /// abs64 - absolute value of a 64-bit int. Not all environments support 00612 /// "abs" on whatever their name for the 64-bit int type is. The absolute 00613 /// value of the largest negative number is undefined, as with "abs". 00614 inline int64_t abs64(int64_t x) { 00615 return (x < 0) ? -x : x; 00616 } 00617 00618 /// SignExtend32 - Sign extend B-bit number x to 32-bit int. 00619 /// Usage int32_t r = SignExtend32<5>(x); 00620 template <unsigned B> inline int32_t SignExtend32(uint32_t x) { 00621 return int32_t(x << (32 - B)) >> (32 - B); 00622 } 00623 00624 /// \brief Sign extend number in the bottom B bits of X to a 32-bit int. 00625 /// Requires 0 < B <= 32. 00626 inline int32_t SignExtend32(uint32_t X, unsigned B) { 00627 return int32_t(X << (32 - B)) >> (32 - B); 00628 } 00629 00630 /// SignExtend64 - Sign extend B-bit number x to 64-bit int. 00631 /// Usage int64_t r = SignExtend64<5>(x); 00632 template <unsigned B> inline int64_t SignExtend64(uint64_t x) { 00633 return int64_t(x << (64 - B)) >> (64 - B); 00634 } 00635 00636 /// \brief Sign extend number in the bottom B bits of X to a 64-bit int. 00637 /// Requires 0 < B <= 64. 00638 inline int64_t SignExtend64(uint64_t X, unsigned B) { 00639 return int64_t(X << (64 - B)) >> (64 - B); 00640 } 00641 00642 #if defined(_MSC_VER) 00643 // Visual Studio defines the HUGE_VAL class of macros using purposeful 00644 // constant arithmetic overflow, which it then warns on when encountered. 00645 const float huge_valf = std::numeric_limits<float>::infinity(); 00646 #else 00647 const float huge_valf = HUGE_VALF; 00648 #endif 00649 } // End llvm namespace 00650 00651 #endif