LLVM API Documentation
00001 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This pass performs various transformations related to eliminating memcpy 00011 // calls, or transforming sets of stores into memset's. 00012 // 00013 //===----------------------------------------------------------------------===// 00014 00015 #include "llvm/Transforms/Scalar.h" 00016 #include "llvm/ADT/SmallVector.h" 00017 #include "llvm/ADT/Statistic.h" 00018 #include "llvm/Analysis/AliasAnalysis.h" 00019 #include "llvm/Analysis/AssumptionTracker.h" 00020 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 00021 #include "llvm/Analysis/ValueTracking.h" 00022 #include "llvm/IR/DataLayout.h" 00023 #include "llvm/IR/Dominators.h" 00024 #include "llvm/IR/GetElementPtrTypeIterator.h" 00025 #include "llvm/IR/GlobalVariable.h" 00026 #include "llvm/IR/IRBuilder.h" 00027 #include "llvm/IR/Instructions.h" 00028 #include "llvm/IR/IntrinsicInst.h" 00029 #include "llvm/Support/Debug.h" 00030 #include "llvm/Support/raw_ostream.h" 00031 #include "llvm/Target/TargetLibraryInfo.h" 00032 #include "llvm/Transforms/Utils/Local.h" 00033 #include <list> 00034 using namespace llvm; 00035 00036 #define DEBUG_TYPE "memcpyopt" 00037 00038 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted"); 00039 STATISTIC(NumMemSetInfer, "Number of memsets inferred"); 00040 STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy"); 00041 STATISTIC(NumCpyToSet, "Number of memcpys converted to memset"); 00042 00043 static int64_t GetOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, 00044 bool &VariableIdxFound, const DataLayout &TD){ 00045 // Skip over the first indices. 00046 gep_type_iterator GTI = gep_type_begin(GEP); 00047 for (unsigned i = 1; i != Idx; ++i, ++GTI) 00048 /*skip along*/; 00049 00050 // Compute the offset implied by the rest of the indices. 00051 int64_t Offset = 0; 00052 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 00053 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 00054 if (!OpC) 00055 return VariableIdxFound = true; 00056 if (OpC->isZero()) continue; // No offset. 00057 00058 // Handle struct indices, which add their field offset to the pointer. 00059 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 00060 Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 00061 continue; 00062 } 00063 00064 // Otherwise, we have a sequential type like an array or vector. Multiply 00065 // the index by the ElementSize. 00066 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()); 00067 Offset += Size*OpC->getSExtValue(); 00068 } 00069 00070 return Offset; 00071 } 00072 00073 /// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a 00074 /// constant offset, and return that constant offset. For example, Ptr1 might 00075 /// be &A[42], and Ptr2 might be &A[40]. In this case offset would be -8. 00076 static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset, 00077 const DataLayout &TD) { 00078 Ptr1 = Ptr1->stripPointerCasts(); 00079 Ptr2 = Ptr2->stripPointerCasts(); 00080 00081 // Handle the trivial case first. 00082 if (Ptr1 == Ptr2) { 00083 Offset = 0; 00084 return true; 00085 } 00086 00087 GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 00088 GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 00089 00090 bool VariableIdxFound = false; 00091 00092 // If one pointer is a GEP and the other isn't, then see if the GEP is a 00093 // constant offset from the base, as in "P" and "gep P, 1". 00094 if (GEP1 && !GEP2 && GEP1->getOperand(0)->stripPointerCasts() == Ptr2) { 00095 Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, TD); 00096 return !VariableIdxFound; 00097 } 00098 00099 if (GEP2 && !GEP1 && GEP2->getOperand(0)->stripPointerCasts() == Ptr1) { 00100 Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, TD); 00101 return !VariableIdxFound; 00102 } 00103 00104 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 00105 // base. After that base, they may have some number of common (and 00106 // potentially variable) indices. After that they handle some constant 00107 // offset, which determines their offset from each other. At this point, we 00108 // handle no other case. 00109 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 00110 return false; 00111 00112 // Skip any common indices and track the GEP types. 00113 unsigned Idx = 1; 00114 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 00115 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 00116 break; 00117 00118 int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, TD); 00119 int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, TD); 00120 if (VariableIdxFound) return false; 00121 00122 Offset = Offset2-Offset1; 00123 return true; 00124 } 00125 00126 00127 /// MemsetRange - Represents a range of memset'd bytes with the ByteVal value. 00128 /// This allows us to analyze stores like: 00129 /// store 0 -> P+1 00130 /// store 0 -> P+0 00131 /// store 0 -> P+3 00132 /// store 0 -> P+2 00133 /// which sometimes happens with stores to arrays of structs etc. When we see 00134 /// the first store, we make a range [1, 2). The second store extends the range 00135 /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the 00136 /// two ranges into [0, 3) which is memset'able. 00137 namespace { 00138 struct MemsetRange { 00139 // Start/End - A semi range that describes the span that this range covers. 00140 // The range is closed at the start and open at the end: [Start, End). 00141 int64_t Start, End; 00142 00143 /// StartPtr - The getelementptr instruction that points to the start of the 00144 /// range. 00145 Value *StartPtr; 00146 00147 /// Alignment - The known alignment of the first store. 00148 unsigned Alignment; 00149 00150 /// TheStores - The actual stores that make up this range. 00151 SmallVector<Instruction*, 16> TheStores; 00152 00153 bool isProfitableToUseMemset(const DataLayout &TD) const; 00154 00155 }; 00156 } // end anon namespace 00157 00158 bool MemsetRange::isProfitableToUseMemset(const DataLayout &TD) const { 00159 // If we found more than 4 stores to merge or 16 bytes, use memset. 00160 if (TheStores.size() >= 4 || End-Start >= 16) return true; 00161 00162 // If there is nothing to merge, don't do anything. 00163 if (TheStores.size() < 2) return false; 00164 00165 // If any of the stores are a memset, then it is always good to extend the 00166 // memset. 00167 for (unsigned i = 0, e = TheStores.size(); i != e; ++i) 00168 if (!isa<StoreInst>(TheStores[i])) 00169 return true; 00170 00171 // Assume that the code generator is capable of merging pairs of stores 00172 // together if it wants to. 00173 if (TheStores.size() == 2) return false; 00174 00175 // If we have fewer than 8 stores, it can still be worthwhile to do this. 00176 // For example, merging 4 i8 stores into an i32 store is useful almost always. 00177 // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the 00178 // memset will be split into 2 32-bit stores anyway) and doing so can 00179 // pessimize the llvm optimizer. 00180 // 00181 // Since we don't have perfect knowledge here, make some assumptions: assume 00182 // the maximum GPR width is the same size as the largest legal integer 00183 // size. If so, check to see whether we will end up actually reducing the 00184 // number of stores used. 00185 unsigned Bytes = unsigned(End-Start); 00186 unsigned MaxIntSize = TD.getLargestLegalIntTypeSize(); 00187 if (MaxIntSize == 0) 00188 MaxIntSize = 1; 00189 unsigned NumPointerStores = Bytes / MaxIntSize; 00190 00191 // Assume the remaining bytes if any are done a byte at a time. 00192 unsigned NumByteStores = Bytes - NumPointerStores * MaxIntSize; 00193 00194 // If we will reduce the # stores (according to this heuristic), do the 00195 // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32 00196 // etc. 00197 return TheStores.size() > NumPointerStores+NumByteStores; 00198 } 00199 00200 00201 namespace { 00202 class MemsetRanges { 00203 /// Ranges - A sorted list of the memset ranges. We use std::list here 00204 /// because each element is relatively large and expensive to copy. 00205 std::list<MemsetRange> Ranges; 00206 typedef std::list<MemsetRange>::iterator range_iterator; 00207 const DataLayout &DL; 00208 public: 00209 MemsetRanges(const DataLayout &DL) : DL(DL) {} 00210 00211 typedef std::list<MemsetRange>::const_iterator const_iterator; 00212 const_iterator begin() const { return Ranges.begin(); } 00213 const_iterator end() const { return Ranges.end(); } 00214 bool empty() const { return Ranges.empty(); } 00215 00216 void addInst(int64_t OffsetFromFirst, Instruction *Inst) { 00217 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) 00218 addStore(OffsetFromFirst, SI); 00219 else 00220 addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst)); 00221 } 00222 00223 void addStore(int64_t OffsetFromFirst, StoreInst *SI) { 00224 int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType()); 00225 00226 addRange(OffsetFromFirst, StoreSize, 00227 SI->getPointerOperand(), SI->getAlignment(), SI); 00228 } 00229 00230 void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) { 00231 int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 00232 addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getAlignment(), MSI); 00233 } 00234 00235 void addRange(int64_t Start, int64_t Size, Value *Ptr, 00236 unsigned Alignment, Instruction *Inst); 00237 00238 }; 00239 00240 } // end anon namespace 00241 00242 00243 /// addRange - Add a new store to the MemsetRanges data structure. This adds a 00244 /// new range for the specified store at the specified offset, merging into 00245 /// existing ranges as appropriate. 00246 /// 00247 /// Do a linear search of the ranges to see if this can be joined and/or to 00248 /// find the insertion point in the list. We keep the ranges sorted for 00249 /// simplicity here. This is a linear search of a linked list, which is ugly, 00250 /// however the number of ranges is limited, so this won't get crazy slow. 00251 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr, 00252 unsigned Alignment, Instruction *Inst) { 00253 int64_t End = Start+Size; 00254 range_iterator I = Ranges.begin(), E = Ranges.end(); 00255 00256 while (I != E && Start > I->End) 00257 ++I; 00258 00259 // We now know that I == E, in which case we didn't find anything to merge 00260 // with, or that Start <= I->End. If End < I->Start or I == E, then we need 00261 // to insert a new range. Handle this now. 00262 if (I == E || End < I->Start) { 00263 MemsetRange &R = *Ranges.insert(I, MemsetRange()); 00264 R.Start = Start; 00265 R.End = End; 00266 R.StartPtr = Ptr; 00267 R.Alignment = Alignment; 00268 R.TheStores.push_back(Inst); 00269 return; 00270 } 00271 00272 // This store overlaps with I, add it. 00273 I->TheStores.push_back(Inst); 00274 00275 // At this point, we may have an interval that completely contains our store. 00276 // If so, just add it to the interval and return. 00277 if (I->Start <= Start && I->End >= End) 00278 return; 00279 00280 // Now we know that Start <= I->End and End >= I->Start so the range overlaps 00281 // but is not entirely contained within the range. 00282 00283 // See if the range extends the start of the range. In this case, it couldn't 00284 // possibly cause it to join the prior range, because otherwise we would have 00285 // stopped on *it*. 00286 if (Start < I->Start) { 00287 I->Start = Start; 00288 I->StartPtr = Ptr; 00289 I->Alignment = Alignment; 00290 } 00291 00292 // Now we know that Start <= I->End and Start >= I->Start (so the startpoint 00293 // is in or right at the end of I), and that End >= I->Start. Extend I out to 00294 // End. 00295 if (End > I->End) { 00296 I->End = End; 00297 range_iterator NextI = I; 00298 while (++NextI != E && End >= NextI->Start) { 00299 // Merge the range in. 00300 I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end()); 00301 if (NextI->End > I->End) 00302 I->End = NextI->End; 00303 Ranges.erase(NextI); 00304 NextI = I; 00305 } 00306 } 00307 } 00308 00309 //===----------------------------------------------------------------------===// 00310 // MemCpyOpt Pass 00311 //===----------------------------------------------------------------------===// 00312 00313 namespace { 00314 class MemCpyOpt : public FunctionPass { 00315 MemoryDependenceAnalysis *MD; 00316 TargetLibraryInfo *TLI; 00317 const DataLayout *DL; 00318 public: 00319 static char ID; // Pass identification, replacement for typeid 00320 MemCpyOpt() : FunctionPass(ID) { 00321 initializeMemCpyOptPass(*PassRegistry::getPassRegistry()); 00322 MD = nullptr; 00323 TLI = nullptr; 00324 DL = nullptr; 00325 } 00326 00327 bool runOnFunction(Function &F) override; 00328 00329 private: 00330 // This transformation requires dominator postdominator info 00331 void getAnalysisUsage(AnalysisUsage &AU) const override { 00332 AU.setPreservesCFG(); 00333 AU.addRequired<AssumptionTracker>(); 00334 AU.addRequired<DominatorTreeWrapperPass>(); 00335 AU.addRequired<MemoryDependenceAnalysis>(); 00336 AU.addRequired<AliasAnalysis>(); 00337 AU.addRequired<TargetLibraryInfo>(); 00338 AU.addPreserved<AliasAnalysis>(); 00339 AU.addPreserved<MemoryDependenceAnalysis>(); 00340 } 00341 00342 // Helper fuctions 00343 bool processStore(StoreInst *SI, BasicBlock::iterator &BBI); 00344 bool processMemSet(MemSetInst *SI, BasicBlock::iterator &BBI); 00345 bool processMemCpy(MemCpyInst *M); 00346 bool processMemMove(MemMoveInst *M); 00347 bool performCallSlotOptzn(Instruction *cpy, Value *cpyDst, Value *cpySrc, 00348 uint64_t cpyLen, unsigned cpyAlign, CallInst *C); 00349 bool processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep, 00350 uint64_t MSize); 00351 bool processByValArgument(CallSite CS, unsigned ArgNo); 00352 Instruction *tryMergingIntoMemset(Instruction *I, Value *StartPtr, 00353 Value *ByteVal); 00354 00355 bool iterateOnFunction(Function &F); 00356 }; 00357 00358 char MemCpyOpt::ID = 0; 00359 } 00360 00361 // createMemCpyOptPass - The public interface to this file... 00362 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); } 00363 00364 INITIALIZE_PASS_BEGIN(MemCpyOpt, "memcpyopt", "MemCpy Optimization", 00365 false, false) 00366 INITIALIZE_PASS_DEPENDENCY(AssumptionTracker) 00367 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 00368 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis) 00369 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 00370 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 00371 INITIALIZE_PASS_END(MemCpyOpt, "memcpyopt", "MemCpy Optimization", 00372 false, false) 00373 00374 /// tryMergingIntoMemset - When scanning forward over instructions, we look for 00375 /// some other patterns to fold away. In particular, this looks for stores to 00376 /// neighboring locations of memory. If it sees enough consecutive ones, it 00377 /// attempts to merge them together into a memcpy/memset. 00378 Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst, 00379 Value *StartPtr, Value *ByteVal) { 00380 if (!DL) return nullptr; 00381 00382 // Okay, so we now have a single store that can be splatable. Scan to find 00383 // all subsequent stores of the same value to offset from the same pointer. 00384 // Join these together into ranges, so we can decide whether contiguous blocks 00385 // are stored. 00386 MemsetRanges Ranges(*DL); 00387 00388 BasicBlock::iterator BI = StartInst; 00389 for (++BI; !isa<TerminatorInst>(BI); ++BI) { 00390 if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) { 00391 // If the instruction is readnone, ignore it, otherwise bail out. We 00392 // don't even allow readonly here because we don't want something like: 00393 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A). 00394 if (BI->mayWriteToMemory() || BI->mayReadFromMemory()) 00395 break; 00396 continue; 00397 } 00398 00399 if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) { 00400 // If this is a store, see if we can merge it in. 00401 if (!NextStore->isSimple()) break; 00402 00403 // Check to see if this stored value is of the same byte-splattable value. 00404 if (ByteVal != isBytewiseValue(NextStore->getOperand(0))) 00405 break; 00406 00407 // Check to see if this store is to a constant offset from the start ptr. 00408 int64_t Offset; 00409 if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), 00410 Offset, *DL)) 00411 break; 00412 00413 Ranges.addStore(Offset, NextStore); 00414 } else { 00415 MemSetInst *MSI = cast<MemSetInst>(BI); 00416 00417 if (MSI->isVolatile() || ByteVal != MSI->getValue() || 00418 !isa<ConstantInt>(MSI->getLength())) 00419 break; 00420 00421 // Check to see if this store is to a constant offset from the start ptr. 00422 int64_t Offset; 00423 if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, *DL)) 00424 break; 00425 00426 Ranges.addMemSet(Offset, MSI); 00427 } 00428 } 00429 00430 // If we have no ranges, then we just had a single store with nothing that 00431 // could be merged in. This is a very common case of course. 00432 if (Ranges.empty()) 00433 return nullptr; 00434 00435 // If we had at least one store that could be merged in, add the starting 00436 // store as well. We try to avoid this unless there is at least something 00437 // interesting as a small compile-time optimization. 00438 Ranges.addInst(0, StartInst); 00439 00440 // If we create any memsets, we put it right before the first instruction that 00441 // isn't part of the memset block. This ensure that the memset is dominated 00442 // by any addressing instruction needed by the start of the block. 00443 IRBuilder<> Builder(BI); 00444 00445 // Now that we have full information about ranges, loop over the ranges and 00446 // emit memset's for anything big enough to be worthwhile. 00447 Instruction *AMemSet = nullptr; 00448 for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end(); 00449 I != E; ++I) { 00450 const MemsetRange &Range = *I; 00451 00452 if (Range.TheStores.size() == 1) continue; 00453 00454 // If it is profitable to lower this range to memset, do so now. 00455 if (!Range.isProfitableToUseMemset(*DL)) 00456 continue; 00457 00458 // Otherwise, we do want to transform this! Create a new memset. 00459 // Get the starting pointer of the block. 00460 StartPtr = Range.StartPtr; 00461 00462 // Determine alignment 00463 unsigned Alignment = Range.Alignment; 00464 if (Alignment == 0) { 00465 Type *EltType = 00466 cast<PointerType>(StartPtr->getType())->getElementType(); 00467 Alignment = DL->getABITypeAlignment(EltType); 00468 } 00469 00470 AMemSet = 00471 Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment); 00472 00473 DEBUG(dbgs() << "Replace stores:\n"; 00474 for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i) 00475 dbgs() << *Range.TheStores[i] << '\n'; 00476 dbgs() << "With: " << *AMemSet << '\n'); 00477 00478 if (!Range.TheStores.empty()) 00479 AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc()); 00480 00481 // Zap all the stores. 00482 for (SmallVectorImpl<Instruction *>::const_iterator 00483 SI = Range.TheStores.begin(), 00484 SE = Range.TheStores.end(); SI != SE; ++SI) { 00485 MD->removeInstruction(*SI); 00486 (*SI)->eraseFromParent(); 00487 } 00488 ++NumMemSetInfer; 00489 } 00490 00491 return AMemSet; 00492 } 00493 00494 00495 bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) { 00496 if (!SI->isSimple()) return false; 00497 00498 if (!DL) return false; 00499 00500 // Detect cases where we're performing call slot forwarding, but 00501 // happen to be using a load-store pair to implement it, rather than 00502 // a memcpy. 00503 if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) { 00504 if (LI->isSimple() && LI->hasOneUse() && 00505 LI->getParent() == SI->getParent()) { 00506 MemDepResult ldep = MD->getDependency(LI); 00507 CallInst *C = nullptr; 00508 if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst())) 00509 C = dyn_cast<CallInst>(ldep.getInst()); 00510 00511 if (C) { 00512 // Check that nothing touches the dest of the "copy" between 00513 // the call and the store. 00514 AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); 00515 AliasAnalysis::Location StoreLoc = AA.getLocation(SI); 00516 for (BasicBlock::iterator I = --BasicBlock::iterator(SI), 00517 E = C; I != E; --I) { 00518 if (AA.getModRefInfo(&*I, StoreLoc) != AliasAnalysis::NoModRef) { 00519 C = nullptr; 00520 break; 00521 } 00522 } 00523 } 00524 00525 if (C) { 00526 unsigned storeAlign = SI->getAlignment(); 00527 if (!storeAlign) 00528 storeAlign = DL->getABITypeAlignment(SI->getOperand(0)->getType()); 00529 unsigned loadAlign = LI->getAlignment(); 00530 if (!loadAlign) 00531 loadAlign = DL->getABITypeAlignment(LI->getType()); 00532 00533 bool changed = performCallSlotOptzn(LI, 00534 SI->getPointerOperand()->stripPointerCasts(), 00535 LI->getPointerOperand()->stripPointerCasts(), 00536 DL->getTypeStoreSize(SI->getOperand(0)->getType()), 00537 std::min(storeAlign, loadAlign), C); 00538 if (changed) { 00539 MD->removeInstruction(SI); 00540 SI->eraseFromParent(); 00541 MD->removeInstruction(LI); 00542 LI->eraseFromParent(); 00543 ++NumMemCpyInstr; 00544 return true; 00545 } 00546 } 00547 } 00548 } 00549 00550 // There are two cases that are interesting for this code to handle: memcpy 00551 // and memset. Right now we only handle memset. 00552 00553 // Ensure that the value being stored is something that can be memset'able a 00554 // byte at a time like "0" or "-1" or any width, as well as things like 00555 // 0xA0A0A0A0 and 0.0. 00556 if (Value *ByteVal = isBytewiseValue(SI->getOperand(0))) 00557 if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(), 00558 ByteVal)) { 00559 BBI = I; // Don't invalidate iterator. 00560 return true; 00561 } 00562 00563 return false; 00564 } 00565 00566 bool MemCpyOpt::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) { 00567 // See if there is another memset or store neighboring this memset which 00568 // allows us to widen out the memset to do a single larger store. 00569 if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile()) 00570 if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(), 00571 MSI->getValue())) { 00572 BBI = I; // Don't invalidate iterator. 00573 return true; 00574 } 00575 return false; 00576 } 00577 00578 00579 /// performCallSlotOptzn - takes a memcpy and a call that it depends on, 00580 /// and checks for the possibility of a call slot optimization by having 00581 /// the call write its result directly into the destination of the memcpy. 00582 bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy, 00583 Value *cpyDest, Value *cpySrc, 00584 uint64_t cpyLen, unsigned cpyAlign, 00585 CallInst *C) { 00586 // The general transformation to keep in mind is 00587 // 00588 // call @func(..., src, ...) 00589 // memcpy(dest, src, ...) 00590 // 00591 // -> 00592 // 00593 // memcpy(dest, src, ...) 00594 // call @func(..., dest, ...) 00595 // 00596 // Since moving the memcpy is technically awkward, we additionally check that 00597 // src only holds uninitialized values at the moment of the call, meaning that 00598 // the memcpy can be discarded rather than moved. 00599 00600 // Deliberately get the source and destination with bitcasts stripped away, 00601 // because we'll need to do type comparisons based on the underlying type. 00602 CallSite CS(C); 00603 00604 // Require that src be an alloca. This simplifies the reasoning considerably. 00605 AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc); 00606 if (!srcAlloca) 00607 return false; 00608 00609 // Check that all of src is copied to dest. 00610 if (!DL) return false; 00611 00612 ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize()); 00613 if (!srcArraySize) 00614 return false; 00615 00616 uint64_t srcSize = DL->getTypeAllocSize(srcAlloca->getAllocatedType()) * 00617 srcArraySize->getZExtValue(); 00618 00619 if (cpyLen < srcSize) 00620 return false; 00621 00622 // Check that accessing the first srcSize bytes of dest will not cause a 00623 // trap. Otherwise the transform is invalid since it might cause a trap 00624 // to occur earlier than it otherwise would. 00625 if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) { 00626 // The destination is an alloca. Check it is larger than srcSize. 00627 ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize()); 00628 if (!destArraySize) 00629 return false; 00630 00631 uint64_t destSize = DL->getTypeAllocSize(A->getAllocatedType()) * 00632 destArraySize->getZExtValue(); 00633 00634 if (destSize < srcSize) 00635 return false; 00636 } else if (Argument *A = dyn_cast<Argument>(cpyDest)) { 00637 // If the destination is an sret parameter then only accesses that are 00638 // outside of the returned struct type can trap. 00639 if (!A->hasStructRetAttr()) 00640 return false; 00641 00642 Type *StructTy = cast<PointerType>(A->getType())->getElementType(); 00643 if (!StructTy->isSized()) { 00644 // The call may never return and hence the copy-instruction may never 00645 // be executed, and therefore it's not safe to say "the destination 00646 // has at least <cpyLen> bytes, as implied by the copy-instruction", 00647 return false; 00648 } 00649 00650 uint64_t destSize = DL->getTypeAllocSize(StructTy); 00651 if (destSize < srcSize) 00652 return false; 00653 } else { 00654 return false; 00655 } 00656 00657 // Check that dest points to memory that is at least as aligned as src. 00658 unsigned srcAlign = srcAlloca->getAlignment(); 00659 if (!srcAlign) 00660 srcAlign = DL->getABITypeAlignment(srcAlloca->getAllocatedType()); 00661 bool isDestSufficientlyAligned = srcAlign <= cpyAlign; 00662 // If dest is not aligned enough and we can't increase its alignment then 00663 // bail out. 00664 if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest)) 00665 return false; 00666 00667 // Check that src is not accessed except via the call and the memcpy. This 00668 // guarantees that it holds only undefined values when passed in (so the final 00669 // memcpy can be dropped), that it is not read or written between the call and 00670 // the memcpy, and that writing beyond the end of it is undefined. 00671 SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(), 00672 srcAlloca->user_end()); 00673 while (!srcUseList.empty()) { 00674 User *U = srcUseList.pop_back_val(); 00675 00676 if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) { 00677 for (User *UU : U->users()) 00678 srcUseList.push_back(UU); 00679 continue; 00680 } 00681 if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) { 00682 if (!G->hasAllZeroIndices()) 00683 return false; 00684 00685 for (User *UU : U->users()) 00686 srcUseList.push_back(UU); 00687 continue; 00688 } 00689 if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U)) 00690 if (IT->getIntrinsicID() == Intrinsic::lifetime_start || 00691 IT->getIntrinsicID() == Intrinsic::lifetime_end) 00692 continue; 00693 00694 if (U != C && U != cpy) 00695 return false; 00696 } 00697 00698 // Check that src isn't captured by the called function since the 00699 // transformation can cause aliasing issues in that case. 00700 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 00701 if (CS.getArgument(i) == cpySrc && !CS.doesNotCapture(i)) 00702 return false; 00703 00704 // Since we're changing the parameter to the callsite, we need to make sure 00705 // that what would be the new parameter dominates the callsite. 00706 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 00707 if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest)) 00708 if (!DT.dominates(cpyDestInst, C)) 00709 return false; 00710 00711 // In addition to knowing that the call does not access src in some 00712 // unexpected manner, for example via a global, which we deduce from 00713 // the use analysis, we also need to know that it does not sneakily 00714 // access dest. We rely on AA to figure this out for us. 00715 AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); 00716 AliasAnalysis::ModRefResult MR = AA.getModRefInfo(C, cpyDest, srcSize); 00717 // If necessary, perform additional analysis. 00718 if (MR != AliasAnalysis::NoModRef) 00719 MR = AA.callCapturesBefore(C, cpyDest, srcSize, &DT); 00720 if (MR != AliasAnalysis::NoModRef) 00721 return false; 00722 00723 // All the checks have passed, so do the transformation. 00724 bool changedArgument = false; 00725 for (unsigned i = 0; i < CS.arg_size(); ++i) 00726 if (CS.getArgument(i)->stripPointerCasts() == cpySrc) { 00727 Value *Dest = cpySrc->getType() == cpyDest->getType() ? cpyDest 00728 : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(), 00729 cpyDest->getName(), C); 00730 changedArgument = true; 00731 if (CS.getArgument(i)->getType() == Dest->getType()) 00732 CS.setArgument(i, Dest); 00733 else 00734 CS.setArgument(i, CastInst::CreatePointerCast(Dest, 00735 CS.getArgument(i)->getType(), Dest->getName(), C)); 00736 } 00737 00738 if (!changedArgument) 00739 return false; 00740 00741 // If the destination wasn't sufficiently aligned then increase its alignment. 00742 if (!isDestSufficientlyAligned) { 00743 assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!"); 00744 cast<AllocaInst>(cpyDest)->setAlignment(srcAlign); 00745 } 00746 00747 // Drop any cached information about the call, because we may have changed 00748 // its dependence information by changing its parameter. 00749 MD->removeInstruction(C); 00750 00751 // Remove the memcpy. 00752 MD->removeInstruction(cpy); 00753 ++NumMemCpyInstr; 00754 00755 return true; 00756 } 00757 00758 /// processMemCpyMemCpyDependence - We've found that the (upward scanning) 00759 /// memory dependence of memcpy 'M' is the memcpy 'MDep'. Try to simplify M to 00760 /// copy from MDep's input if we can. MSize is the size of M's copy. 00761 /// 00762 bool MemCpyOpt::processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep, 00763 uint64_t MSize) { 00764 // We can only transforms memcpy's where the dest of one is the source of the 00765 // other. 00766 if (M->getSource() != MDep->getDest() || MDep->isVolatile()) 00767 return false; 00768 00769 // If dep instruction is reading from our current input, then it is a noop 00770 // transfer and substituting the input won't change this instruction. Just 00771 // ignore the input and let someone else zap MDep. This handles cases like: 00772 // memcpy(a <- a) 00773 // memcpy(b <- a) 00774 if (M->getSource() == MDep->getSource()) 00775 return false; 00776 00777 // Second, the length of the memcpy's must be the same, or the preceding one 00778 // must be larger than the following one. 00779 ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength()); 00780 ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength()); 00781 if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue()) 00782 return false; 00783 00784 AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); 00785 00786 // Verify that the copied-from memory doesn't change in between the two 00787 // transfers. For example, in: 00788 // memcpy(a <- b) 00789 // *b = 42; 00790 // memcpy(c <- a) 00791 // It would be invalid to transform the second memcpy into memcpy(c <- b). 00792 // 00793 // TODO: If the code between M and MDep is transparent to the destination "c", 00794 // then we could still perform the xform by moving M up to the first memcpy. 00795 // 00796 // NOTE: This is conservative, it will stop on any read from the source loc, 00797 // not just the defining memcpy. 00798 MemDepResult SourceDep = 00799 MD->getPointerDependencyFrom(AA.getLocationForSource(MDep), 00800 false, M, M->getParent()); 00801 if (!SourceDep.isClobber() || SourceDep.getInst() != MDep) 00802 return false; 00803 00804 // If the dest of the second might alias the source of the first, then the 00805 // source and dest might overlap. We still want to eliminate the intermediate 00806 // value, but we have to generate a memmove instead of memcpy. 00807 bool UseMemMove = false; 00808 if (!AA.isNoAlias(AA.getLocationForDest(M), AA.getLocationForSource(MDep))) 00809 UseMemMove = true; 00810 00811 // If all checks passed, then we can transform M. 00812 00813 // Make sure to use the lesser of the alignment of the source and the dest 00814 // since we're changing where we're reading from, but don't want to increase 00815 // the alignment past what can be read from or written to. 00816 // TODO: Is this worth it if we're creating a less aligned memcpy? For 00817 // example we could be moving from movaps -> movq on x86. 00818 unsigned Align = std::min(MDep->getAlignment(), M->getAlignment()); 00819 00820 IRBuilder<> Builder(M); 00821 if (UseMemMove) 00822 Builder.CreateMemMove(M->getRawDest(), MDep->getRawSource(), M->getLength(), 00823 Align, M->isVolatile()); 00824 else 00825 Builder.CreateMemCpy(M->getRawDest(), MDep->getRawSource(), M->getLength(), 00826 Align, M->isVolatile()); 00827 00828 // Remove the instruction we're replacing. 00829 MD->removeInstruction(M); 00830 M->eraseFromParent(); 00831 ++NumMemCpyInstr; 00832 return true; 00833 } 00834 00835 00836 /// processMemCpy - perform simplification of memcpy's. If we have memcpy A 00837 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite 00838 /// B to be a memcpy from X to Z (or potentially a memmove, depending on 00839 /// circumstances). This allows later passes to remove the first memcpy 00840 /// altogether. 00841 bool MemCpyOpt::processMemCpy(MemCpyInst *M) { 00842 // We can only optimize non-volatile memcpy's. 00843 if (M->isVolatile()) return false; 00844 00845 // If the source and destination of the memcpy are the same, then zap it. 00846 if (M->getSource() == M->getDest()) { 00847 MD->removeInstruction(M); 00848 M->eraseFromParent(); 00849 return false; 00850 } 00851 00852 // If copying from a constant, try to turn the memcpy into a memset. 00853 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource())) 00854 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 00855 if (Value *ByteVal = isBytewiseValue(GV->getInitializer())) { 00856 IRBuilder<> Builder(M); 00857 Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(), 00858 M->getAlignment(), false); 00859 MD->removeInstruction(M); 00860 M->eraseFromParent(); 00861 ++NumCpyToSet; 00862 return true; 00863 } 00864 00865 // The optimizations after this point require the memcpy size. 00866 ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength()); 00867 if (!CopySize) return false; 00868 00869 // The are three possible optimizations we can do for memcpy: 00870 // a) memcpy-memcpy xform which exposes redundance for DSE. 00871 // b) call-memcpy xform for return slot optimization. 00872 // c) memcpy from freshly alloca'd space or space that has just started its 00873 // lifetime copies undefined data, and we can therefore eliminate the 00874 // memcpy in favor of the data that was already at the destination. 00875 MemDepResult DepInfo = MD->getDependency(M); 00876 if (DepInfo.isClobber()) { 00877 if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) { 00878 if (performCallSlotOptzn(M, M->getDest(), M->getSource(), 00879 CopySize->getZExtValue(), M->getAlignment(), 00880 C)) { 00881 MD->removeInstruction(M); 00882 M->eraseFromParent(); 00883 return true; 00884 } 00885 } 00886 } 00887 00888 AliasAnalysis::Location SrcLoc = AliasAnalysis::getLocationForSource(M); 00889 MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(SrcLoc, true, 00890 M, M->getParent()); 00891 if (SrcDepInfo.isClobber()) { 00892 if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst())) 00893 return processMemCpyMemCpyDependence(M, MDep, CopySize->getZExtValue()); 00894 } else if (SrcDepInfo.isDef()) { 00895 Instruction *I = SrcDepInfo.getInst(); 00896 bool hasUndefContents = false; 00897 00898 if (isa<AllocaInst>(I)) { 00899 hasUndefContents = true; 00900 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 00901 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 00902 if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0))) 00903 if (LTSize->getZExtValue() >= CopySize->getZExtValue()) 00904 hasUndefContents = true; 00905 } 00906 00907 if (hasUndefContents) { 00908 MD->removeInstruction(M); 00909 M->eraseFromParent(); 00910 ++NumMemCpyInstr; 00911 return true; 00912 } 00913 } 00914 00915 return false; 00916 } 00917 00918 /// processMemMove - Transforms memmove calls to memcpy calls when the src/dst 00919 /// are guaranteed not to alias. 00920 bool MemCpyOpt::processMemMove(MemMoveInst *M) { 00921 AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); 00922 00923 if (!TLI->has(LibFunc::memmove)) 00924 return false; 00925 00926 // See if the pointers alias. 00927 if (!AA.isNoAlias(AA.getLocationForDest(M), AA.getLocationForSource(M))) 00928 return false; 00929 00930 DEBUG(dbgs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M << "\n"); 00931 00932 // If not, then we know we can transform this. 00933 Module *Mod = M->getParent()->getParent()->getParent(); 00934 Type *ArgTys[3] = { M->getRawDest()->getType(), 00935 M->getRawSource()->getType(), 00936 M->getLength()->getType() }; 00937 M->setCalledFunction(Intrinsic::getDeclaration(Mod, Intrinsic::memcpy, 00938 ArgTys)); 00939 00940 // MemDep may have over conservative information about this instruction, just 00941 // conservatively flush it from the cache. 00942 MD->removeInstruction(M); 00943 00944 ++NumMoveToCpy; 00945 return true; 00946 } 00947 00948 /// processByValArgument - This is called on every byval argument in call sites. 00949 bool MemCpyOpt::processByValArgument(CallSite CS, unsigned ArgNo) { 00950 if (!DL) return false; 00951 00952 // Find out what feeds this byval argument. 00953 Value *ByValArg = CS.getArgument(ArgNo); 00954 Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType(); 00955 uint64_t ByValSize = DL->getTypeAllocSize(ByValTy); 00956 MemDepResult DepInfo = 00957 MD->getPointerDependencyFrom(AliasAnalysis::Location(ByValArg, ByValSize), 00958 true, CS.getInstruction(), 00959 CS.getInstruction()->getParent()); 00960 if (!DepInfo.isClobber()) 00961 return false; 00962 00963 // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by 00964 // a memcpy, see if we can byval from the source of the memcpy instead of the 00965 // result. 00966 MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst()); 00967 if (!MDep || MDep->isVolatile() || 00968 ByValArg->stripPointerCasts() != MDep->getDest()) 00969 return false; 00970 00971 // The length of the memcpy must be larger or equal to the size of the byval. 00972 ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength()); 00973 if (!C1 || C1->getValue().getZExtValue() < ByValSize) 00974 return false; 00975 00976 // Get the alignment of the byval. If the call doesn't specify the alignment, 00977 // then it is some target specific value that we can't know. 00978 unsigned ByValAlign = CS.getParamAlignment(ArgNo+1); 00979 if (ByValAlign == 0) return false; 00980 00981 // If it is greater than the memcpy, then we check to see if we can force the 00982 // source of the memcpy to the alignment we need. If we fail, we bail out. 00983 AssumptionTracker *AT = &getAnalysis<AssumptionTracker>(); 00984 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 00985 if (MDep->getAlignment() < ByValAlign && 00986 getOrEnforceKnownAlignment(MDep->getSource(),ByValAlign, 00987 DL, AT, CS.getInstruction(), &DT) < ByValAlign) 00988 return false; 00989 00990 // Verify that the copied-from memory doesn't change in between the memcpy and 00991 // the byval call. 00992 // memcpy(a <- b) 00993 // *b = 42; 00994 // foo(*a) 00995 // It would be invalid to transform the second memcpy into foo(*b). 00996 // 00997 // NOTE: This is conservative, it will stop on any read from the source loc, 00998 // not just the defining memcpy. 00999 MemDepResult SourceDep = 01000 MD->getPointerDependencyFrom(AliasAnalysis::getLocationForSource(MDep), 01001 false, CS.getInstruction(), MDep->getParent()); 01002 if (!SourceDep.isClobber() || SourceDep.getInst() != MDep) 01003 return false; 01004 01005 Value *TmpCast = MDep->getSource(); 01006 if (MDep->getSource()->getType() != ByValArg->getType()) 01007 TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(), 01008 "tmpcast", CS.getInstruction()); 01009 01010 DEBUG(dbgs() << "MemCpyOpt: Forwarding memcpy to byval:\n" 01011 << " " << *MDep << "\n" 01012 << " " << *CS.getInstruction() << "\n"); 01013 01014 // Otherwise we're good! Update the byval argument. 01015 CS.setArgument(ArgNo, TmpCast); 01016 ++NumMemCpyInstr; 01017 return true; 01018 } 01019 01020 /// iterateOnFunction - Executes one iteration of MemCpyOpt. 01021 bool MemCpyOpt::iterateOnFunction(Function &F) { 01022 bool MadeChange = false; 01023 01024 // Walk all instruction in the function. 01025 for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) { 01026 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) { 01027 // Avoid invalidating the iterator. 01028 Instruction *I = BI++; 01029 01030 bool RepeatInstruction = false; 01031 01032 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 01033 MadeChange |= processStore(SI, BI); 01034 else if (MemSetInst *M = dyn_cast<MemSetInst>(I)) 01035 RepeatInstruction = processMemSet(M, BI); 01036 else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I)) 01037 RepeatInstruction = processMemCpy(M); 01038 else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I)) 01039 RepeatInstruction = processMemMove(M); 01040 else if (CallSite CS = (Value*)I) { 01041 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 01042 if (CS.isByValArgument(i)) 01043 MadeChange |= processByValArgument(CS, i); 01044 } 01045 01046 // Reprocess the instruction if desired. 01047 if (RepeatInstruction) { 01048 if (BI != BB->begin()) --BI; 01049 MadeChange = true; 01050 } 01051 } 01052 } 01053 01054 return MadeChange; 01055 } 01056 01057 // MemCpyOpt::runOnFunction - This is the main transformation entry point for a 01058 // function. 01059 // 01060 bool MemCpyOpt::runOnFunction(Function &F) { 01061 if (skipOptnoneFunction(F)) 01062 return false; 01063 01064 bool MadeChange = false; 01065 MD = &getAnalysis<MemoryDependenceAnalysis>(); 01066 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 01067 DL = DLP ? &DLP->getDataLayout() : nullptr; 01068 TLI = &getAnalysis<TargetLibraryInfo>(); 01069 01070 // If we don't have at least memset and memcpy, there is little point of doing 01071 // anything here. These are required by a freestanding implementation, so if 01072 // even they are disabled, there is no point in trying hard. 01073 if (!TLI->has(LibFunc::memset) || !TLI->has(LibFunc::memcpy)) 01074 return false; 01075 01076 while (1) { 01077 if (!iterateOnFunction(F)) 01078 break; 01079 MadeChange = true; 01080 } 01081 01082 MD = nullptr; 01083 return MadeChange; 01084 }