LLVM API Documentation

PostOrderIterator.h
Go to the documentation of this file.
00001 //===- llvm/ADT/PostOrderIterator.h - PostOrder iterator --------*- C++ -*-===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This file builds on the ADT/GraphTraits.h file to build a generic graph
00011 // post order iterator.  This should work over any graph type that has a
00012 // GraphTraits specialization.
00013 //
00014 //===----------------------------------------------------------------------===//
00015 
00016 #ifndef LLVM_ADT_POSTORDERITERATOR_H
00017 #define LLVM_ADT_POSTORDERITERATOR_H
00018 
00019 #include "llvm/ADT/GraphTraits.h"
00020 #include "llvm/ADT/SmallPtrSet.h"
00021 #include <set>
00022 #include <vector>
00023 
00024 namespace llvm {
00025 
00026 // The po_iterator_storage template provides access to the set of already
00027 // visited nodes during the po_iterator's depth-first traversal.
00028 //
00029 // The default implementation simply contains a set of visited nodes, while
00030 // the Extended=true version uses a reference to an external set.
00031 //
00032 // It is possible to prune the depth-first traversal in several ways:
00033 //
00034 // - When providing an external set that already contains some graph nodes,
00035 //   those nodes won't be visited again. This is useful for restarting a
00036 //   post-order traversal on a graph with nodes that aren't dominated by a
00037 //   single node.
00038 //
00039 // - By providing a custom SetType class, unwanted graph nodes can be excluded
00040 //   by having the insert() function return false. This could for example
00041 //   confine a CFG traversal to blocks in a specific loop.
00042 //
00043 // - Finally, by specializing the po_iterator_storage template itself, graph
00044 //   edges can be pruned by returning false in the insertEdge() function. This
00045 //   could be used to remove loop back-edges from the CFG seen by po_iterator.
00046 //
00047 // A specialized po_iterator_storage class can observe both the pre-order and
00048 // the post-order. The insertEdge() function is called in a pre-order, while
00049 // the finishPostorder() function is called just before the po_iterator moves
00050 // on to the next node.
00051 
00052 /// Default po_iterator_storage implementation with an internal set object.
00053 template<class SetType, bool External>
00054 class po_iterator_storage {
00055   SetType Visited;
00056 public:
00057   // Return true if edge destination should be visited.
00058   template<typename NodeType>
00059   bool insertEdge(NodeType *From, NodeType *To) {
00060     return Visited.insert(To);
00061   }
00062 
00063   // Called after all children of BB have been visited.
00064   template<typename NodeType>
00065   void finishPostorder(NodeType *BB) {}
00066 };
00067 
00068 /// Specialization of po_iterator_storage that references an external set.
00069 template<class SetType>
00070 class po_iterator_storage<SetType, true> {
00071   SetType &Visited;
00072 public:
00073   po_iterator_storage(SetType &VSet) : Visited(VSet) {}
00074   po_iterator_storage(const po_iterator_storage &S) : Visited(S.Visited) {}
00075 
00076   // Return true if edge destination should be visited, called with From = 0 for
00077   // the root node.
00078   // Graph edges can be pruned by specializing this function.
00079   template<class NodeType>
00080   bool insertEdge(NodeType *From, NodeType *To) { return Visited.insert(To); }
00081 
00082   // Called after all children of BB have been visited.
00083   template<class NodeType>
00084   void finishPostorder(NodeType *BB) {}
00085 };
00086 
00087 template<class GraphT,
00088   class SetType = llvm::SmallPtrSet<typename GraphTraits<GraphT>::NodeType*, 8>,
00089   bool ExtStorage = false,
00090   class GT = GraphTraits<GraphT> >
00091 class po_iterator : public std::iterator<std::forward_iterator_tag,
00092                                          typename GT::NodeType, ptrdiff_t>,
00093                     public po_iterator_storage<SetType, ExtStorage> {
00094   typedef std::iterator<std::forward_iterator_tag,
00095                         typename GT::NodeType, ptrdiff_t> super;
00096   typedef typename GT::NodeType          NodeType;
00097   typedef typename GT::ChildIteratorType ChildItTy;
00098 
00099   // VisitStack - Used to maintain the ordering.  Top = current block
00100   // First element is basic block pointer, second is the 'next child' to visit
00101   std::vector<std::pair<NodeType *, ChildItTy> > VisitStack;
00102 
00103   void traverseChild() {
00104     while (VisitStack.back().second != GT::child_end(VisitStack.back().first)) {
00105       NodeType *BB = *VisitStack.back().second++;
00106       if (this->insertEdge(VisitStack.back().first, BB)) {
00107         // If the block is not visited...
00108         VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
00109       }
00110     }
00111   }
00112 
00113   inline po_iterator(NodeType *BB) {
00114     this->insertEdge((NodeType*)nullptr, BB);
00115     VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
00116     traverseChild();
00117   }
00118   inline po_iterator() {} // End is when stack is empty.
00119 
00120   inline po_iterator(NodeType *BB, SetType &S) :
00121     po_iterator_storage<SetType, ExtStorage>(S) {
00122     if (this->insertEdge((NodeType*)nullptr, BB)) {
00123       VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
00124       traverseChild();
00125     }
00126   }
00127 
00128   inline po_iterator(SetType &S) :
00129       po_iterator_storage<SetType, ExtStorage>(S) {
00130   } // End is when stack is empty.
00131 public:
00132   typedef typename super::pointer pointer;
00133   typedef po_iterator<GraphT, SetType, ExtStorage, GT> _Self;
00134 
00135   // Provide static "constructors"...
00136   static inline _Self begin(GraphT G) { return _Self(GT::getEntryNode(G)); }
00137   static inline _Self end  (GraphT G) { return _Self(); }
00138 
00139   static inline _Self begin(GraphT G, SetType &S) {
00140     return _Self(GT::getEntryNode(G), S);
00141   }
00142   static inline _Self end  (GraphT G, SetType &S) { return _Self(S); }
00143 
00144   inline bool operator==(const _Self& x) const {
00145     return VisitStack == x.VisitStack;
00146   }
00147   inline bool operator!=(const _Self& x) const { return !operator==(x); }
00148 
00149   inline pointer operator*() const {
00150     return VisitStack.back().first;
00151   }
00152 
00153   // This is a nonstandard operator-> that dereferences the pointer an extra
00154   // time... so that you can actually call methods ON the BasicBlock, because
00155   // the contained type is a pointer.  This allows BBIt->getTerminator() f.e.
00156   //
00157   inline NodeType *operator->() const { return operator*(); }
00158 
00159   inline _Self& operator++() {   // Preincrement
00160     this->finishPostorder(VisitStack.back().first);
00161     VisitStack.pop_back();
00162     if (!VisitStack.empty())
00163       traverseChild();
00164     return *this;
00165   }
00166 
00167   inline _Self operator++(int) { // Postincrement
00168     _Self tmp = *this; ++*this; return tmp;
00169   }
00170 };
00171 
00172 // Provide global constructors that automatically figure out correct types...
00173 //
00174 template <class T>
00175 po_iterator<T> po_begin(T G) { return po_iterator<T>::begin(G); }
00176 template <class T>
00177 po_iterator<T> po_end  (T G) { return po_iterator<T>::end(G); }
00178 
00179 // Provide global definitions of external postorder iterators...
00180 template<class T, class SetType=std::set<typename GraphTraits<T>::NodeType*> >
00181 struct po_ext_iterator : public po_iterator<T, SetType, true> {
00182   po_ext_iterator(const po_iterator<T, SetType, true> &V) :
00183   po_iterator<T, SetType, true>(V) {}
00184 };
00185 
00186 template<class T, class SetType>
00187 po_ext_iterator<T, SetType> po_ext_begin(T G, SetType &S) {
00188   return po_ext_iterator<T, SetType>::begin(G, S);
00189 }
00190 
00191 template<class T, class SetType>
00192 po_ext_iterator<T, SetType> po_ext_end(T G, SetType &S) {
00193   return po_ext_iterator<T, SetType>::end(G, S);
00194 }
00195 
00196 // Provide global definitions of inverse post order iterators...
00197 template <class T,
00198           class SetType = std::set<typename GraphTraits<T>::NodeType*>,
00199           bool External = false>
00200 struct ipo_iterator : public po_iterator<Inverse<T>, SetType, External > {
00201   ipo_iterator(const po_iterator<Inverse<T>, SetType, External> &V) :
00202      po_iterator<Inverse<T>, SetType, External> (V) {}
00203 };
00204 
00205 template <class T>
00206 ipo_iterator<T> ipo_begin(T G, bool Reverse = false) {
00207   return ipo_iterator<T>::begin(G, Reverse);
00208 }
00209 
00210 template <class T>
00211 ipo_iterator<T> ipo_end(T G){
00212   return ipo_iterator<T>::end(G);
00213 }
00214 
00215 // Provide global definitions of external inverse postorder iterators...
00216 template <class T,
00217           class SetType = std::set<typename GraphTraits<T>::NodeType*> >
00218 struct ipo_ext_iterator : public ipo_iterator<T, SetType, true> {
00219   ipo_ext_iterator(const ipo_iterator<T, SetType, true> &V) :
00220     ipo_iterator<T, SetType, true>(V) {}
00221   ipo_ext_iterator(const po_iterator<Inverse<T>, SetType, true> &V) :
00222     ipo_iterator<T, SetType, true>(V) {}
00223 };
00224 
00225 template <class T, class SetType>
00226 ipo_ext_iterator<T, SetType> ipo_ext_begin(T G, SetType &S) {
00227   return ipo_ext_iterator<T, SetType>::begin(G, S);
00228 }
00229 
00230 template <class T, class SetType>
00231 ipo_ext_iterator<T, SetType> ipo_ext_end(T G, SetType &S) {
00232   return ipo_ext_iterator<T, SetType>::end(G, S);
00233 }
00234 
00235 //===--------------------------------------------------------------------===//
00236 // Reverse Post Order CFG iterator code
00237 //===--------------------------------------------------------------------===//
00238 //
00239 // This is used to visit basic blocks in a method in reverse post order.  This
00240 // class is awkward to use because I don't know a good incremental algorithm to
00241 // computer RPO from a graph.  Because of this, the construction of the
00242 // ReversePostOrderTraversal object is expensive (it must walk the entire graph
00243 // with a postorder iterator to build the data structures).  The moral of this
00244 // story is: Don't create more ReversePostOrderTraversal classes than necessary.
00245 //
00246 // This class should be used like this:
00247 // {
00248 //   ReversePostOrderTraversal<Function*> RPOT(FuncPtr); // Expensive to create
00249 //   for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
00250 //      ...
00251 //   }
00252 //   for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
00253 //      ...
00254 //   }
00255 // }
00256 //
00257 
00258 template<class GraphT, class GT = GraphTraits<GraphT> >
00259 class ReversePostOrderTraversal {
00260   typedef typename GT::NodeType NodeType;
00261   std::vector<NodeType*> Blocks;       // Block list in normal PO order
00262   inline void Initialize(NodeType *BB) {
00263     std::copy(po_begin(BB), po_end(BB), std::back_inserter(Blocks));
00264   }
00265 public:
00266   typedef typename std::vector<NodeType*>::reverse_iterator rpo_iterator;
00267 
00268   inline ReversePostOrderTraversal(GraphT G) {
00269     Initialize(GT::getEntryNode(G));
00270   }
00271 
00272   // Because we want a reverse post order, use reverse iterators from the vector
00273   inline rpo_iterator begin() { return Blocks.rbegin(); }
00274   inline rpo_iterator end()   { return Blocks.rend(); }
00275 };
00276 
00277 } // End llvm namespace
00278 
00279 #endif