LLVM API Documentation
00001 //===- llvm/TableGen/Record.h - Classes for Table Records -------*- C++ -*-===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file defines the main TableGen data structures, including the TableGen 00011 // types, values, and high-level data structures. 00012 // 00013 //===----------------------------------------------------------------------===// 00014 00015 #ifndef LLVM_TABLEGEN_RECORD_H 00016 #define LLVM_TABLEGEN_RECORD_H 00017 00018 #include "llvm/ADT/ArrayRef.h" 00019 #include "llvm/ADT/FoldingSet.h" 00020 #include "llvm/Support/Allocator.h" 00021 #include "llvm/Support/Casting.h" 00022 #include "llvm/Support/DataTypes.h" 00023 #include "llvm/Support/ErrorHandling.h" 00024 #include "llvm/Support/SourceMgr.h" 00025 #include "llvm/Support/raw_ostream.h" 00026 #include <map> 00027 00028 namespace llvm { 00029 class raw_ostream; 00030 00031 // RecTy subclasses. 00032 class BitRecTy; 00033 class BitsRecTy; 00034 class IntRecTy; 00035 class StringRecTy; 00036 class ListRecTy; 00037 class DagRecTy; 00038 class RecordRecTy; 00039 00040 // Init subclasses. 00041 class Init; 00042 class UnsetInit; 00043 class BitInit; 00044 class BitsInit; 00045 class IntInit; 00046 class StringInit; 00047 class ListInit; 00048 class UnOpInit; 00049 class BinOpInit; 00050 class TernOpInit; 00051 class DefInit; 00052 class DagInit; 00053 class TypedInit; 00054 class VarInit; 00055 class FieldInit; 00056 class VarBitInit; 00057 class VarListElementInit; 00058 00059 // Other classes. 00060 class Record; 00061 class RecordVal; 00062 struct MultiClass; 00063 class RecordKeeper; 00064 00065 //===----------------------------------------------------------------------===// 00066 // Type Classes 00067 //===----------------------------------------------------------------------===// 00068 00069 class RecTy { 00070 public: 00071 /// \brief Subclass discriminator (for dyn_cast<> et al.) 00072 enum RecTyKind { 00073 BitRecTyKind, 00074 BitsRecTyKind, 00075 IntRecTyKind, 00076 StringRecTyKind, 00077 ListRecTyKind, 00078 DagRecTyKind, 00079 RecordRecTyKind 00080 }; 00081 00082 private: 00083 RecTyKind Kind; 00084 ListRecTy *ListTy; 00085 virtual void anchor(); 00086 00087 public: 00088 RecTyKind getRecTyKind() const { return Kind; } 00089 00090 RecTy(RecTyKind K) : Kind(K), ListTy(nullptr) {} 00091 virtual ~RecTy() {} 00092 00093 virtual std::string getAsString() const = 0; 00094 void print(raw_ostream &OS) const { OS << getAsString(); } 00095 void dump() const; 00096 00097 /// typeIsConvertibleTo - Return true if all values of 'this' type can be 00098 /// converted to the specified type. 00099 virtual bool typeIsConvertibleTo(const RecTy *RHS) const = 0; 00100 00101 /// getListTy - Returns the type representing list<this>. 00102 ListRecTy *getListTy(); 00103 00104 public: // These methods should only be called from subclasses of Init 00105 virtual Init *convertValue( UnsetInit *UI) { return nullptr; } 00106 virtual Init *convertValue( BitInit *BI) { return nullptr; } 00107 virtual Init *convertValue( BitsInit *BI) { return nullptr; } 00108 virtual Init *convertValue( IntInit *II) { return nullptr; } 00109 virtual Init *convertValue(StringInit *SI) { return nullptr; } 00110 virtual Init *convertValue( ListInit *LI) { return nullptr; } 00111 virtual Init *convertValue( UnOpInit *UI) { 00112 return convertValue((TypedInit*)UI); 00113 } 00114 virtual Init *convertValue( BinOpInit *UI) { 00115 return convertValue((TypedInit*)UI); 00116 } 00117 virtual Init *convertValue( TernOpInit *UI) { 00118 return convertValue((TypedInit*)UI); 00119 } 00120 virtual Init *convertValue(VarBitInit *VB) { return nullptr; } 00121 virtual Init *convertValue( DefInit *DI) { return nullptr; } 00122 virtual Init *convertValue( DagInit *DI) { return nullptr; } 00123 virtual Init *convertValue( TypedInit *TI) { return nullptr; } 00124 virtual Init *convertValue( VarInit *VI) { 00125 return convertValue((TypedInit*)VI); 00126 } 00127 virtual Init *convertValue( FieldInit *FI) { 00128 return convertValue((TypedInit*)FI); 00129 } 00130 00131 public: 00132 virtual bool baseClassOf(const RecTy*) const; 00133 }; 00134 00135 inline raw_ostream &operator<<(raw_ostream &OS, const RecTy &Ty) { 00136 Ty.print(OS); 00137 return OS; 00138 } 00139 00140 /// BitRecTy - 'bit' - Represent a single bit 00141 /// 00142 class BitRecTy : public RecTy { 00143 static BitRecTy Shared; 00144 BitRecTy() : RecTy(BitRecTyKind) {} 00145 00146 public: 00147 static bool classof(const RecTy *RT) { 00148 return RT->getRecTyKind() == BitRecTyKind; 00149 } 00150 00151 static BitRecTy *get() { return &Shared; } 00152 00153 Init *convertValue( UnsetInit *UI) override { return (Init*)UI; } 00154 Init *convertValue( BitInit *BI) override { return (Init*)BI; } 00155 Init *convertValue( BitsInit *BI) override; 00156 Init *convertValue( IntInit *II) override; 00157 Init *convertValue(StringInit *SI) override { return nullptr; } 00158 Init *convertValue( ListInit *LI) override { return nullptr; } 00159 Init *convertValue(VarBitInit *VB) override { return (Init*)VB; } 00160 Init *convertValue( DefInit *DI) override { return nullptr; } 00161 Init *convertValue( DagInit *DI) override { return nullptr; } 00162 Init *convertValue( UnOpInit *UI) override { return RecTy::convertValue(UI);} 00163 Init *convertValue( BinOpInit *UI) override { return RecTy::convertValue(UI);} 00164 Init *convertValue( TernOpInit *UI) override {return RecTy::convertValue(UI);} 00165 Init *convertValue( TypedInit *TI) override; 00166 Init *convertValue( VarInit *VI) override { return RecTy::convertValue(VI);} 00167 Init *convertValue( FieldInit *FI) override { return RecTy::convertValue(FI);} 00168 00169 std::string getAsString() const override { return "bit"; } 00170 00171 bool typeIsConvertibleTo(const RecTy *RHS) const override { 00172 return RHS->baseClassOf(this); 00173 } 00174 bool baseClassOf(const RecTy*) const override; 00175 }; 00176 00177 /// BitsRecTy - 'bits<n>' - Represent a fixed number of bits 00178 /// 00179 class BitsRecTy : public RecTy { 00180 unsigned Size; 00181 explicit BitsRecTy(unsigned Sz) : RecTy(BitsRecTyKind), Size(Sz) {} 00182 00183 public: 00184 static bool classof(const RecTy *RT) { 00185 return RT->getRecTyKind() == BitsRecTyKind; 00186 } 00187 00188 static BitsRecTy *get(unsigned Sz); 00189 00190 unsigned getNumBits() const { return Size; } 00191 00192 Init *convertValue( UnsetInit *UI) override; 00193 Init *convertValue( BitInit *UI) override; 00194 Init *convertValue( BitsInit *BI) override; 00195 Init *convertValue( IntInit *II) override; 00196 Init *convertValue(StringInit *SI) override { return nullptr; } 00197 Init *convertValue( ListInit *LI) override { return nullptr; } 00198 Init *convertValue(VarBitInit *VB) override { return nullptr; } 00199 Init *convertValue( DefInit *DI) override { return nullptr; } 00200 Init *convertValue( DagInit *DI) override { return nullptr; } 00201 Init *convertValue( UnOpInit *UI) override { return RecTy::convertValue(UI);} 00202 Init *convertValue( BinOpInit *UI) override { return RecTy::convertValue(UI);} 00203 Init *convertValue(TernOpInit *UI) override { return RecTy::convertValue(UI);} 00204 Init *convertValue( TypedInit *TI) override; 00205 Init *convertValue( VarInit *VI) override { return RecTy::convertValue(VI);} 00206 Init *convertValue( FieldInit *FI) override { return RecTy::convertValue(FI);} 00207 00208 std::string getAsString() const override; 00209 00210 bool typeIsConvertibleTo(const RecTy *RHS) const override { 00211 return RHS->baseClassOf(this); 00212 } 00213 bool baseClassOf(const RecTy*) const override; 00214 }; 00215 00216 /// IntRecTy - 'int' - Represent an integer value of no particular size 00217 /// 00218 class IntRecTy : public RecTy { 00219 static IntRecTy Shared; 00220 IntRecTy() : RecTy(IntRecTyKind) {} 00221 00222 public: 00223 static bool classof(const RecTy *RT) { 00224 return RT->getRecTyKind() == IntRecTyKind; 00225 } 00226 00227 static IntRecTy *get() { return &Shared; } 00228 00229 Init *convertValue( UnsetInit *UI) override { return (Init*)UI; } 00230 Init *convertValue( BitInit *BI) override; 00231 Init *convertValue( BitsInit *BI) override; 00232 Init *convertValue( IntInit *II) override { return (Init*)II; } 00233 Init *convertValue(StringInit *SI) override { return nullptr; } 00234 Init *convertValue( ListInit *LI) override { return nullptr; } 00235 Init *convertValue(VarBitInit *VB) override { return nullptr; } 00236 Init *convertValue( DefInit *DI) override { return nullptr; } 00237 Init *convertValue( DagInit *DI) override { return nullptr; } 00238 Init *convertValue( UnOpInit *UI) override { return RecTy::convertValue(UI);} 00239 Init *convertValue( BinOpInit *UI) override { return RecTy::convertValue(UI);} 00240 Init *convertValue( TernOpInit *UI) override {return RecTy::convertValue(UI);} 00241 Init *convertValue( TypedInit *TI) override; 00242 Init *convertValue( VarInit *VI) override { return RecTy::convertValue(VI);} 00243 Init *convertValue( FieldInit *FI) override { return RecTy::convertValue(FI);} 00244 00245 std::string getAsString() const override { return "int"; } 00246 00247 bool typeIsConvertibleTo(const RecTy *RHS) const override { 00248 return RHS->baseClassOf(this); 00249 } 00250 00251 bool baseClassOf(const RecTy*) const override; 00252 }; 00253 00254 /// StringRecTy - 'string' - Represent an string value 00255 /// 00256 class StringRecTy : public RecTy { 00257 static StringRecTy Shared; 00258 StringRecTy() : RecTy(StringRecTyKind) {} 00259 00260 public: 00261 static bool classof(const RecTy *RT) { 00262 return RT->getRecTyKind() == StringRecTyKind; 00263 } 00264 00265 static StringRecTy *get() { return &Shared; } 00266 00267 Init *convertValue( UnsetInit *UI) override { return (Init*)UI; } 00268 Init *convertValue( BitInit *BI) override { return nullptr; } 00269 Init *convertValue( BitsInit *BI) override { return nullptr; } 00270 Init *convertValue( IntInit *II) override { return nullptr; } 00271 Init *convertValue(StringInit *SI) override { return (Init*)SI; } 00272 Init *convertValue( ListInit *LI) override { return nullptr; } 00273 Init *convertValue( UnOpInit *BO) override; 00274 Init *convertValue( BinOpInit *BO) override; 00275 Init *convertValue( TernOpInit *BO) override {return RecTy::convertValue(BO);} 00276 00277 Init *convertValue(VarBitInit *VB) override { return nullptr; } 00278 Init *convertValue( DefInit *DI) override { return nullptr; } 00279 Init *convertValue( DagInit *DI) override { return nullptr; } 00280 Init *convertValue( TypedInit *TI) override; 00281 Init *convertValue( VarInit *VI) override { return RecTy::convertValue(VI);} 00282 Init *convertValue( FieldInit *FI) override { return RecTy::convertValue(FI);} 00283 00284 std::string getAsString() const override { return "string"; } 00285 00286 bool typeIsConvertibleTo(const RecTy *RHS) const override { 00287 return RHS->baseClassOf(this); 00288 } 00289 }; 00290 00291 /// ListRecTy - 'list<Ty>' - Represent a list of values, all of which must be of 00292 /// the specified type. 00293 /// 00294 class ListRecTy : public RecTy { 00295 RecTy *Ty; 00296 explicit ListRecTy(RecTy *T) : RecTy(ListRecTyKind), Ty(T) {} 00297 friend ListRecTy *RecTy::getListTy(); 00298 00299 public: 00300 static bool classof(const RecTy *RT) { 00301 return RT->getRecTyKind() == ListRecTyKind; 00302 } 00303 00304 static ListRecTy *get(RecTy *T) { return T->getListTy(); } 00305 RecTy *getElementType() const { return Ty; } 00306 00307 Init *convertValue( UnsetInit *UI) override { return (Init*)UI; } 00308 Init *convertValue( BitInit *BI) override { return nullptr; } 00309 Init *convertValue( BitsInit *BI) override { return nullptr; } 00310 Init *convertValue( IntInit *II) override { return nullptr; } 00311 Init *convertValue(StringInit *SI) override { return nullptr; } 00312 Init *convertValue( ListInit *LI) override; 00313 Init *convertValue(VarBitInit *VB) override { return nullptr; } 00314 Init *convertValue( DefInit *DI) override { return nullptr; } 00315 Init *convertValue( DagInit *DI) override { return nullptr; } 00316 Init *convertValue( UnOpInit *UI) override { return RecTy::convertValue(UI);} 00317 Init *convertValue( BinOpInit *UI) override { return RecTy::convertValue(UI);} 00318 Init *convertValue(TernOpInit *UI) override { return RecTy::convertValue(UI);} 00319 Init *convertValue( TypedInit *TI) override; 00320 Init *convertValue( VarInit *VI) override { return RecTy::convertValue(VI);} 00321 Init *convertValue( FieldInit *FI) override { return RecTy::convertValue(FI);} 00322 00323 std::string getAsString() const override; 00324 00325 bool typeIsConvertibleTo(const RecTy *RHS) const override { 00326 return RHS->baseClassOf(this); 00327 } 00328 00329 bool baseClassOf(const RecTy*) const override; 00330 }; 00331 00332 /// DagRecTy - 'dag' - Represent a dag fragment 00333 /// 00334 class DagRecTy : public RecTy { 00335 static DagRecTy Shared; 00336 DagRecTy() : RecTy(DagRecTyKind) {} 00337 00338 public: 00339 static bool classof(const RecTy *RT) { 00340 return RT->getRecTyKind() == DagRecTyKind; 00341 } 00342 00343 static DagRecTy *get() { return &Shared; } 00344 00345 Init *convertValue( UnsetInit *UI) override { return (Init*)UI; } 00346 Init *convertValue( BitInit *BI) override { return nullptr; } 00347 Init *convertValue( BitsInit *BI) override { return nullptr; } 00348 Init *convertValue( IntInit *II) override { return nullptr; } 00349 Init *convertValue(StringInit *SI) override { return nullptr; } 00350 Init *convertValue( ListInit *LI) override { return nullptr; } 00351 Init *convertValue(VarBitInit *VB) override { return nullptr; } 00352 Init *convertValue( DefInit *DI) override { return nullptr; } 00353 Init *convertValue( UnOpInit *BO) override; 00354 Init *convertValue( BinOpInit *BO) override; 00355 Init *convertValue( TernOpInit *BO) override {return RecTy::convertValue(BO);} 00356 Init *convertValue( DagInit *CI) override { return (Init*)CI; } 00357 Init *convertValue( TypedInit *TI) override; 00358 Init *convertValue( VarInit *VI) override { return RecTy::convertValue(VI);} 00359 Init *convertValue( FieldInit *FI) override { return RecTy::convertValue(FI);} 00360 00361 std::string getAsString() const override { return "dag"; } 00362 00363 bool typeIsConvertibleTo(const RecTy *RHS) const override { 00364 return RHS->baseClassOf(this); 00365 } 00366 }; 00367 00368 /// RecordRecTy - '[classname]' - Represent an instance of a class, such as: 00369 /// (R32 X = EAX). 00370 /// 00371 class RecordRecTy : public RecTy { 00372 Record *Rec; 00373 explicit RecordRecTy(Record *R) : RecTy(RecordRecTyKind), Rec(R) {} 00374 friend class Record; 00375 00376 public: 00377 static bool classof(const RecTy *RT) { 00378 return RT->getRecTyKind() == RecordRecTyKind; 00379 } 00380 00381 static RecordRecTy *get(Record *R); 00382 00383 Record *getRecord() const { return Rec; } 00384 00385 Init *convertValue( UnsetInit *UI) override { return (Init*)UI; } 00386 Init *convertValue( BitInit *BI) override { return nullptr; } 00387 Init *convertValue( BitsInit *BI) override { return nullptr; } 00388 Init *convertValue( IntInit *II) override { return nullptr; } 00389 Init *convertValue(StringInit *SI) override { return nullptr; } 00390 Init *convertValue( ListInit *LI) override { return nullptr; } 00391 Init *convertValue(VarBitInit *VB) override { return nullptr; } 00392 Init *convertValue( UnOpInit *UI) override { return RecTy::convertValue(UI);} 00393 Init *convertValue( BinOpInit *UI) override { return RecTy::convertValue(UI);} 00394 Init *convertValue( TernOpInit *UI) override {return RecTy::convertValue(UI);} 00395 Init *convertValue( DefInit *DI) override; 00396 Init *convertValue( DagInit *DI) override { return nullptr; } 00397 Init *convertValue( TypedInit *VI) override; 00398 Init *convertValue( VarInit *VI) override { return RecTy::convertValue(VI);} 00399 Init *convertValue( FieldInit *FI) override { return RecTy::convertValue(FI);} 00400 00401 std::string getAsString() const override; 00402 00403 bool typeIsConvertibleTo(const RecTy *RHS) const override { 00404 return RHS->baseClassOf(this); 00405 } 00406 bool baseClassOf(const RecTy*) const override; 00407 }; 00408 00409 /// resolveTypes - Find a common type that T1 and T2 convert to. 00410 /// Return 0 if no such type exists. 00411 /// 00412 RecTy *resolveTypes(RecTy *T1, RecTy *T2); 00413 00414 //===----------------------------------------------------------------------===// 00415 // Initializer Classes 00416 //===----------------------------------------------------------------------===// 00417 00418 class Init { 00419 protected: 00420 /// \brief Discriminator enum (for isa<>, dyn_cast<>, et al.) 00421 /// 00422 /// This enum is laid out by a preorder traversal of the inheritance 00423 /// hierarchy, and does not contain an entry for abstract classes, as per 00424 /// the recommendation in docs/HowToSetUpLLVMStyleRTTI.rst. 00425 /// 00426 /// We also explicitly include "first" and "last" values for each 00427 /// interior node of the inheritance tree, to make it easier to read the 00428 /// corresponding classof(). 00429 /// 00430 /// We could pack these a bit tighter by not having the IK_FirstXXXInit 00431 /// and IK_LastXXXInit be their own values, but that would degrade 00432 /// readability for really no benefit. 00433 enum InitKind { 00434 IK_BitInit, 00435 IK_FirstTypedInit, 00436 IK_BitsInit, 00437 IK_DagInit, 00438 IK_DefInit, 00439 IK_FieldInit, 00440 IK_IntInit, 00441 IK_ListInit, 00442 IK_FirstOpInit, 00443 IK_BinOpInit, 00444 IK_TernOpInit, 00445 IK_UnOpInit, 00446 IK_LastOpInit, 00447 IK_StringInit, 00448 IK_VarInit, 00449 IK_VarListElementInit, 00450 IK_LastTypedInit, 00451 IK_UnsetInit, 00452 IK_VarBitInit 00453 }; 00454 00455 private: 00456 const InitKind Kind; 00457 Init(const Init &) LLVM_DELETED_FUNCTION; 00458 Init &operator=(const Init &) LLVM_DELETED_FUNCTION; 00459 virtual void anchor(); 00460 00461 public: 00462 InitKind getKind() const { return Kind; } 00463 00464 protected: 00465 explicit Init(InitKind K) : Kind(K) {} 00466 00467 public: 00468 virtual ~Init() {} 00469 00470 /// isComplete - This virtual method should be overridden by values that may 00471 /// not be completely specified yet. 00472 virtual bool isComplete() const { return true; } 00473 00474 /// print - Print out this value. 00475 void print(raw_ostream &OS) const { OS << getAsString(); } 00476 00477 /// getAsString - Convert this value to a string form. 00478 virtual std::string getAsString() const = 0; 00479 /// getAsUnquotedString - Convert this value to a string form, 00480 /// without adding quote markers. This primaruly affects 00481 /// StringInits where we will not surround the string value with 00482 /// quotes. 00483 virtual std::string getAsUnquotedString() const { return getAsString(); } 00484 00485 /// dump - Debugging method that may be called through a debugger, just 00486 /// invokes print on stderr. 00487 void dump() const; 00488 00489 /// convertInitializerTo - This virtual function is a simple call-back 00490 /// function that should be overridden to call the appropriate 00491 /// RecTy::convertValue method. 00492 /// 00493 virtual Init *convertInitializerTo(RecTy *Ty) const = 0; 00494 00495 /// convertInitializerBitRange - This method is used to implement the bitrange 00496 /// selection operator. Given an initializer, it selects the specified bits 00497 /// out, returning them as a new init of bits type. If it is not legal to use 00498 /// the bit subscript operator on this initializer, return null. 00499 /// 00500 virtual Init * 00501 convertInitializerBitRange(const std::vector<unsigned> &Bits) const { 00502 return nullptr; 00503 } 00504 00505 /// convertInitListSlice - This method is used to implement the list slice 00506 /// selection operator. Given an initializer, it selects the specified list 00507 /// elements, returning them as a new init of list type. If it is not legal 00508 /// to take a slice of this, return null. 00509 /// 00510 virtual Init * 00511 convertInitListSlice(const std::vector<unsigned> &Elements) const { 00512 return nullptr; 00513 } 00514 00515 /// getFieldType - This method is used to implement the FieldInit class. 00516 /// Implementors of this method should return the type of the named field if 00517 /// they are of record type. 00518 /// 00519 virtual RecTy *getFieldType(const std::string &FieldName) const { 00520 return nullptr; 00521 } 00522 00523 /// getFieldInit - This method complements getFieldType to return the 00524 /// initializer for the specified field. If getFieldType returns non-null 00525 /// this method should return non-null, otherwise it returns null. 00526 /// 00527 virtual Init *getFieldInit(Record &R, const RecordVal *RV, 00528 const std::string &FieldName) const { 00529 return nullptr; 00530 } 00531 00532 /// resolveReferences - This method is used by classes that refer to other 00533 /// variables which may not be defined at the time the expression is formed. 00534 /// If a value is set for the variable later, this method will be called on 00535 /// users of the value to allow the value to propagate out. 00536 /// 00537 virtual Init *resolveReferences(Record &R, const RecordVal *RV) const { 00538 return const_cast<Init *>(this); 00539 } 00540 00541 /// getBit - This method is used to return the initializer for the specified 00542 /// bit. 00543 virtual Init *getBit(unsigned Bit) const = 0; 00544 00545 /// getBitVar - This method is used to retrieve the initializer for bit 00546 /// reference. For non-VarBitInit, it simply returns itself. 00547 virtual Init *getBitVar() const { return const_cast<Init*>(this); } 00548 00549 /// getBitNum - This method is used to retrieve the bit number of a bit 00550 /// reference. For non-VarBitInit, it simply returns 0. 00551 virtual unsigned getBitNum() const { return 0; } 00552 }; 00553 00554 inline raw_ostream &operator<<(raw_ostream &OS, const Init &I) { 00555 I.print(OS); return OS; 00556 } 00557 00558 /// TypedInit - This is the common super-class of types that have a specific, 00559 /// explicit, type. 00560 /// 00561 class TypedInit : public Init { 00562 RecTy *Ty; 00563 00564 TypedInit(const TypedInit &Other) LLVM_DELETED_FUNCTION; 00565 TypedInit &operator=(const TypedInit &Other) LLVM_DELETED_FUNCTION; 00566 00567 protected: 00568 explicit TypedInit(InitKind K, RecTy *T) : Init(K), Ty(T) {} 00569 00570 public: 00571 static bool classof(const Init *I) { 00572 return I->getKind() >= IK_FirstTypedInit && 00573 I->getKind() <= IK_LastTypedInit; 00574 } 00575 RecTy *getType() const { return Ty; } 00576 00577 Init * 00578 convertInitializerBitRange(const std::vector<unsigned> &Bits) const override; 00579 Init * 00580 convertInitListSlice(const std::vector<unsigned> &Elements) const override; 00581 00582 /// getFieldType - This method is used to implement the FieldInit class. 00583 /// Implementors of this method should return the type of the named field if 00584 /// they are of record type. 00585 /// 00586 RecTy *getFieldType(const std::string &FieldName) const override; 00587 00588 /// resolveListElementReference - This method is used to implement 00589 /// VarListElementInit::resolveReferences. If the list element is resolvable 00590 /// now, we return the resolved value, otherwise we return null. 00591 virtual Init *resolveListElementReference(Record &R, const RecordVal *RV, 00592 unsigned Elt) const = 0; 00593 }; 00594 00595 /// UnsetInit - ? - Represents an uninitialized value 00596 /// 00597 class UnsetInit : public Init { 00598 UnsetInit() : Init(IK_UnsetInit) {} 00599 UnsetInit(const UnsetInit &) LLVM_DELETED_FUNCTION; 00600 UnsetInit &operator=(const UnsetInit &Other) LLVM_DELETED_FUNCTION; 00601 void anchor() override; 00602 00603 public: 00604 static bool classof(const Init *I) { 00605 return I->getKind() == IK_UnsetInit; 00606 } 00607 static UnsetInit *get(); 00608 00609 Init *convertInitializerTo(RecTy *Ty) const override { 00610 return Ty->convertValue(const_cast<UnsetInit *>(this)); 00611 } 00612 00613 Init *getBit(unsigned Bit) const override { 00614 return const_cast<UnsetInit*>(this); 00615 } 00616 00617 bool isComplete() const override { return false; } 00618 std::string getAsString() const override { return "?"; } 00619 }; 00620 00621 /// BitInit - true/false - Represent a concrete initializer for a bit. 00622 /// 00623 class BitInit : public Init { 00624 bool Value; 00625 00626 explicit BitInit(bool V) : Init(IK_BitInit), Value(V) {} 00627 BitInit(const BitInit &Other) LLVM_DELETED_FUNCTION; 00628 BitInit &operator=(BitInit &Other) LLVM_DELETED_FUNCTION; 00629 void anchor() override; 00630 00631 public: 00632 static bool classof(const Init *I) { 00633 return I->getKind() == IK_BitInit; 00634 } 00635 static BitInit *get(bool V); 00636 00637 bool getValue() const { return Value; } 00638 00639 Init *convertInitializerTo(RecTy *Ty) const override { 00640 return Ty->convertValue(const_cast<BitInit *>(this)); 00641 } 00642 00643 Init *getBit(unsigned Bit) const override { 00644 assert(Bit < 1 && "Bit index out of range!"); 00645 return const_cast<BitInit*>(this); 00646 } 00647 00648 std::string getAsString() const override { return Value ? "1" : "0"; } 00649 }; 00650 00651 /// BitsInit - { a, b, c } - Represents an initializer for a BitsRecTy value. 00652 /// It contains a vector of bits, whose size is determined by the type. 00653 /// 00654 class BitsInit : public TypedInit, public FoldingSetNode { 00655 std::vector<Init*> Bits; 00656 00657 BitsInit(ArrayRef<Init *> Range) 00658 : TypedInit(IK_BitsInit, BitsRecTy::get(Range.size())), 00659 Bits(Range.begin(), Range.end()) {} 00660 00661 BitsInit(const BitsInit &Other) LLVM_DELETED_FUNCTION; 00662 BitsInit &operator=(const BitsInit &Other) LLVM_DELETED_FUNCTION; 00663 00664 public: 00665 static bool classof(const Init *I) { 00666 return I->getKind() == IK_BitsInit; 00667 } 00668 static BitsInit *get(ArrayRef<Init *> Range); 00669 00670 void Profile(FoldingSetNodeID &ID) const; 00671 00672 unsigned getNumBits() const { return Bits.size(); } 00673 00674 Init *convertInitializerTo(RecTy *Ty) const override { 00675 return Ty->convertValue(const_cast<BitsInit *>(this)); 00676 } 00677 Init * 00678 convertInitializerBitRange(const std::vector<unsigned> &Bits) const override; 00679 00680 bool isComplete() const override { 00681 for (unsigned i = 0; i != getNumBits(); ++i) 00682 if (!getBit(i)->isComplete()) return false; 00683 return true; 00684 } 00685 bool allInComplete() const { 00686 for (unsigned i = 0; i != getNumBits(); ++i) 00687 if (getBit(i)->isComplete()) return false; 00688 return true; 00689 } 00690 std::string getAsString() const override; 00691 00692 /// resolveListElementReference - This method is used to implement 00693 /// VarListElementInit::resolveReferences. If the list element is resolvable 00694 /// now, we return the resolved value, otherwise we return null. 00695 Init *resolveListElementReference(Record &R, const RecordVal *RV, 00696 unsigned Elt) const override { 00697 llvm_unreachable("Illegal element reference off bits<n>"); 00698 } 00699 00700 Init *resolveReferences(Record &R, const RecordVal *RV) const override; 00701 00702 Init *getBit(unsigned Bit) const override { 00703 assert(Bit < Bits.size() && "Bit index out of range!"); 00704 return Bits[Bit]; 00705 } 00706 }; 00707 00708 /// IntInit - 7 - Represent an initialization by a literal integer value. 00709 /// 00710 class IntInit : public TypedInit { 00711 int64_t Value; 00712 00713 explicit IntInit(int64_t V) 00714 : TypedInit(IK_IntInit, IntRecTy::get()), Value(V) {} 00715 00716 IntInit(const IntInit &Other) LLVM_DELETED_FUNCTION; 00717 IntInit &operator=(const IntInit &Other) LLVM_DELETED_FUNCTION; 00718 00719 public: 00720 static bool classof(const Init *I) { 00721 return I->getKind() == IK_IntInit; 00722 } 00723 static IntInit *get(int64_t V); 00724 00725 int64_t getValue() const { return Value; } 00726 00727 Init *convertInitializerTo(RecTy *Ty) const override { 00728 return Ty->convertValue(const_cast<IntInit *>(this)); 00729 } 00730 Init * 00731 convertInitializerBitRange(const std::vector<unsigned> &Bits) const override; 00732 00733 std::string getAsString() const override; 00734 00735 /// resolveListElementReference - This method is used to implement 00736 /// VarListElementInit::resolveReferences. If the list element is resolvable 00737 /// now, we return the resolved value, otherwise we return null. 00738 Init *resolveListElementReference(Record &R, const RecordVal *RV, 00739 unsigned Elt) const override { 00740 llvm_unreachable("Illegal element reference off int"); 00741 } 00742 00743 Init *getBit(unsigned Bit) const override { 00744 return BitInit::get((Value & (1ULL << Bit)) != 0); 00745 } 00746 }; 00747 00748 /// StringInit - "foo" - Represent an initialization by a string value. 00749 /// 00750 class StringInit : public TypedInit { 00751 std::string Value; 00752 00753 explicit StringInit(const std::string &V) 00754 : TypedInit(IK_StringInit, StringRecTy::get()), Value(V) {} 00755 00756 StringInit(const StringInit &Other) LLVM_DELETED_FUNCTION; 00757 StringInit &operator=(const StringInit &Other) LLVM_DELETED_FUNCTION; 00758 void anchor() override; 00759 00760 public: 00761 static bool classof(const Init *I) { 00762 return I->getKind() == IK_StringInit; 00763 } 00764 static StringInit *get(StringRef); 00765 00766 const std::string &getValue() const { return Value; } 00767 00768 Init *convertInitializerTo(RecTy *Ty) const override { 00769 return Ty->convertValue(const_cast<StringInit *>(this)); 00770 } 00771 00772 std::string getAsString() const override { return "\"" + Value + "\""; } 00773 std::string getAsUnquotedString() const override { return Value; } 00774 00775 /// resolveListElementReference - This method is used to implement 00776 /// VarListElementInit::resolveReferences. If the list element is resolvable 00777 /// now, we return the resolved value, otherwise we return null. 00778 Init *resolveListElementReference(Record &R, const RecordVal *RV, 00779 unsigned Elt) const override { 00780 llvm_unreachable("Illegal element reference off string"); 00781 } 00782 00783 Init *getBit(unsigned Bit) const override { 00784 llvm_unreachable("Illegal bit reference off string"); 00785 } 00786 }; 00787 00788 /// ListInit - [AL, AH, CL] - Represent a list of defs 00789 /// 00790 class ListInit : public TypedInit, public FoldingSetNode { 00791 std::vector<Init*> Values; 00792 00793 public: 00794 typedef std::vector<Init*>::const_iterator const_iterator; 00795 00796 private: 00797 explicit ListInit(ArrayRef<Init *> Range, RecTy *EltTy) 00798 : TypedInit(IK_ListInit, ListRecTy::get(EltTy)), 00799 Values(Range.begin(), Range.end()) {} 00800 00801 ListInit(const ListInit &Other) LLVM_DELETED_FUNCTION; 00802 ListInit &operator=(const ListInit &Other) LLVM_DELETED_FUNCTION; 00803 00804 public: 00805 static bool classof(const Init *I) { 00806 return I->getKind() == IK_ListInit; 00807 } 00808 static ListInit *get(ArrayRef<Init *> Range, RecTy *EltTy); 00809 00810 void Profile(FoldingSetNodeID &ID) const; 00811 00812 unsigned getSize() const { return Values.size(); } 00813 Init *getElement(unsigned i) const { 00814 assert(i < Values.size() && "List element index out of range!"); 00815 return Values[i]; 00816 } 00817 00818 Record *getElementAsRecord(unsigned i) const; 00819 00820 Init * 00821 convertInitListSlice(const std::vector<unsigned> &Elements) const override; 00822 00823 Init *convertInitializerTo(RecTy *Ty) const override { 00824 return Ty->convertValue(const_cast<ListInit *>(this)); 00825 } 00826 00827 /// resolveReferences - This method is used by classes that refer to other 00828 /// variables which may not be defined at the time they expression is formed. 00829 /// If a value is set for the variable later, this method will be called on 00830 /// users of the value to allow the value to propagate out. 00831 /// 00832 Init *resolveReferences(Record &R, const RecordVal *RV) const override; 00833 00834 std::string getAsString() const override; 00835 00836 ArrayRef<Init*> getValues() const { return Values; } 00837 00838 inline const_iterator begin() const { return Values.begin(); } 00839 inline const_iterator end () const { return Values.end(); } 00840 00841 inline size_t size () const { return Values.size(); } 00842 inline bool empty() const { return Values.empty(); } 00843 00844 /// resolveListElementReference - This method is used to implement 00845 /// VarListElementInit::resolveReferences. If the list element is resolvable 00846 /// now, we return the resolved value, otherwise we return null. 00847 Init *resolveListElementReference(Record &R, const RecordVal *RV, 00848 unsigned Elt) const override; 00849 00850 Init *getBit(unsigned Bit) const override { 00851 llvm_unreachable("Illegal bit reference off list"); 00852 } 00853 }; 00854 00855 /// OpInit - Base class for operators 00856 /// 00857 class OpInit : public TypedInit { 00858 OpInit(const OpInit &Other) LLVM_DELETED_FUNCTION; 00859 OpInit &operator=(OpInit &Other) LLVM_DELETED_FUNCTION; 00860 00861 protected: 00862 explicit OpInit(InitKind K, RecTy *Type) : TypedInit(K, Type) {} 00863 00864 public: 00865 static bool classof(const Init *I) { 00866 return I->getKind() >= IK_FirstOpInit && 00867 I->getKind() <= IK_LastOpInit; 00868 } 00869 // Clone - Clone this operator, replacing arguments with the new list 00870 virtual OpInit *clone(std::vector<Init *> &Operands) const = 0; 00871 00872 virtual int getNumOperands() const = 0; 00873 virtual Init *getOperand(int i) const = 0; 00874 00875 // Fold - If possible, fold this to a simpler init. Return this if not 00876 // possible to fold. 00877 virtual Init *Fold(Record *CurRec, MultiClass *CurMultiClass) const = 0; 00878 00879 Init *convertInitializerTo(RecTy *Ty) const override { 00880 return Ty->convertValue(const_cast<OpInit *>(this)); 00881 } 00882 00883 Init *resolveListElementReference(Record &R, const RecordVal *RV, 00884 unsigned Elt) const override; 00885 00886 Init *getBit(unsigned Bit) const override; 00887 }; 00888 00889 /// UnOpInit - !op (X) - Transform an init. 00890 /// 00891 class UnOpInit : public OpInit { 00892 public: 00893 enum UnaryOp { CAST, HEAD, TAIL, EMPTY }; 00894 00895 private: 00896 UnaryOp Opc; 00897 Init *LHS; 00898 00899 UnOpInit(UnaryOp opc, Init *lhs, RecTy *Type) 00900 : OpInit(IK_UnOpInit, Type), Opc(opc), LHS(lhs) {} 00901 00902 UnOpInit(const UnOpInit &Other) LLVM_DELETED_FUNCTION; 00903 UnOpInit &operator=(const UnOpInit &Other) LLVM_DELETED_FUNCTION; 00904 00905 public: 00906 static bool classof(const Init *I) { 00907 return I->getKind() == IK_UnOpInit; 00908 } 00909 static UnOpInit *get(UnaryOp opc, Init *lhs, RecTy *Type); 00910 00911 // Clone - Clone this operator, replacing arguments with the new list 00912 OpInit *clone(std::vector<Init *> &Operands) const override { 00913 assert(Operands.size() == 1 && 00914 "Wrong number of operands for unary operation"); 00915 return UnOpInit::get(getOpcode(), *Operands.begin(), getType()); 00916 } 00917 00918 int getNumOperands() const override { return 1; } 00919 Init *getOperand(int i) const override { 00920 assert(i == 0 && "Invalid operand id for unary operator"); 00921 return getOperand(); 00922 } 00923 00924 UnaryOp getOpcode() const { return Opc; } 00925 Init *getOperand() const { return LHS; } 00926 00927 // Fold - If possible, fold this to a simpler init. Return this if not 00928 // possible to fold. 00929 Init *Fold(Record *CurRec, MultiClass *CurMultiClass) const override; 00930 00931 Init *resolveReferences(Record &R, const RecordVal *RV) const override; 00932 00933 std::string getAsString() const override; 00934 }; 00935 00936 /// BinOpInit - !op (X, Y) - Combine two inits. 00937 /// 00938 class BinOpInit : public OpInit { 00939 public: 00940 enum BinaryOp { ADD, AND, SHL, SRA, SRL, LISTCONCAT, STRCONCAT, CONCAT, EQ }; 00941 00942 private: 00943 BinaryOp Opc; 00944 Init *LHS, *RHS; 00945 00946 BinOpInit(BinaryOp opc, Init *lhs, Init *rhs, RecTy *Type) : 00947 OpInit(IK_BinOpInit, Type), Opc(opc), LHS(lhs), RHS(rhs) {} 00948 00949 BinOpInit(const BinOpInit &Other) LLVM_DELETED_FUNCTION; 00950 BinOpInit &operator=(const BinOpInit &Other) LLVM_DELETED_FUNCTION; 00951 00952 public: 00953 static bool classof(const Init *I) { 00954 return I->getKind() == IK_BinOpInit; 00955 } 00956 static BinOpInit *get(BinaryOp opc, Init *lhs, Init *rhs, 00957 RecTy *Type); 00958 00959 // Clone - Clone this operator, replacing arguments with the new list 00960 OpInit *clone(std::vector<Init *> &Operands) const override { 00961 assert(Operands.size() == 2 && 00962 "Wrong number of operands for binary operation"); 00963 return BinOpInit::get(getOpcode(), Operands[0], Operands[1], getType()); 00964 } 00965 00966 int getNumOperands() const override { return 2; } 00967 Init *getOperand(int i) const override { 00968 assert((i == 0 || i == 1) && "Invalid operand id for binary operator"); 00969 if (i == 0) { 00970 return getLHS(); 00971 } else { 00972 return getRHS(); 00973 } 00974 } 00975 00976 BinaryOp getOpcode() const { return Opc; } 00977 Init *getLHS() const { return LHS; } 00978 Init *getRHS() const { return RHS; } 00979 00980 // Fold - If possible, fold this to a simpler init. Return this if not 00981 // possible to fold. 00982 Init *Fold(Record *CurRec, MultiClass *CurMultiClass) const override; 00983 00984 Init *resolveReferences(Record &R, const RecordVal *RV) const override; 00985 00986 std::string getAsString() const override; 00987 }; 00988 00989 /// TernOpInit - !op (X, Y, Z) - Combine two inits. 00990 /// 00991 class TernOpInit : public OpInit { 00992 public: 00993 enum TernaryOp { SUBST, FOREACH, IF }; 00994 00995 private: 00996 TernaryOp Opc; 00997 Init *LHS, *MHS, *RHS; 00998 00999 TernOpInit(TernaryOp opc, Init *lhs, Init *mhs, Init *rhs, 01000 RecTy *Type) : 01001 OpInit(IK_TernOpInit, Type), Opc(opc), LHS(lhs), MHS(mhs), RHS(rhs) {} 01002 01003 TernOpInit(const TernOpInit &Other) LLVM_DELETED_FUNCTION; 01004 TernOpInit &operator=(const TernOpInit &Other) LLVM_DELETED_FUNCTION; 01005 01006 public: 01007 static bool classof(const Init *I) { 01008 return I->getKind() == IK_TernOpInit; 01009 } 01010 static TernOpInit *get(TernaryOp opc, Init *lhs, 01011 Init *mhs, Init *rhs, 01012 RecTy *Type); 01013 01014 // Clone - Clone this operator, replacing arguments with the new list 01015 OpInit *clone(std::vector<Init *> &Operands) const override { 01016 assert(Operands.size() == 3 && 01017 "Wrong number of operands for ternary operation"); 01018 return TernOpInit::get(getOpcode(), Operands[0], Operands[1], Operands[2], 01019 getType()); 01020 } 01021 01022 int getNumOperands() const override { return 3; } 01023 Init *getOperand(int i) const override { 01024 assert((i == 0 || i == 1 || i == 2) && 01025 "Invalid operand id for ternary operator"); 01026 if (i == 0) { 01027 return getLHS(); 01028 } else if (i == 1) { 01029 return getMHS(); 01030 } else { 01031 return getRHS(); 01032 } 01033 } 01034 01035 TernaryOp getOpcode() const { return Opc; } 01036 Init *getLHS() const { return LHS; } 01037 Init *getMHS() const { return MHS; } 01038 Init *getRHS() const { return RHS; } 01039 01040 // Fold - If possible, fold this to a simpler init. Return this if not 01041 // possible to fold. 01042 Init *Fold(Record *CurRec, MultiClass *CurMultiClass) const override; 01043 01044 bool isComplete() const override { return false; } 01045 01046 Init *resolveReferences(Record &R, const RecordVal *RV) const override; 01047 01048 std::string getAsString() const override; 01049 }; 01050 01051 /// VarInit - 'Opcode' - Represent a reference to an entire variable object. 01052 /// 01053 class VarInit : public TypedInit { 01054 Init *VarName; 01055 01056 explicit VarInit(const std::string &VN, RecTy *T) 01057 : TypedInit(IK_VarInit, T), VarName(StringInit::get(VN)) {} 01058 explicit VarInit(Init *VN, RecTy *T) 01059 : TypedInit(IK_VarInit, T), VarName(VN) {} 01060 01061 VarInit(const VarInit &Other) LLVM_DELETED_FUNCTION; 01062 VarInit &operator=(const VarInit &Other) LLVM_DELETED_FUNCTION; 01063 01064 public: 01065 static bool classof(const Init *I) { 01066 return I->getKind() == IK_VarInit; 01067 } 01068 static VarInit *get(const std::string &VN, RecTy *T); 01069 static VarInit *get(Init *VN, RecTy *T); 01070 01071 Init *convertInitializerTo(RecTy *Ty) const override { 01072 return Ty->convertValue(const_cast<VarInit *>(this)); 01073 } 01074 01075 const std::string &getName() const; 01076 Init *getNameInit() const { return VarName; } 01077 std::string getNameInitAsString() const { 01078 return getNameInit()->getAsUnquotedString(); 01079 } 01080 01081 Init *resolveListElementReference(Record &R, const RecordVal *RV, 01082 unsigned Elt) const override; 01083 01084 RecTy *getFieldType(const std::string &FieldName) const override; 01085 Init *getFieldInit(Record &R, const RecordVal *RV, 01086 const std::string &FieldName) const override; 01087 01088 /// resolveReferences - This method is used by classes that refer to other 01089 /// variables which may not be defined at the time they expression is formed. 01090 /// If a value is set for the variable later, this method will be called on 01091 /// users of the value to allow the value to propagate out. 01092 /// 01093 Init *resolveReferences(Record &R, const RecordVal *RV) const override; 01094 01095 Init *getBit(unsigned Bit) const override; 01096 01097 std::string getAsString() const override { return getName(); } 01098 }; 01099 01100 /// VarBitInit - Opcode{0} - Represent access to one bit of a variable or field. 01101 /// 01102 class VarBitInit : public Init { 01103 TypedInit *TI; 01104 unsigned Bit; 01105 01106 VarBitInit(TypedInit *T, unsigned B) : Init(IK_VarBitInit), TI(T), Bit(B) { 01107 assert(T->getType() && 01108 (isa<IntRecTy>(T->getType()) || 01109 (isa<BitsRecTy>(T->getType()) && 01110 cast<BitsRecTy>(T->getType())->getNumBits() > B)) && 01111 "Illegal VarBitInit expression!"); 01112 } 01113 01114 VarBitInit(const VarBitInit &Other) LLVM_DELETED_FUNCTION; 01115 VarBitInit &operator=(const VarBitInit &Other) LLVM_DELETED_FUNCTION; 01116 01117 public: 01118 static bool classof(const Init *I) { 01119 return I->getKind() == IK_VarBitInit; 01120 } 01121 static VarBitInit *get(TypedInit *T, unsigned B); 01122 01123 Init *convertInitializerTo(RecTy *Ty) const override { 01124 return Ty->convertValue(const_cast<VarBitInit *>(this)); 01125 } 01126 01127 Init *getBitVar() const override { return TI; } 01128 unsigned getBitNum() const override { return Bit; } 01129 01130 std::string getAsString() const override; 01131 Init *resolveReferences(Record &R, const RecordVal *RV) const override; 01132 01133 Init *getBit(unsigned B) const override { 01134 assert(B < 1 && "Bit index out of range!"); 01135 return const_cast<VarBitInit*>(this); 01136 } 01137 }; 01138 01139 /// VarListElementInit - List[4] - Represent access to one element of a var or 01140 /// field. 01141 class VarListElementInit : public TypedInit { 01142 TypedInit *TI; 01143 unsigned Element; 01144 01145 VarListElementInit(TypedInit *T, unsigned E) 01146 : TypedInit(IK_VarListElementInit, 01147 cast<ListRecTy>(T->getType())->getElementType()), 01148 TI(T), Element(E) { 01149 assert(T->getType() && isa<ListRecTy>(T->getType()) && 01150 "Illegal VarBitInit expression!"); 01151 } 01152 01153 VarListElementInit(const VarListElementInit &Other) LLVM_DELETED_FUNCTION; 01154 void operator=(const VarListElementInit &Other) LLVM_DELETED_FUNCTION; 01155 01156 public: 01157 static bool classof(const Init *I) { 01158 return I->getKind() == IK_VarListElementInit; 01159 } 01160 static VarListElementInit *get(TypedInit *T, unsigned E); 01161 01162 Init *convertInitializerTo(RecTy *Ty) const override { 01163 return Ty->convertValue(const_cast<VarListElementInit *>(this)); 01164 } 01165 01166 TypedInit *getVariable() const { return TI; } 01167 unsigned getElementNum() const { return Element; } 01168 01169 /// resolveListElementReference - This method is used to implement 01170 /// VarListElementInit::resolveReferences. If the list element is resolvable 01171 /// now, we return the resolved value, otherwise we return null. 01172 Init *resolveListElementReference(Record &R, const RecordVal *RV, 01173 unsigned Elt) const override; 01174 01175 std::string getAsString() const override; 01176 Init *resolveReferences(Record &R, const RecordVal *RV) const override; 01177 01178 Init *getBit(unsigned Bit) const override; 01179 }; 01180 01181 /// DefInit - AL - Represent a reference to a 'def' in the description 01182 /// 01183 class DefInit : public TypedInit { 01184 Record *Def; 01185 01186 DefInit(Record *D, RecordRecTy *T) : TypedInit(IK_DefInit, T), Def(D) {} 01187 friend class Record; 01188 01189 DefInit(const DefInit &Other) LLVM_DELETED_FUNCTION; 01190 DefInit &operator=(const DefInit &Other) LLVM_DELETED_FUNCTION; 01191 01192 public: 01193 static bool classof(const Init *I) { 01194 return I->getKind() == IK_DefInit; 01195 } 01196 static DefInit *get(Record*); 01197 01198 Init *convertInitializerTo(RecTy *Ty) const override { 01199 return Ty->convertValue(const_cast<DefInit *>(this)); 01200 } 01201 01202 Record *getDef() const { return Def; } 01203 01204 //virtual Init *convertInitializerBitRange(const std::vector<unsigned> &Bits); 01205 01206 RecTy *getFieldType(const std::string &FieldName) const override; 01207 Init *getFieldInit(Record &R, const RecordVal *RV, 01208 const std::string &FieldName) const override; 01209 01210 std::string getAsString() const override; 01211 01212 Init *getBit(unsigned Bit) const override { 01213 llvm_unreachable("Illegal bit reference off def"); 01214 } 01215 01216 /// resolveListElementReference - This method is used to implement 01217 /// VarListElementInit::resolveReferences. If the list element is resolvable 01218 /// now, we return the resolved value, otherwise we return null. 01219 Init *resolveListElementReference(Record &R, const RecordVal *RV, 01220 unsigned Elt) const override { 01221 llvm_unreachable("Illegal element reference off def"); 01222 } 01223 }; 01224 01225 /// FieldInit - X.Y - Represent a reference to a subfield of a variable 01226 /// 01227 class FieldInit : public TypedInit { 01228 Init *Rec; // Record we are referring to 01229 std::string FieldName; // Field we are accessing 01230 01231 FieldInit(Init *R, const std::string &FN) 01232 : TypedInit(IK_FieldInit, R->getFieldType(FN)), Rec(R), FieldName(FN) { 01233 assert(getType() && "FieldInit with non-record type!"); 01234 } 01235 01236 FieldInit(const FieldInit &Other) LLVM_DELETED_FUNCTION; 01237 FieldInit &operator=(const FieldInit &Other) LLVM_DELETED_FUNCTION; 01238 01239 public: 01240 static bool classof(const Init *I) { 01241 return I->getKind() == IK_FieldInit; 01242 } 01243 static FieldInit *get(Init *R, const std::string &FN); 01244 static FieldInit *get(Init *R, const Init *FN); 01245 01246 Init *convertInitializerTo(RecTy *Ty) const override { 01247 return Ty->convertValue(const_cast<FieldInit *>(this)); 01248 } 01249 01250 Init *getBit(unsigned Bit) const override; 01251 01252 Init *resolveListElementReference(Record &R, const RecordVal *RV, 01253 unsigned Elt) const override; 01254 01255 Init *resolveReferences(Record &R, const RecordVal *RV) const override; 01256 01257 std::string getAsString() const override { 01258 return Rec->getAsString() + "." + FieldName; 01259 } 01260 }; 01261 01262 /// DagInit - (v a, b) - Represent a DAG tree value. DAG inits are required 01263 /// to have at least one value then a (possibly empty) list of arguments. Each 01264 /// argument can have a name associated with it. 01265 /// 01266 class DagInit : public TypedInit, public FoldingSetNode { 01267 Init *Val; 01268 std::string ValName; 01269 std::vector<Init*> Args; 01270 std::vector<std::string> ArgNames; 01271 01272 DagInit(Init *V, const std::string &VN, 01273 ArrayRef<Init *> ArgRange, 01274 ArrayRef<std::string> NameRange) 01275 : TypedInit(IK_DagInit, DagRecTy::get()), Val(V), ValName(VN), 01276 Args(ArgRange.begin(), ArgRange.end()), 01277 ArgNames(NameRange.begin(), NameRange.end()) {} 01278 01279 DagInit(const DagInit &Other) LLVM_DELETED_FUNCTION; 01280 DagInit &operator=(const DagInit &Other) LLVM_DELETED_FUNCTION; 01281 01282 public: 01283 static bool classof(const Init *I) { 01284 return I->getKind() == IK_DagInit; 01285 } 01286 static DagInit *get(Init *V, const std::string &VN, 01287 ArrayRef<Init *> ArgRange, 01288 ArrayRef<std::string> NameRange); 01289 static DagInit *get(Init *V, const std::string &VN, 01290 const std::vector< 01291 std::pair<Init*, std::string> > &args); 01292 01293 void Profile(FoldingSetNodeID &ID) const; 01294 01295 Init *convertInitializerTo(RecTy *Ty) const override { 01296 return Ty->convertValue(const_cast<DagInit *>(this)); 01297 } 01298 01299 Init *getOperator() const { return Val; } 01300 01301 const std::string &getName() const { return ValName; } 01302 01303 unsigned getNumArgs() const { return Args.size(); } 01304 Init *getArg(unsigned Num) const { 01305 assert(Num < Args.size() && "Arg number out of range!"); 01306 return Args[Num]; 01307 } 01308 const std::string &getArgName(unsigned Num) const { 01309 assert(Num < ArgNames.size() && "Arg number out of range!"); 01310 return ArgNames[Num]; 01311 } 01312 01313 Init *resolveReferences(Record &R, const RecordVal *RV) const override; 01314 01315 std::string getAsString() const override; 01316 01317 typedef std::vector<Init*>::const_iterator const_arg_iterator; 01318 typedef std::vector<std::string>::const_iterator const_name_iterator; 01319 01320 inline const_arg_iterator arg_begin() const { return Args.begin(); } 01321 inline const_arg_iterator arg_end () const { return Args.end(); } 01322 01323 inline size_t arg_size () const { return Args.size(); } 01324 inline bool arg_empty() const { return Args.empty(); } 01325 01326 inline const_name_iterator name_begin() const { return ArgNames.begin(); } 01327 inline const_name_iterator name_end () const { return ArgNames.end(); } 01328 01329 inline size_t name_size () const { return ArgNames.size(); } 01330 inline bool name_empty() const { return ArgNames.empty(); } 01331 01332 Init *getBit(unsigned Bit) const override { 01333 llvm_unreachable("Illegal bit reference off dag"); 01334 } 01335 01336 Init *resolveListElementReference(Record &R, const RecordVal *RV, 01337 unsigned Elt) const override { 01338 llvm_unreachable("Illegal element reference off dag"); 01339 } 01340 }; 01341 01342 //===----------------------------------------------------------------------===// 01343 // High-Level Classes 01344 //===----------------------------------------------------------------------===// 01345 01346 class RecordVal { 01347 Init *Name; 01348 RecTy *Ty; 01349 unsigned Prefix; 01350 Init *Value; 01351 01352 public: 01353 RecordVal(Init *N, RecTy *T, unsigned P); 01354 RecordVal(const std::string &N, RecTy *T, unsigned P); 01355 01356 const std::string &getName() const; 01357 const Init *getNameInit() const { return Name; } 01358 std::string getNameInitAsString() const { 01359 return getNameInit()->getAsUnquotedString(); 01360 } 01361 01362 unsigned getPrefix() const { return Prefix; } 01363 RecTy *getType() const { return Ty; } 01364 Init *getValue() const { return Value; } 01365 01366 bool setValue(Init *V) { 01367 if (V) { 01368 Value = V->convertInitializerTo(Ty); 01369 return Value == nullptr; 01370 } 01371 Value = nullptr; 01372 return false; 01373 } 01374 01375 void dump() const; 01376 void print(raw_ostream &OS, bool PrintSem = true) const; 01377 }; 01378 01379 inline raw_ostream &operator<<(raw_ostream &OS, const RecordVal &RV) { 01380 RV.print(OS << " "); 01381 return OS; 01382 } 01383 01384 class Record { 01385 static unsigned LastID; 01386 01387 // Unique record ID. 01388 unsigned ID; 01389 Init *Name; 01390 // Location where record was instantiated, followed by the location of 01391 // multiclass prototypes used. 01392 SmallVector<SMLoc, 4> Locs; 01393 std::vector<Init *> TemplateArgs; 01394 std::vector<RecordVal> Values; 01395 std::vector<Record *> SuperClasses; 01396 std::vector<SMRange> SuperClassRanges; 01397 01398 // Tracks Record instances. Not owned by Record. 01399 RecordKeeper &TrackedRecords; 01400 01401 DefInit *TheInit; 01402 bool IsAnonymous; 01403 01404 // Class-instance values can be used by other defs. For example, Struct<i> 01405 // is used here as a template argument to another class: 01406 // 01407 // multiclass MultiClass<int i> { 01408 // def Def : Class<Struct<i>>; 01409 // 01410 // These need to get fully resolved before instantiating any other 01411 // definitions that usie them (e.g. Def). However, inside a multiclass they 01412 // can't be immediately resolved so we mark them ResolveFirst to fully 01413 // resolve them later as soon as the multiclass is instantiated. 01414 bool ResolveFirst; 01415 01416 void init(); 01417 void checkName(); 01418 01419 public: 01420 // Constructs a record. 01421 explicit Record(const std::string &N, ArrayRef<SMLoc> locs, 01422 RecordKeeper &records, bool Anonymous = false) : 01423 ID(LastID++), Name(StringInit::get(N)), Locs(locs.begin(), locs.end()), 01424 TrackedRecords(records), TheInit(nullptr), IsAnonymous(Anonymous), 01425 ResolveFirst(false) { 01426 init(); 01427 } 01428 explicit Record(Init *N, ArrayRef<SMLoc> locs, RecordKeeper &records, 01429 bool Anonymous = false) : 01430 ID(LastID++), Name(N), Locs(locs.begin(), locs.end()), 01431 TrackedRecords(records), TheInit(nullptr), IsAnonymous(Anonymous), 01432 ResolveFirst(false) { 01433 init(); 01434 } 01435 01436 // When copy-constructing a Record, we must still guarantee a globally unique 01437 // ID number. All other fields can be copied normally. 01438 Record(const Record &O) : 01439 ID(LastID++), Name(O.Name), Locs(O.Locs), TemplateArgs(O.TemplateArgs), 01440 Values(O.Values), SuperClasses(O.SuperClasses), 01441 SuperClassRanges(O.SuperClassRanges), TrackedRecords(O.TrackedRecords), 01442 TheInit(O.TheInit), IsAnonymous(O.IsAnonymous), 01443 ResolveFirst(O.ResolveFirst) { } 01444 01445 ~Record() {} 01446 01447 static unsigned getNewUID() { return LastID++; } 01448 01449 unsigned getID() const { return ID; } 01450 01451 const std::string &getName() const; 01452 Init *getNameInit() const { 01453 return Name; 01454 } 01455 const std::string getNameInitAsString() const { 01456 return getNameInit()->getAsUnquotedString(); 01457 } 01458 01459 void setName(Init *Name); // Also updates RecordKeeper. 01460 void setName(const std::string &Name); // Also updates RecordKeeper. 01461 01462 ArrayRef<SMLoc> getLoc() const { return Locs; } 01463 01464 /// get the corresponding DefInit. 01465 DefInit *getDefInit(); 01466 01467 const std::vector<Init *> &getTemplateArgs() const { 01468 return TemplateArgs; 01469 } 01470 const std::vector<RecordVal> &getValues() const { return Values; } 01471 const std::vector<Record*> &getSuperClasses() const { return SuperClasses; } 01472 ArrayRef<SMRange> getSuperClassRanges() const { return SuperClassRanges; } 01473 01474 bool isTemplateArg(Init *Name) const { 01475 for (unsigned i = 0, e = TemplateArgs.size(); i != e; ++i) 01476 if (TemplateArgs[i] == Name) return true; 01477 return false; 01478 } 01479 bool isTemplateArg(StringRef Name) const { 01480 return isTemplateArg(StringInit::get(Name.str())); 01481 } 01482 01483 const RecordVal *getValue(const Init *Name) const { 01484 for (unsigned i = 0, e = Values.size(); i != e; ++i) 01485 if (Values[i].getNameInit() == Name) return &Values[i]; 01486 return nullptr; 01487 } 01488 const RecordVal *getValue(StringRef Name) const { 01489 return getValue(StringInit::get(Name)); 01490 } 01491 RecordVal *getValue(const Init *Name) { 01492 for (unsigned i = 0, e = Values.size(); i != e; ++i) 01493 if (Values[i].getNameInit() == Name) return &Values[i]; 01494 return nullptr; 01495 } 01496 RecordVal *getValue(StringRef Name) { 01497 return getValue(StringInit::get(Name)); 01498 } 01499 01500 void addTemplateArg(Init *Name) { 01501 assert(!isTemplateArg(Name) && "Template arg already defined!"); 01502 TemplateArgs.push_back(Name); 01503 } 01504 void addTemplateArg(StringRef Name) { 01505 addTemplateArg(StringInit::get(Name.str())); 01506 } 01507 01508 void addValue(const RecordVal &RV) { 01509 assert(getValue(RV.getNameInit()) == nullptr && "Value already added!"); 01510 Values.push_back(RV); 01511 if (Values.size() > 1) 01512 // Keep NAME at the end of the list. It makes record dumps a 01513 // bit prettier and allows TableGen tests to be written more 01514 // naturally. Tests can use CHECK-NEXT to look for Record 01515 // fields they expect to see after a def. They can't do that if 01516 // NAME is the first Record field. 01517 std::swap(Values[Values.size() - 2], Values[Values.size() - 1]); 01518 } 01519 01520 void removeValue(Init *Name) { 01521 for (unsigned i = 0, e = Values.size(); i != e; ++i) 01522 if (Values[i].getNameInit() == Name) { 01523 Values.erase(Values.begin()+i); 01524 return; 01525 } 01526 llvm_unreachable("Cannot remove an entry that does not exist!"); 01527 } 01528 01529 void removeValue(StringRef Name) { 01530 removeValue(StringInit::get(Name.str())); 01531 } 01532 01533 bool isSubClassOf(const Record *R) const { 01534 for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i) 01535 if (SuperClasses[i] == R) 01536 return true; 01537 return false; 01538 } 01539 01540 bool isSubClassOf(StringRef Name) const { 01541 for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i) 01542 if (SuperClasses[i]->getNameInitAsString() == Name) 01543 return true; 01544 return false; 01545 } 01546 01547 void addSuperClass(Record *R, SMRange Range) { 01548 assert(!isSubClassOf(R) && "Already subclassing record!"); 01549 SuperClasses.push_back(R); 01550 SuperClassRanges.push_back(Range); 01551 } 01552 01553 /// resolveReferences - If there are any field references that refer to fields 01554 /// that have been filled in, we can propagate the values now. 01555 /// 01556 void resolveReferences() { resolveReferencesTo(nullptr); } 01557 01558 /// resolveReferencesTo - If anything in this record refers to RV, replace the 01559 /// reference to RV with the RHS of RV. If RV is null, we resolve all 01560 /// possible references. 01561 void resolveReferencesTo(const RecordVal *RV); 01562 01563 RecordKeeper &getRecords() const { 01564 return TrackedRecords; 01565 } 01566 01567 bool isAnonymous() const { 01568 return IsAnonymous; 01569 } 01570 01571 bool isResolveFirst() const { 01572 return ResolveFirst; 01573 } 01574 01575 void setResolveFirst(bool b) { 01576 ResolveFirst = b; 01577 } 01578 01579 void dump() const; 01580 01581 //===--------------------------------------------------------------------===// 01582 // High-level methods useful to tablegen back-ends 01583 // 01584 01585 /// getValueInit - Return the initializer for a value with the specified name, 01586 /// or throw an exception if the field does not exist. 01587 /// 01588 Init *getValueInit(StringRef FieldName) const; 01589 01590 /// Return true if the named field is unset. 01591 bool isValueUnset(StringRef FieldName) const { 01592 return getValueInit(FieldName) == UnsetInit::get(); 01593 } 01594 01595 /// getValueAsString - This method looks up the specified field and returns 01596 /// its value as a string, throwing an exception if the field does not exist 01597 /// or if the value is not a string. 01598 /// 01599 std::string getValueAsString(StringRef FieldName) const; 01600 01601 /// getValueAsBitsInit - This method looks up the specified field and returns 01602 /// its value as a BitsInit, throwing an exception if the field does not exist 01603 /// or if the value is not the right type. 01604 /// 01605 BitsInit *getValueAsBitsInit(StringRef FieldName) const; 01606 01607 /// getValueAsListInit - This method looks up the specified field and returns 01608 /// its value as a ListInit, throwing an exception if the field does not exist 01609 /// or if the value is not the right type. 01610 /// 01611 ListInit *getValueAsListInit(StringRef FieldName) const; 01612 01613 /// getValueAsListOfDefs - This method looks up the specified field and 01614 /// returns its value as a vector of records, throwing an exception if the 01615 /// field does not exist or if the value is not the right type. 01616 /// 01617 std::vector<Record*> getValueAsListOfDefs(StringRef FieldName) const; 01618 01619 /// getValueAsListOfInts - This method looks up the specified field and 01620 /// returns its value as a vector of integers, throwing an exception if the 01621 /// field does not exist or if the value is not the right type. 01622 /// 01623 std::vector<int64_t> getValueAsListOfInts(StringRef FieldName) const; 01624 01625 /// getValueAsListOfStrings - This method looks up the specified field and 01626 /// returns its value as a vector of strings, throwing an exception if the 01627 /// field does not exist or if the value is not the right type. 01628 /// 01629 std::vector<std::string> getValueAsListOfStrings(StringRef FieldName) const; 01630 01631 /// getValueAsDef - This method looks up the specified field and returns its 01632 /// value as a Record, throwing an exception if the field does not exist or if 01633 /// the value is not the right type. 01634 /// 01635 Record *getValueAsDef(StringRef FieldName) const; 01636 01637 /// getValueAsBit - This method looks up the specified field and returns its 01638 /// value as a bit, throwing an exception if the field does not exist or if 01639 /// the value is not the right type. 01640 /// 01641 bool getValueAsBit(StringRef FieldName) const; 01642 01643 /// getValueAsBitOrUnset - This method looks up the specified field and 01644 /// returns its value as a bit. If the field is unset, sets Unset to true and 01645 /// returns false. 01646 /// 01647 bool getValueAsBitOrUnset(StringRef FieldName, bool &Unset) const; 01648 01649 /// getValueAsInt - This method looks up the specified field and returns its 01650 /// value as an int64_t, throwing an exception if the field does not exist or 01651 /// if the value is not the right type. 01652 /// 01653 int64_t getValueAsInt(StringRef FieldName) const; 01654 01655 /// getValueAsDag - This method looks up the specified field and returns its 01656 /// value as an Dag, throwing an exception if the field does not exist or if 01657 /// the value is not the right type. 01658 /// 01659 DagInit *getValueAsDag(StringRef FieldName) const; 01660 }; 01661 01662 raw_ostream &operator<<(raw_ostream &OS, const Record &R); 01663 01664 struct MultiClass { 01665 Record Rec; // Placeholder for template args and Name. 01666 typedef std::vector<Record*> RecordVector; 01667 RecordVector DefPrototypes; 01668 01669 void dump() const; 01670 01671 MultiClass(const std::string &Name, SMLoc Loc, RecordKeeper &Records) : 01672 Rec(Name, Loc, Records) {} 01673 }; 01674 01675 class RecordKeeper { 01676 typedef std::map<std::string, std::unique_ptr<Record>> RecordMap; 01677 RecordMap Classes, Defs; 01678 01679 public: 01680 const RecordMap &getClasses() const { return Classes; } 01681 const RecordMap &getDefs() const { return Defs; } 01682 01683 Record *getClass(const std::string &Name) const { 01684 auto I = Classes.find(Name); 01685 return I == Classes.end() ? nullptr : I->second.get(); 01686 } 01687 Record *getDef(const std::string &Name) const { 01688 auto I = Defs.find(Name); 01689 return I == Defs.end() ? nullptr : I->second.get(); 01690 } 01691 void addClass(Record *_R) { 01692 std::unique_ptr<Record> R(_R); 01693 bool Ins = Classes.insert(std::make_pair(R->getName(), 01694 std::move(R))).second; 01695 (void)Ins; 01696 assert(Ins && "Class already exists"); 01697 } 01698 void addDef(Record *_R) { 01699 std::unique_ptr<Record> R(_R); 01700 bool Ins = Defs.insert(std::make_pair(R->getName(), 01701 std::move(R))).second; 01702 (void)Ins; 01703 assert(Ins && "Record already exists"); 01704 } 01705 01706 //===--------------------------------------------------------------------===// 01707 // High-level helper methods, useful for tablegen backends... 01708 01709 /// getAllDerivedDefinitions - This method returns all concrete definitions 01710 /// that derive from the specified class name. If a class with the specified 01711 /// name does not exist, an exception is thrown. 01712 std::vector<Record*> 01713 getAllDerivedDefinitions(const std::string &ClassName) const; 01714 01715 void dump() const; 01716 }; 01717 01718 /// LessRecord - Sorting predicate to sort record pointers by name. 01719 /// 01720 struct LessRecord { 01721 bool operator()(const Record *Rec1, const Record *Rec2) const { 01722 return StringRef(Rec1->getName()).compare_numeric(Rec2->getName()) < 0; 01723 } 01724 }; 01725 01726 /// LessRecordByID - Sorting predicate to sort record pointers by their 01727 /// unique ID. If you just need a deterministic order, use this, since it 01728 /// just compares two `unsigned`; the other sorting predicates require 01729 /// string manipulation. 01730 struct LessRecordByID { 01731 bool operator()(const Record *LHS, const Record *RHS) const { 01732 return LHS->getID() < RHS->getID(); 01733 } 01734 }; 01735 01736 /// LessRecordFieldName - Sorting predicate to sort record pointers by their 01737 /// name field. 01738 /// 01739 struct LessRecordFieldName { 01740 bool operator()(const Record *Rec1, const Record *Rec2) const { 01741 return Rec1->getValueAsString("Name") < Rec2->getValueAsString("Name"); 01742 } 01743 }; 01744 01745 struct LessRecordRegister { 01746 static size_t min(size_t a, size_t b) { return a < b ? a : b; } 01747 static bool ascii_isdigit(char x) { return x >= '0' && x <= '9'; } 01748 01749 struct RecordParts { 01750 SmallVector<std::pair< bool, StringRef>, 4> Parts; 01751 01752 RecordParts(StringRef Rec) { 01753 if (Rec.empty()) 01754 return; 01755 01756 size_t Len = 0; 01757 const char *Start = Rec.data(); 01758 const char *Curr = Start; 01759 bool isDigitPart = ascii_isdigit(Curr[0]); 01760 for (size_t I = 0, E = Rec.size(); I != E; ++I, ++Len) { 01761 bool isDigit = ascii_isdigit(Curr[I]); 01762 if (isDigit != isDigitPart) { 01763 Parts.push_back(std::make_pair(isDigitPart, StringRef(Start, Len))); 01764 Len = 0; 01765 Start = &Curr[I]; 01766 isDigitPart = ascii_isdigit(Curr[I]); 01767 } 01768 } 01769 // Push the last part. 01770 Parts.push_back(std::make_pair(isDigitPart, StringRef(Start, Len))); 01771 } 01772 01773 size_t size() { return Parts.size(); } 01774 01775 std::pair<bool, StringRef> getPart(size_t i) { 01776 assert (i < Parts.size() && "Invalid idx!"); 01777 return Parts[i]; 01778 } 01779 }; 01780 01781 bool operator()(const Record *Rec1, const Record *Rec2) const { 01782 RecordParts LHSParts(StringRef(Rec1->getName())); 01783 RecordParts RHSParts(StringRef(Rec2->getName())); 01784 01785 size_t LHSNumParts = LHSParts.size(); 01786 size_t RHSNumParts = RHSParts.size(); 01787 assert (LHSNumParts && RHSNumParts && "Expected at least one part!"); 01788 01789 if (LHSNumParts != RHSNumParts) 01790 return LHSNumParts < RHSNumParts; 01791 01792 // We expect the registers to be of the form [_a-zA-z]+([0-9]*[_a-zA-Z]*)*. 01793 for (size_t I = 0, E = LHSNumParts; I < E; I+=2) { 01794 std::pair<bool, StringRef> LHSPart = LHSParts.getPart(I); 01795 std::pair<bool, StringRef> RHSPart = RHSParts.getPart(I); 01796 // Expect even part to always be alpha. 01797 assert (LHSPart.first == false && RHSPart.first == false && 01798 "Expected both parts to be alpha."); 01799 if (int Res = LHSPart.second.compare(RHSPart.second)) 01800 return Res < 0; 01801 } 01802 for (size_t I = 1, E = LHSNumParts; I < E; I+=2) { 01803 std::pair<bool, StringRef> LHSPart = LHSParts.getPart(I); 01804 std::pair<bool, StringRef> RHSPart = RHSParts.getPart(I); 01805 // Expect odd part to always be numeric. 01806 assert (LHSPart.first == true && RHSPart.first == true && 01807 "Expected both parts to be numeric."); 01808 if (LHSPart.second.size() != RHSPart.second.size()) 01809 return LHSPart.second.size() < RHSPart.second.size(); 01810 01811 unsigned LHSVal, RHSVal; 01812 01813 bool LHSFailed = LHSPart.second.getAsInteger(10, LHSVal); (void)LHSFailed; 01814 assert(!LHSFailed && "Unable to convert LHS to integer."); 01815 bool RHSFailed = RHSPart.second.getAsInteger(10, RHSVal); (void)RHSFailed; 01816 assert(!RHSFailed && "Unable to convert RHS to integer."); 01817 01818 if (LHSVal != RHSVal) 01819 return LHSVal < RHSVal; 01820 } 01821 return LHSNumParts < RHSNumParts; 01822 } 01823 }; 01824 01825 raw_ostream &operator<<(raw_ostream &OS, const RecordKeeper &RK); 01826 01827 /// QualifyName - Return an Init with a qualifier prefix referring 01828 /// to CurRec's name. 01829 Init *QualifyName(Record &CurRec, MultiClass *CurMultiClass, 01830 Init *Name, const std::string &Scoper); 01831 01832 /// QualifyName - Return an Init with a qualifier prefix referring 01833 /// to CurRec's name. 01834 Init *QualifyName(Record &CurRec, MultiClass *CurMultiClass, 01835 const std::string &Name, const std::string &Scoper); 01836 01837 } // End llvm namespace 01838 01839 #endif