LLVM API Documentation
00001 //===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This transformation implements the well known scalar replacement of 00011 // aggregates transformation. This xform breaks up alloca instructions of 00012 // aggregate type (structure or array) into individual alloca instructions for 00013 // each member (if possible). Then, if possible, it transforms the individual 00014 // alloca instructions into nice clean scalar SSA form. 00015 // 00016 // This combines a simple SRoA algorithm with the Mem2Reg algorithm because they 00017 // often interact, especially for C++ programs. As such, iterating between 00018 // SRoA, then Mem2Reg until we run out of things to promote works well. 00019 // 00020 //===----------------------------------------------------------------------===// 00021 00022 #include "llvm/Transforms/Scalar.h" 00023 #include "llvm/ADT/SetVector.h" 00024 #include "llvm/ADT/SmallVector.h" 00025 #include "llvm/ADT/Statistic.h" 00026 #include "llvm/Analysis/AssumptionTracker.h" 00027 #include "llvm/Analysis/Loads.h" 00028 #include "llvm/Analysis/ValueTracking.h" 00029 #include "llvm/IR/CallSite.h" 00030 #include "llvm/IR/Constants.h" 00031 #include "llvm/IR/DIBuilder.h" 00032 #include "llvm/IR/DataLayout.h" 00033 #include "llvm/IR/DebugInfo.h" 00034 #include "llvm/IR/DerivedTypes.h" 00035 #include "llvm/IR/Dominators.h" 00036 #include "llvm/IR/Function.h" 00037 #include "llvm/IR/GetElementPtrTypeIterator.h" 00038 #include "llvm/IR/GlobalVariable.h" 00039 #include "llvm/IR/IRBuilder.h" 00040 #include "llvm/IR/Instructions.h" 00041 #include "llvm/IR/IntrinsicInst.h" 00042 #include "llvm/IR/LLVMContext.h" 00043 #include "llvm/IR/Module.h" 00044 #include "llvm/IR/Operator.h" 00045 #include "llvm/Pass.h" 00046 #include "llvm/Support/Debug.h" 00047 #include "llvm/Support/ErrorHandling.h" 00048 #include "llvm/Support/MathExtras.h" 00049 #include "llvm/Support/raw_ostream.h" 00050 #include "llvm/Transforms/Utils/Local.h" 00051 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 00052 #include "llvm/Transforms/Utils/SSAUpdater.h" 00053 using namespace llvm; 00054 00055 #define DEBUG_TYPE "scalarrepl" 00056 00057 STATISTIC(NumReplaced, "Number of allocas broken up"); 00058 STATISTIC(NumPromoted, "Number of allocas promoted"); 00059 STATISTIC(NumAdjusted, "Number of scalar allocas adjusted to allow promotion"); 00060 STATISTIC(NumConverted, "Number of aggregates converted to scalar"); 00061 00062 namespace { 00063 struct SROA : public FunctionPass { 00064 SROA(int T, bool hasDT, char &ID, int ST, int AT, int SLT) 00065 : FunctionPass(ID), HasDomTree(hasDT) { 00066 if (T == -1) 00067 SRThreshold = 128; 00068 else 00069 SRThreshold = T; 00070 if (ST == -1) 00071 StructMemberThreshold = 32; 00072 else 00073 StructMemberThreshold = ST; 00074 if (AT == -1) 00075 ArrayElementThreshold = 8; 00076 else 00077 ArrayElementThreshold = AT; 00078 if (SLT == -1) 00079 // Do not limit the scalar integer load size if no threshold is given. 00080 ScalarLoadThreshold = -1; 00081 else 00082 ScalarLoadThreshold = SLT; 00083 } 00084 00085 bool runOnFunction(Function &F) override; 00086 00087 bool performScalarRepl(Function &F); 00088 bool performPromotion(Function &F); 00089 00090 private: 00091 bool HasDomTree; 00092 const DataLayout *DL; 00093 00094 /// DeadInsts - Keep track of instructions we have made dead, so that 00095 /// we can remove them after we are done working. 00096 SmallVector<Value*, 32> DeadInsts; 00097 00098 /// AllocaInfo - When analyzing uses of an alloca instruction, this captures 00099 /// information about the uses. All these fields are initialized to false 00100 /// and set to true when something is learned. 00101 struct AllocaInfo { 00102 /// The alloca to promote. 00103 AllocaInst *AI; 00104 00105 /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite 00106 /// looping and avoid redundant work. 00107 SmallPtrSet<PHINode*, 8> CheckedPHIs; 00108 00109 /// isUnsafe - This is set to true if the alloca cannot be SROA'd. 00110 bool isUnsafe : 1; 00111 00112 /// isMemCpySrc - This is true if this aggregate is memcpy'd from. 00113 bool isMemCpySrc : 1; 00114 00115 /// isMemCpyDst - This is true if this aggregate is memcpy'd into. 00116 bool isMemCpyDst : 1; 00117 00118 /// hasSubelementAccess - This is true if a subelement of the alloca is 00119 /// ever accessed, or false if the alloca is only accessed with mem 00120 /// intrinsics or load/store that only access the entire alloca at once. 00121 bool hasSubelementAccess : 1; 00122 00123 /// hasALoadOrStore - This is true if there are any loads or stores to it. 00124 /// The alloca may just be accessed with memcpy, for example, which would 00125 /// not set this. 00126 bool hasALoadOrStore : 1; 00127 00128 explicit AllocaInfo(AllocaInst *ai) 00129 : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false), 00130 hasSubelementAccess(false), hasALoadOrStore(false) {} 00131 }; 00132 00133 /// SRThreshold - The maximum alloca size to considered for SROA. 00134 unsigned SRThreshold; 00135 00136 /// StructMemberThreshold - The maximum number of members a struct can 00137 /// contain to be considered for SROA. 00138 unsigned StructMemberThreshold; 00139 00140 /// ArrayElementThreshold - The maximum number of elements an array can 00141 /// have to be considered for SROA. 00142 unsigned ArrayElementThreshold; 00143 00144 /// ScalarLoadThreshold - The maximum size in bits of scalars to load when 00145 /// converting to scalar 00146 unsigned ScalarLoadThreshold; 00147 00148 void MarkUnsafe(AllocaInfo &I, Instruction *User) { 00149 I.isUnsafe = true; 00150 DEBUG(dbgs() << " Transformation preventing inst: " << *User << '\n'); 00151 } 00152 00153 bool isSafeAllocaToScalarRepl(AllocaInst *AI); 00154 00155 void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info); 00156 void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset, 00157 AllocaInfo &Info); 00158 void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info); 00159 void isSafeMemAccess(uint64_t Offset, uint64_t MemSize, 00160 Type *MemOpType, bool isStore, AllocaInfo &Info, 00161 Instruction *TheAccess, bool AllowWholeAccess); 00162 bool TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size); 00163 uint64_t FindElementAndOffset(Type *&T, uint64_t &Offset, 00164 Type *&IdxTy); 00165 00166 void DoScalarReplacement(AllocaInst *AI, 00167 std::vector<AllocaInst*> &WorkList); 00168 void DeleteDeadInstructions(); 00169 00170 void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset, 00171 SmallVectorImpl<AllocaInst *> &NewElts); 00172 void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset, 00173 SmallVectorImpl<AllocaInst *> &NewElts); 00174 void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset, 00175 SmallVectorImpl<AllocaInst *> &NewElts); 00176 void RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI, 00177 uint64_t Offset, 00178 SmallVectorImpl<AllocaInst *> &NewElts); 00179 void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst, 00180 AllocaInst *AI, 00181 SmallVectorImpl<AllocaInst *> &NewElts); 00182 void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI, 00183 SmallVectorImpl<AllocaInst *> &NewElts); 00184 void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI, 00185 SmallVectorImpl<AllocaInst *> &NewElts); 00186 bool ShouldAttemptScalarRepl(AllocaInst *AI); 00187 }; 00188 00189 // SROA_DT - SROA that uses DominatorTree. 00190 struct SROA_DT : public SROA { 00191 static char ID; 00192 public: 00193 SROA_DT(int T = -1, int ST = -1, int AT = -1, int SLT = -1) : 00194 SROA(T, true, ID, ST, AT, SLT) { 00195 initializeSROA_DTPass(*PassRegistry::getPassRegistry()); 00196 } 00197 00198 // getAnalysisUsage - This pass does not require any passes, but we know it 00199 // will not alter the CFG, so say so. 00200 void getAnalysisUsage(AnalysisUsage &AU) const override { 00201 AU.addRequired<AssumptionTracker>(); 00202 AU.addRequired<DominatorTreeWrapperPass>(); 00203 AU.setPreservesCFG(); 00204 } 00205 }; 00206 00207 // SROA_SSAUp - SROA that uses SSAUpdater. 00208 struct SROA_SSAUp : public SROA { 00209 static char ID; 00210 public: 00211 SROA_SSAUp(int T = -1, int ST = -1, int AT = -1, int SLT = -1) : 00212 SROA(T, false, ID, ST, AT, SLT) { 00213 initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry()); 00214 } 00215 00216 // getAnalysisUsage - This pass does not require any passes, but we know it 00217 // will not alter the CFG, so say so. 00218 void getAnalysisUsage(AnalysisUsage &AU) const override { 00219 AU.addRequired<AssumptionTracker>(); 00220 AU.setPreservesCFG(); 00221 } 00222 }; 00223 00224 } 00225 00226 char SROA_DT::ID = 0; 00227 char SROA_SSAUp::ID = 0; 00228 00229 INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl", 00230 "Scalar Replacement of Aggregates (DT)", false, false) 00231 INITIALIZE_PASS_DEPENDENCY(AssumptionTracker) 00232 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 00233 INITIALIZE_PASS_END(SROA_DT, "scalarrepl", 00234 "Scalar Replacement of Aggregates (DT)", false, false) 00235 00236 INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa", 00237 "Scalar Replacement of Aggregates (SSAUp)", false, false) 00238 INITIALIZE_PASS_DEPENDENCY(AssumptionTracker) 00239 INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa", 00240 "Scalar Replacement of Aggregates (SSAUp)", false, false) 00241 00242 // Public interface to the ScalarReplAggregates pass 00243 FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold, 00244 bool UseDomTree, 00245 int StructMemberThreshold, 00246 int ArrayElementThreshold, 00247 int ScalarLoadThreshold) { 00248 if (UseDomTree) 00249 return new SROA_DT(Threshold, StructMemberThreshold, ArrayElementThreshold, 00250 ScalarLoadThreshold); 00251 return new SROA_SSAUp(Threshold, StructMemberThreshold, 00252 ArrayElementThreshold, ScalarLoadThreshold); 00253 } 00254 00255 00256 //===----------------------------------------------------------------------===// 00257 // Convert To Scalar Optimization. 00258 //===----------------------------------------------------------------------===// 00259 00260 namespace { 00261 /// ConvertToScalarInfo - This class implements the "Convert To Scalar" 00262 /// optimization, which scans the uses of an alloca and determines if it can 00263 /// rewrite it in terms of a single new alloca that can be mem2reg'd. 00264 class ConvertToScalarInfo { 00265 /// AllocaSize - The size of the alloca being considered in bytes. 00266 unsigned AllocaSize; 00267 const DataLayout &DL; 00268 unsigned ScalarLoadThreshold; 00269 00270 /// IsNotTrivial - This is set to true if there is some access to the object 00271 /// which means that mem2reg can't promote it. 00272 bool IsNotTrivial; 00273 00274 /// ScalarKind - Tracks the kind of alloca being considered for promotion, 00275 /// computed based on the uses of the alloca rather than the LLVM type system. 00276 enum { 00277 Unknown, 00278 00279 // Accesses via GEPs that are consistent with element access of a vector 00280 // type. This will not be converted into a vector unless there is a later 00281 // access using an actual vector type. 00282 ImplicitVector, 00283 00284 // Accesses via vector operations and GEPs that are consistent with the 00285 // layout of a vector type. 00286 Vector, 00287 00288 // An integer bag-of-bits with bitwise operations for insertion and 00289 // extraction. Any combination of types can be converted into this kind 00290 // of scalar. 00291 Integer 00292 } ScalarKind; 00293 00294 /// VectorTy - This tracks the type that we should promote the vector to if 00295 /// it is possible to turn it into a vector. This starts out null, and if it 00296 /// isn't possible to turn into a vector type, it gets set to VoidTy. 00297 VectorType *VectorTy; 00298 00299 /// HadNonMemTransferAccess - True if there is at least one access to the 00300 /// alloca that is not a MemTransferInst. We don't want to turn structs into 00301 /// large integers unless there is some potential for optimization. 00302 bool HadNonMemTransferAccess; 00303 00304 /// HadDynamicAccess - True if some element of this alloca was dynamic. 00305 /// We don't yet have support for turning a dynamic access into a large 00306 /// integer. 00307 bool HadDynamicAccess; 00308 00309 public: 00310 explicit ConvertToScalarInfo(unsigned Size, const DataLayout &DL, 00311 unsigned SLT) 00312 : AllocaSize(Size), DL(DL), ScalarLoadThreshold(SLT), IsNotTrivial(false), 00313 ScalarKind(Unknown), VectorTy(nullptr), HadNonMemTransferAccess(false), 00314 HadDynamicAccess(false) { } 00315 00316 AllocaInst *TryConvert(AllocaInst *AI); 00317 00318 private: 00319 bool CanConvertToScalar(Value *V, uint64_t Offset, Value* NonConstantIdx); 00320 void MergeInTypeForLoadOrStore(Type *In, uint64_t Offset); 00321 bool MergeInVectorType(VectorType *VInTy, uint64_t Offset); 00322 void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset, 00323 Value *NonConstantIdx); 00324 00325 Value *ConvertScalar_ExtractValue(Value *NV, Type *ToType, 00326 uint64_t Offset, Value* NonConstantIdx, 00327 IRBuilder<> &Builder); 00328 Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal, 00329 uint64_t Offset, Value* NonConstantIdx, 00330 IRBuilder<> &Builder); 00331 }; 00332 } // end anonymous namespace. 00333 00334 00335 /// TryConvert - Analyze the specified alloca, and if it is safe to do so, 00336 /// rewrite it to be a new alloca which is mem2reg'able. This returns the new 00337 /// alloca if possible or null if not. 00338 AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) { 00339 // If we can't convert this scalar, or if mem2reg can trivially do it, bail 00340 // out. 00341 if (!CanConvertToScalar(AI, 0, nullptr) || !IsNotTrivial) 00342 return nullptr; 00343 00344 // If an alloca has only memset / memcpy uses, it may still have an Unknown 00345 // ScalarKind. Treat it as an Integer below. 00346 if (ScalarKind == Unknown) 00347 ScalarKind = Integer; 00348 00349 if (ScalarKind == Vector && VectorTy->getBitWidth() != AllocaSize * 8) 00350 ScalarKind = Integer; 00351 00352 // If we were able to find a vector type that can handle this with 00353 // insert/extract elements, and if there was at least one use that had 00354 // a vector type, promote this to a vector. We don't want to promote 00355 // random stuff that doesn't use vectors (e.g. <9 x double>) because then 00356 // we just get a lot of insert/extracts. If at least one vector is 00357 // involved, then we probably really do have a union of vector/array. 00358 Type *NewTy; 00359 if (ScalarKind == Vector) { 00360 assert(VectorTy && "Missing type for vector scalar."); 00361 DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n TYPE = " 00362 << *VectorTy << '\n'); 00363 NewTy = VectorTy; // Use the vector type. 00364 } else { 00365 unsigned BitWidth = AllocaSize * 8; 00366 00367 // Do not convert to scalar integer if the alloca size exceeds the 00368 // scalar load threshold. 00369 if (BitWidth > ScalarLoadThreshold) 00370 return nullptr; 00371 00372 if ((ScalarKind == ImplicitVector || ScalarKind == Integer) && 00373 !HadNonMemTransferAccess && !DL.fitsInLegalInteger(BitWidth)) 00374 return nullptr; 00375 // Dynamic accesses on integers aren't yet supported. They need us to shift 00376 // by a dynamic amount which could be difficult to work out as we might not 00377 // know whether to use a left or right shift. 00378 if (ScalarKind == Integer && HadDynamicAccess) 00379 return nullptr; 00380 00381 DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n"); 00382 // Create and insert the integer alloca. 00383 NewTy = IntegerType::get(AI->getContext(), BitWidth); 00384 } 00385 AllocaInst *NewAI = new AllocaInst(NewTy, nullptr, "", 00386 AI->getParent()->begin()); 00387 ConvertUsesToScalar(AI, NewAI, 0, nullptr); 00388 return NewAI; 00389 } 00390 00391 /// MergeInTypeForLoadOrStore - Add the 'In' type to the accumulated vector type 00392 /// (VectorTy) so far at the offset specified by Offset (which is specified in 00393 /// bytes). 00394 /// 00395 /// There are two cases we handle here: 00396 /// 1) A union of vector types of the same size and potentially its elements. 00397 /// Here we turn element accesses into insert/extract element operations. 00398 /// This promotes a <4 x float> with a store of float to the third element 00399 /// into a <4 x float> that uses insert element. 00400 /// 2) A fully general blob of memory, which we turn into some (potentially 00401 /// large) integer type with extract and insert operations where the loads 00402 /// and stores would mutate the memory. We mark this by setting VectorTy 00403 /// to VoidTy. 00404 void ConvertToScalarInfo::MergeInTypeForLoadOrStore(Type *In, 00405 uint64_t Offset) { 00406 // If we already decided to turn this into a blob of integer memory, there is 00407 // nothing to be done. 00408 if (ScalarKind == Integer) 00409 return; 00410 00411 // If this could be contributing to a vector, analyze it. 00412 00413 // If the In type is a vector that is the same size as the alloca, see if it 00414 // matches the existing VecTy. 00415 if (VectorType *VInTy = dyn_cast<VectorType>(In)) { 00416 if (MergeInVectorType(VInTy, Offset)) 00417 return; 00418 } else if (In->isFloatTy() || In->isDoubleTy() || 00419 (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 && 00420 isPowerOf2_32(In->getPrimitiveSizeInBits()))) { 00421 // Full width accesses can be ignored, because they can always be turned 00422 // into bitcasts. 00423 unsigned EltSize = In->getPrimitiveSizeInBits()/8; 00424 if (EltSize == AllocaSize) 00425 return; 00426 00427 // If we're accessing something that could be an element of a vector, see 00428 // if the implied vector agrees with what we already have and if Offset is 00429 // compatible with it. 00430 if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 && 00431 (!VectorTy || EltSize == VectorTy->getElementType() 00432 ->getPrimitiveSizeInBits()/8)) { 00433 if (!VectorTy) { 00434 ScalarKind = ImplicitVector; 00435 VectorTy = VectorType::get(In, AllocaSize/EltSize); 00436 } 00437 return; 00438 } 00439 } 00440 00441 // Otherwise, we have a case that we can't handle with an optimized vector 00442 // form. We can still turn this into a large integer. 00443 ScalarKind = Integer; 00444 } 00445 00446 /// MergeInVectorType - Handles the vector case of MergeInTypeForLoadOrStore, 00447 /// returning true if the type was successfully merged and false otherwise. 00448 bool ConvertToScalarInfo::MergeInVectorType(VectorType *VInTy, 00449 uint64_t Offset) { 00450 if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) { 00451 // If we're storing/loading a vector of the right size, allow it as a 00452 // vector. If this the first vector we see, remember the type so that 00453 // we know the element size. If this is a subsequent access, ignore it 00454 // even if it is a differing type but the same size. Worst case we can 00455 // bitcast the resultant vectors. 00456 if (!VectorTy) 00457 VectorTy = VInTy; 00458 ScalarKind = Vector; 00459 return true; 00460 } 00461 00462 return false; 00463 } 00464 00465 /// CanConvertToScalar - V is a pointer. If we can convert the pointee and all 00466 /// its accesses to a single vector type, return true and set VecTy to 00467 /// the new type. If we could convert the alloca into a single promotable 00468 /// integer, return true but set VecTy to VoidTy. Further, if the use is not a 00469 /// completely trivial use that mem2reg could promote, set IsNotTrivial. Offset 00470 /// is the current offset from the base of the alloca being analyzed. 00471 /// 00472 /// If we see at least one access to the value that is as a vector type, set the 00473 /// SawVec flag. 00474 bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset, 00475 Value* NonConstantIdx) { 00476 for (User *U : V->users()) { 00477 Instruction *UI = cast<Instruction>(U); 00478 00479 if (LoadInst *LI = dyn_cast<LoadInst>(UI)) { 00480 // Don't break volatile loads. 00481 if (!LI->isSimple()) 00482 return false; 00483 // Don't touch MMX operations. 00484 if (LI->getType()->isX86_MMXTy()) 00485 return false; 00486 HadNonMemTransferAccess = true; 00487 MergeInTypeForLoadOrStore(LI->getType(), Offset); 00488 continue; 00489 } 00490 00491 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 00492 // Storing the pointer, not into the value? 00493 if (SI->getOperand(0) == V || !SI->isSimple()) return false; 00494 // Don't touch MMX operations. 00495 if (SI->getOperand(0)->getType()->isX86_MMXTy()) 00496 return false; 00497 HadNonMemTransferAccess = true; 00498 MergeInTypeForLoadOrStore(SI->getOperand(0)->getType(), Offset); 00499 continue; 00500 } 00501 00502 if (BitCastInst *BCI = dyn_cast<BitCastInst>(UI)) { 00503 if (!onlyUsedByLifetimeMarkers(BCI)) 00504 IsNotTrivial = true; // Can't be mem2reg'd. 00505 if (!CanConvertToScalar(BCI, Offset, NonConstantIdx)) 00506 return false; 00507 continue; 00508 } 00509 00510 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UI)) { 00511 // If this is a GEP with a variable indices, we can't handle it. 00512 PointerType* PtrTy = dyn_cast<PointerType>(GEP->getPointerOperandType()); 00513 if (!PtrTy) 00514 return false; 00515 00516 // Compute the offset that this GEP adds to the pointer. 00517 SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end()); 00518 Value *GEPNonConstantIdx = nullptr; 00519 if (!GEP->hasAllConstantIndices()) { 00520 if (!isa<VectorType>(PtrTy->getElementType())) 00521 return false; 00522 if (NonConstantIdx) 00523 return false; 00524 GEPNonConstantIdx = Indices.pop_back_val(); 00525 if (!GEPNonConstantIdx->getType()->isIntegerTy(32)) 00526 return false; 00527 HadDynamicAccess = true; 00528 } else 00529 GEPNonConstantIdx = NonConstantIdx; 00530 uint64_t GEPOffset = DL.getIndexedOffset(PtrTy, 00531 Indices); 00532 // See if all uses can be converted. 00533 if (!CanConvertToScalar(GEP, Offset+GEPOffset, GEPNonConstantIdx)) 00534 return false; 00535 IsNotTrivial = true; // Can't be mem2reg'd. 00536 HadNonMemTransferAccess = true; 00537 continue; 00538 } 00539 00540 // If this is a constant sized memset of a constant value (e.g. 0) we can 00541 // handle it. 00542 if (MemSetInst *MSI = dyn_cast<MemSetInst>(UI)) { 00543 // Store to dynamic index. 00544 if (NonConstantIdx) 00545 return false; 00546 // Store of constant value. 00547 if (!isa<ConstantInt>(MSI->getValue())) 00548 return false; 00549 00550 // Store of constant size. 00551 ConstantInt *Len = dyn_cast<ConstantInt>(MSI->getLength()); 00552 if (!Len) 00553 return false; 00554 00555 // If the size differs from the alloca, we can only convert the alloca to 00556 // an integer bag-of-bits. 00557 // FIXME: This should handle all of the cases that are currently accepted 00558 // as vector element insertions. 00559 if (Len->getZExtValue() != AllocaSize || Offset != 0) 00560 ScalarKind = Integer; 00561 00562 IsNotTrivial = true; // Can't be mem2reg'd. 00563 HadNonMemTransferAccess = true; 00564 continue; 00565 } 00566 00567 // If this is a memcpy or memmove into or out of the whole allocation, we 00568 // can handle it like a load or store of the scalar type. 00569 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(UI)) { 00570 // Store to dynamic index. 00571 if (NonConstantIdx) 00572 return false; 00573 ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength()); 00574 if (!Len || Len->getZExtValue() != AllocaSize || Offset != 0) 00575 return false; 00576 00577 IsNotTrivial = true; // Can't be mem2reg'd. 00578 continue; 00579 } 00580 00581 // If this is a lifetime intrinsic, we can handle it. 00582 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(UI)) { 00583 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 00584 II->getIntrinsicID() == Intrinsic::lifetime_end) { 00585 continue; 00586 } 00587 } 00588 00589 // Otherwise, we cannot handle this! 00590 return false; 00591 } 00592 00593 return true; 00594 } 00595 00596 /// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca 00597 /// directly. This happens when we are converting an "integer union" to a 00598 /// single integer scalar, or when we are converting a "vector union" to a 00599 /// vector with insert/extractelement instructions. 00600 /// 00601 /// Offset is an offset from the original alloca, in bits that need to be 00602 /// shifted to the right. By the end of this, there should be no uses of Ptr. 00603 void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, 00604 uint64_t Offset, 00605 Value* NonConstantIdx) { 00606 while (!Ptr->use_empty()) { 00607 Instruction *User = cast<Instruction>(Ptr->user_back()); 00608 00609 if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) { 00610 ConvertUsesToScalar(CI, NewAI, Offset, NonConstantIdx); 00611 CI->eraseFromParent(); 00612 continue; 00613 } 00614 00615 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) { 00616 // Compute the offset that this GEP adds to the pointer. 00617 SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end()); 00618 Value* GEPNonConstantIdx = nullptr; 00619 if (!GEP->hasAllConstantIndices()) { 00620 assert(!NonConstantIdx && 00621 "Dynamic GEP reading from dynamic GEP unsupported"); 00622 GEPNonConstantIdx = Indices.pop_back_val(); 00623 } else 00624 GEPNonConstantIdx = NonConstantIdx; 00625 uint64_t GEPOffset = DL.getIndexedOffset(GEP->getPointerOperandType(), 00626 Indices); 00627 ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8, GEPNonConstantIdx); 00628 GEP->eraseFromParent(); 00629 continue; 00630 } 00631 00632 IRBuilder<> Builder(User); 00633 00634 if (LoadInst *LI = dyn_cast<LoadInst>(User)) { 00635 // The load is a bit extract from NewAI shifted right by Offset bits. 00636 Value *LoadedVal = Builder.CreateLoad(NewAI); 00637 Value *NewLoadVal 00638 = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, 00639 NonConstantIdx, Builder); 00640 LI->replaceAllUsesWith(NewLoadVal); 00641 LI->eraseFromParent(); 00642 continue; 00643 } 00644 00645 if (StoreInst *SI = dyn_cast<StoreInst>(User)) { 00646 assert(SI->getOperand(0) != Ptr && "Consistency error!"); 00647 Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in"); 00648 Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset, 00649 NonConstantIdx, Builder); 00650 Builder.CreateStore(New, NewAI); 00651 SI->eraseFromParent(); 00652 00653 // If the load we just inserted is now dead, then the inserted store 00654 // overwrote the entire thing. 00655 if (Old->use_empty()) 00656 Old->eraseFromParent(); 00657 continue; 00658 } 00659 00660 // If this is a constant sized memset of a constant value (e.g. 0) we can 00661 // transform it into a store of the expanded constant value. 00662 if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) { 00663 assert(MSI->getRawDest() == Ptr && "Consistency error!"); 00664 assert(!NonConstantIdx && "Cannot replace dynamic memset with insert"); 00665 int64_t SNumBytes = cast<ConstantInt>(MSI->getLength())->getSExtValue(); 00666 if (SNumBytes > 0 && (SNumBytes >> 32) == 0) { 00667 unsigned NumBytes = static_cast<unsigned>(SNumBytes); 00668 unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue(); 00669 00670 // Compute the value replicated the right number of times. 00671 APInt APVal(NumBytes*8, Val); 00672 00673 // Splat the value if non-zero. 00674 if (Val) 00675 for (unsigned i = 1; i != NumBytes; ++i) 00676 APVal |= APVal << 8; 00677 00678 Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in"); 00679 Value *New = ConvertScalar_InsertValue( 00680 ConstantInt::get(User->getContext(), APVal), 00681 Old, Offset, nullptr, Builder); 00682 Builder.CreateStore(New, NewAI); 00683 00684 // If the load we just inserted is now dead, then the memset overwrote 00685 // the entire thing. 00686 if (Old->use_empty()) 00687 Old->eraseFromParent(); 00688 } 00689 MSI->eraseFromParent(); 00690 continue; 00691 } 00692 00693 // If this is a memcpy or memmove into or out of the whole allocation, we 00694 // can handle it like a load or store of the scalar type. 00695 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) { 00696 assert(Offset == 0 && "must be store to start of alloca"); 00697 assert(!NonConstantIdx && "Cannot replace dynamic transfer with insert"); 00698 00699 // If the source and destination are both to the same alloca, then this is 00700 // a noop copy-to-self, just delete it. Otherwise, emit a load and store 00701 // as appropriate. 00702 AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &DL, 0)); 00703 00704 if (GetUnderlyingObject(MTI->getSource(), &DL, 0) != OrigAI) { 00705 // Dest must be OrigAI, change this to be a load from the original 00706 // pointer (bitcasted), then a store to our new alloca. 00707 assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?"); 00708 Value *SrcPtr = MTI->getSource(); 00709 PointerType* SPTy = cast<PointerType>(SrcPtr->getType()); 00710 PointerType* AIPTy = cast<PointerType>(NewAI->getType()); 00711 if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) { 00712 AIPTy = PointerType::get(AIPTy->getElementType(), 00713 SPTy->getAddressSpace()); 00714 } 00715 SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy); 00716 00717 LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval"); 00718 SrcVal->setAlignment(MTI->getAlignment()); 00719 Builder.CreateStore(SrcVal, NewAI); 00720 } else if (GetUnderlyingObject(MTI->getDest(), &DL, 0) != OrigAI) { 00721 // Src must be OrigAI, change this to be a load from NewAI then a store 00722 // through the original dest pointer (bitcasted). 00723 assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?"); 00724 LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval"); 00725 00726 PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType()); 00727 PointerType* AIPTy = cast<PointerType>(NewAI->getType()); 00728 if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) { 00729 AIPTy = PointerType::get(AIPTy->getElementType(), 00730 DPTy->getAddressSpace()); 00731 } 00732 Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy); 00733 00734 StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr); 00735 NewStore->setAlignment(MTI->getAlignment()); 00736 } else { 00737 // Noop transfer. Src == Dst 00738 } 00739 00740 MTI->eraseFromParent(); 00741 continue; 00742 } 00743 00744 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) { 00745 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 00746 II->getIntrinsicID() == Intrinsic::lifetime_end) { 00747 // There's no need to preserve these, as the resulting alloca will be 00748 // converted to a register anyways. 00749 II->eraseFromParent(); 00750 continue; 00751 } 00752 } 00753 00754 llvm_unreachable("Unsupported operation!"); 00755 } 00756 } 00757 00758 /// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer 00759 /// or vector value FromVal, extracting the bits from the offset specified by 00760 /// Offset. This returns the value, which is of type ToType. 00761 /// 00762 /// This happens when we are converting an "integer union" to a single 00763 /// integer scalar, or when we are converting a "vector union" to a vector with 00764 /// insert/extractelement instructions. 00765 /// 00766 /// Offset is an offset from the original alloca, in bits that need to be 00767 /// shifted to the right. 00768 Value *ConvertToScalarInfo:: 00769 ConvertScalar_ExtractValue(Value *FromVal, Type *ToType, 00770 uint64_t Offset, Value* NonConstantIdx, 00771 IRBuilder<> &Builder) { 00772 // If the load is of the whole new alloca, no conversion is needed. 00773 Type *FromType = FromVal->getType(); 00774 if (FromType == ToType && Offset == 0) 00775 return FromVal; 00776 00777 // If the result alloca is a vector type, this is either an element 00778 // access or a bitcast to another vector type of the same size. 00779 if (VectorType *VTy = dyn_cast<VectorType>(FromType)) { 00780 unsigned FromTypeSize = DL.getTypeAllocSize(FromType); 00781 unsigned ToTypeSize = DL.getTypeAllocSize(ToType); 00782 if (FromTypeSize == ToTypeSize) 00783 return Builder.CreateBitCast(FromVal, ToType); 00784 00785 // Otherwise it must be an element access. 00786 unsigned Elt = 0; 00787 if (Offset) { 00788 unsigned EltSize = DL.getTypeAllocSizeInBits(VTy->getElementType()); 00789 Elt = Offset/EltSize; 00790 assert(EltSize*Elt == Offset && "Invalid modulus in validity checking"); 00791 } 00792 // Return the element extracted out of it. 00793 Value *Idx; 00794 if (NonConstantIdx) { 00795 if (Elt) 00796 Idx = Builder.CreateAdd(NonConstantIdx, 00797 Builder.getInt32(Elt), 00798 "dyn.offset"); 00799 else 00800 Idx = NonConstantIdx; 00801 } else 00802 Idx = Builder.getInt32(Elt); 00803 Value *V = Builder.CreateExtractElement(FromVal, Idx); 00804 if (V->getType() != ToType) 00805 V = Builder.CreateBitCast(V, ToType); 00806 return V; 00807 } 00808 00809 // If ToType is a first class aggregate, extract out each of the pieces and 00810 // use insertvalue's to form the FCA. 00811 if (StructType *ST = dyn_cast<StructType>(ToType)) { 00812 assert(!NonConstantIdx && 00813 "Dynamic indexing into struct types not supported"); 00814 const StructLayout &Layout = *DL.getStructLayout(ST); 00815 Value *Res = UndefValue::get(ST); 00816 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) { 00817 Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i), 00818 Offset+Layout.getElementOffsetInBits(i), 00819 nullptr, Builder); 00820 Res = Builder.CreateInsertValue(Res, Elt, i); 00821 } 00822 return Res; 00823 } 00824 00825 if (ArrayType *AT = dyn_cast<ArrayType>(ToType)) { 00826 assert(!NonConstantIdx && 00827 "Dynamic indexing into array types not supported"); 00828 uint64_t EltSize = DL.getTypeAllocSizeInBits(AT->getElementType()); 00829 Value *Res = UndefValue::get(AT); 00830 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) { 00831 Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(), 00832 Offset+i*EltSize, nullptr, 00833 Builder); 00834 Res = Builder.CreateInsertValue(Res, Elt, i); 00835 } 00836 return Res; 00837 } 00838 00839 // Otherwise, this must be a union that was converted to an integer value. 00840 IntegerType *NTy = cast<IntegerType>(FromVal->getType()); 00841 00842 // If this is a big-endian system and the load is narrower than the 00843 // full alloca type, we need to do a shift to get the right bits. 00844 int ShAmt = 0; 00845 if (DL.isBigEndian()) { 00846 // On big-endian machines, the lowest bit is stored at the bit offset 00847 // from the pointer given by getTypeStoreSizeInBits. This matters for 00848 // integers with a bitwidth that is not a multiple of 8. 00849 ShAmt = DL.getTypeStoreSizeInBits(NTy) - 00850 DL.getTypeStoreSizeInBits(ToType) - Offset; 00851 } else { 00852 ShAmt = Offset; 00853 } 00854 00855 // Note: we support negative bitwidths (with shl) which are not defined. 00856 // We do this to support (f.e.) loads off the end of a structure where 00857 // only some bits are used. 00858 if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth()) 00859 FromVal = Builder.CreateLShr(FromVal, 00860 ConstantInt::get(FromVal->getType(), ShAmt)); 00861 else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth()) 00862 FromVal = Builder.CreateShl(FromVal, 00863 ConstantInt::get(FromVal->getType(), -ShAmt)); 00864 00865 // Finally, unconditionally truncate the integer to the right width. 00866 unsigned LIBitWidth = DL.getTypeSizeInBits(ToType); 00867 if (LIBitWidth < NTy->getBitWidth()) 00868 FromVal = 00869 Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(), 00870 LIBitWidth)); 00871 else if (LIBitWidth > NTy->getBitWidth()) 00872 FromVal = 00873 Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(), 00874 LIBitWidth)); 00875 00876 // If the result is an integer, this is a trunc or bitcast. 00877 if (ToType->isIntegerTy()) { 00878 // Should be done. 00879 } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) { 00880 // Just do a bitcast, we know the sizes match up. 00881 FromVal = Builder.CreateBitCast(FromVal, ToType); 00882 } else { 00883 // Otherwise must be a pointer. 00884 FromVal = Builder.CreateIntToPtr(FromVal, ToType); 00885 } 00886 assert(FromVal->getType() == ToType && "Didn't convert right?"); 00887 return FromVal; 00888 } 00889 00890 /// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer 00891 /// or vector value "Old" at the offset specified by Offset. 00892 /// 00893 /// This happens when we are converting an "integer union" to a 00894 /// single integer scalar, or when we are converting a "vector union" to a 00895 /// vector with insert/extractelement instructions. 00896 /// 00897 /// Offset is an offset from the original alloca, in bits that need to be 00898 /// shifted to the right. 00899 /// 00900 /// NonConstantIdx is an index value if there was a GEP with a non-constant 00901 /// index value. If this is 0 then all GEPs used to find this insert address 00902 /// are constant. 00903 Value *ConvertToScalarInfo:: 00904 ConvertScalar_InsertValue(Value *SV, Value *Old, 00905 uint64_t Offset, Value* NonConstantIdx, 00906 IRBuilder<> &Builder) { 00907 // Convert the stored type to the actual type, shift it left to insert 00908 // then 'or' into place. 00909 Type *AllocaType = Old->getType(); 00910 LLVMContext &Context = Old->getContext(); 00911 00912 if (VectorType *VTy = dyn_cast<VectorType>(AllocaType)) { 00913 uint64_t VecSize = DL.getTypeAllocSizeInBits(VTy); 00914 uint64_t ValSize = DL.getTypeAllocSizeInBits(SV->getType()); 00915 00916 // Changing the whole vector with memset or with an access of a different 00917 // vector type? 00918 if (ValSize == VecSize) 00919 return Builder.CreateBitCast(SV, AllocaType); 00920 00921 // Must be an element insertion. 00922 Type *EltTy = VTy->getElementType(); 00923 if (SV->getType() != EltTy) 00924 SV = Builder.CreateBitCast(SV, EltTy); 00925 uint64_t EltSize = DL.getTypeAllocSizeInBits(EltTy); 00926 unsigned Elt = Offset/EltSize; 00927 Value *Idx; 00928 if (NonConstantIdx) { 00929 if (Elt) 00930 Idx = Builder.CreateAdd(NonConstantIdx, 00931 Builder.getInt32(Elt), 00932 "dyn.offset"); 00933 else 00934 Idx = NonConstantIdx; 00935 } else 00936 Idx = Builder.getInt32(Elt); 00937 return Builder.CreateInsertElement(Old, SV, Idx); 00938 } 00939 00940 // If SV is a first-class aggregate value, insert each value recursively. 00941 if (StructType *ST = dyn_cast<StructType>(SV->getType())) { 00942 assert(!NonConstantIdx && 00943 "Dynamic indexing into struct types not supported"); 00944 const StructLayout &Layout = *DL.getStructLayout(ST); 00945 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) { 00946 Value *Elt = Builder.CreateExtractValue(SV, i); 00947 Old = ConvertScalar_InsertValue(Elt, Old, 00948 Offset+Layout.getElementOffsetInBits(i), 00949 nullptr, Builder); 00950 } 00951 return Old; 00952 } 00953 00954 if (ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) { 00955 assert(!NonConstantIdx && 00956 "Dynamic indexing into array types not supported"); 00957 uint64_t EltSize = DL.getTypeAllocSizeInBits(AT->getElementType()); 00958 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) { 00959 Value *Elt = Builder.CreateExtractValue(SV, i); 00960 Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, nullptr, 00961 Builder); 00962 } 00963 return Old; 00964 } 00965 00966 // If SV is a float, convert it to the appropriate integer type. 00967 // If it is a pointer, do the same. 00968 unsigned SrcWidth = DL.getTypeSizeInBits(SV->getType()); 00969 unsigned DestWidth = DL.getTypeSizeInBits(AllocaType); 00970 unsigned SrcStoreWidth = DL.getTypeStoreSizeInBits(SV->getType()); 00971 unsigned DestStoreWidth = DL.getTypeStoreSizeInBits(AllocaType); 00972 if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy()) 00973 SV = Builder.CreateBitCast(SV, IntegerType::get(SV->getContext(),SrcWidth)); 00974 else if (SV->getType()->isPointerTy()) 00975 SV = Builder.CreatePtrToInt(SV, DL.getIntPtrType(SV->getType())); 00976 00977 // Zero extend or truncate the value if needed. 00978 if (SV->getType() != AllocaType) { 00979 if (SV->getType()->getPrimitiveSizeInBits() < 00980 AllocaType->getPrimitiveSizeInBits()) 00981 SV = Builder.CreateZExt(SV, AllocaType); 00982 else { 00983 // Truncation may be needed if storing more than the alloca can hold 00984 // (undefined behavior). 00985 SV = Builder.CreateTrunc(SV, AllocaType); 00986 SrcWidth = DestWidth; 00987 SrcStoreWidth = DestStoreWidth; 00988 } 00989 } 00990 00991 // If this is a big-endian system and the store is narrower than the 00992 // full alloca type, we need to do a shift to get the right bits. 00993 int ShAmt = 0; 00994 if (DL.isBigEndian()) { 00995 // On big-endian machines, the lowest bit is stored at the bit offset 00996 // from the pointer given by getTypeStoreSizeInBits. This matters for 00997 // integers with a bitwidth that is not a multiple of 8. 00998 ShAmt = DestStoreWidth - SrcStoreWidth - Offset; 00999 } else { 01000 ShAmt = Offset; 01001 } 01002 01003 // Note: we support negative bitwidths (with shr) which are not defined. 01004 // We do this to support (f.e.) stores off the end of a structure where 01005 // only some bits in the structure are set. 01006 APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth)); 01007 if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) { 01008 SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(), ShAmt)); 01009 Mask <<= ShAmt; 01010 } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) { 01011 SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(), -ShAmt)); 01012 Mask = Mask.lshr(-ShAmt); 01013 } 01014 01015 // Mask out the bits we are about to insert from the old value, and or 01016 // in the new bits. 01017 if (SrcWidth != DestWidth) { 01018 assert(DestWidth > SrcWidth); 01019 Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask"); 01020 SV = Builder.CreateOr(Old, SV, "ins"); 01021 } 01022 return SV; 01023 } 01024 01025 01026 //===----------------------------------------------------------------------===// 01027 // SRoA Driver 01028 //===----------------------------------------------------------------------===// 01029 01030 01031 bool SROA::runOnFunction(Function &F) { 01032 if (skipOptnoneFunction(F)) 01033 return false; 01034 01035 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 01036 DL = DLP ? &DLP->getDataLayout() : nullptr; 01037 01038 bool Changed = performPromotion(F); 01039 01040 // FIXME: ScalarRepl currently depends on DataLayout more than it 01041 // theoretically needs to. It should be refactored in order to support 01042 // target-independent IR. Until this is done, just skip the actual 01043 // scalar-replacement portion of this pass. 01044 if (!DL) return Changed; 01045 01046 while (1) { 01047 bool LocalChange = performScalarRepl(F); 01048 if (!LocalChange) break; // No need to repromote if no scalarrepl 01049 Changed = true; 01050 LocalChange = performPromotion(F); 01051 if (!LocalChange) break; // No need to re-scalarrepl if no promotion 01052 } 01053 01054 return Changed; 01055 } 01056 01057 namespace { 01058 class AllocaPromoter : public LoadAndStorePromoter { 01059 AllocaInst *AI; 01060 DIBuilder *DIB; 01061 SmallVector<DbgDeclareInst *, 4> DDIs; 01062 SmallVector<DbgValueInst *, 4> DVIs; 01063 public: 01064 AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S, 01065 DIBuilder *DB) 01066 : LoadAndStorePromoter(Insts, S), AI(nullptr), DIB(DB) {} 01067 01068 void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) { 01069 // Remember which alloca we're promoting (for isInstInList). 01070 this->AI = AI; 01071 if (MDNode *DebugNode = MDNode::getIfExists(AI->getContext(), AI)) { 01072 for (User *U : DebugNode->users()) 01073 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) 01074 DDIs.push_back(DDI); 01075 else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 01076 DVIs.push_back(DVI); 01077 } 01078 01079 LoadAndStorePromoter::run(Insts); 01080 AI->eraseFromParent(); 01081 for (SmallVectorImpl<DbgDeclareInst *>::iterator I = DDIs.begin(), 01082 E = DDIs.end(); I != E; ++I) { 01083 DbgDeclareInst *DDI = *I; 01084 DDI->eraseFromParent(); 01085 } 01086 for (SmallVectorImpl<DbgValueInst *>::iterator I = DVIs.begin(), 01087 E = DVIs.end(); I != E; ++I) { 01088 DbgValueInst *DVI = *I; 01089 DVI->eraseFromParent(); 01090 } 01091 } 01092 01093 bool isInstInList(Instruction *I, 01094 const SmallVectorImpl<Instruction*> &Insts) const override { 01095 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 01096 return LI->getOperand(0) == AI; 01097 return cast<StoreInst>(I)->getPointerOperand() == AI; 01098 } 01099 01100 void updateDebugInfo(Instruction *Inst) const override { 01101 for (SmallVectorImpl<DbgDeclareInst *>::const_iterator I = DDIs.begin(), 01102 E = DDIs.end(); I != E; ++I) { 01103 DbgDeclareInst *DDI = *I; 01104 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) 01105 ConvertDebugDeclareToDebugValue(DDI, SI, *DIB); 01106 else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 01107 ConvertDebugDeclareToDebugValue(DDI, LI, *DIB); 01108 } 01109 for (SmallVectorImpl<DbgValueInst *>::const_iterator I = DVIs.begin(), 01110 E = DVIs.end(); I != E; ++I) { 01111 DbgValueInst *DVI = *I; 01112 Value *Arg = nullptr; 01113 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 01114 // If an argument is zero extended then use argument directly. The ZExt 01115 // may be zapped by an optimization pass in future. 01116 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) 01117 Arg = dyn_cast<Argument>(ZExt->getOperand(0)); 01118 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) 01119 Arg = dyn_cast<Argument>(SExt->getOperand(0)); 01120 if (!Arg) 01121 Arg = SI->getOperand(0); 01122 } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 01123 Arg = LI->getOperand(0); 01124 } else { 01125 continue; 01126 } 01127 Instruction *DbgVal = 01128 DIB->insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()), 01129 Inst); 01130 DbgVal->setDebugLoc(DVI->getDebugLoc()); 01131 } 01132 } 01133 }; 01134 } // end anon namespace 01135 01136 /// isSafeSelectToSpeculate - Select instructions that use an alloca and are 01137 /// subsequently loaded can be rewritten to load both input pointers and then 01138 /// select between the result, allowing the load of the alloca to be promoted. 01139 /// From this: 01140 /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other 01141 /// %V = load i32* %P2 01142 /// to: 01143 /// %V1 = load i32* %Alloca -> will be mem2reg'd 01144 /// %V2 = load i32* %Other 01145 /// %V = select i1 %cond, i32 %V1, i32 %V2 01146 /// 01147 /// We can do this to a select if its only uses are loads and if the operand to 01148 /// the select can be loaded unconditionally. 01149 static bool isSafeSelectToSpeculate(SelectInst *SI, const DataLayout *DL) { 01150 bool TDerefable = SI->getTrueValue()->isDereferenceablePointer(DL); 01151 bool FDerefable = SI->getFalseValue()->isDereferenceablePointer(DL); 01152 01153 for (User *U : SI->users()) { 01154 LoadInst *LI = dyn_cast<LoadInst>(U); 01155 if (!LI || !LI->isSimple()) return false; 01156 01157 // Both operands to the select need to be dereferencable, either absolutely 01158 // (e.g. allocas) or at this point because we can see other accesses to it. 01159 if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI, 01160 LI->getAlignment(), DL)) 01161 return false; 01162 if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI, 01163 LI->getAlignment(), DL)) 01164 return false; 01165 } 01166 01167 return true; 01168 } 01169 01170 /// isSafePHIToSpeculate - PHI instructions that use an alloca and are 01171 /// subsequently loaded can be rewritten to load both input pointers in the pred 01172 /// blocks and then PHI the results, allowing the load of the alloca to be 01173 /// promoted. 01174 /// From this: 01175 /// %P2 = phi [i32* %Alloca, i32* %Other] 01176 /// %V = load i32* %P2 01177 /// to: 01178 /// %V1 = load i32* %Alloca -> will be mem2reg'd 01179 /// ... 01180 /// %V2 = load i32* %Other 01181 /// ... 01182 /// %V = phi [i32 %V1, i32 %V2] 01183 /// 01184 /// We can do this to a select if its only uses are loads and if the operand to 01185 /// the select can be loaded unconditionally. 01186 static bool isSafePHIToSpeculate(PHINode *PN, const DataLayout *DL) { 01187 // For now, we can only do this promotion if the load is in the same block as 01188 // the PHI, and if there are no stores between the phi and load. 01189 // TODO: Allow recursive phi users. 01190 // TODO: Allow stores. 01191 BasicBlock *BB = PN->getParent(); 01192 unsigned MaxAlign = 0; 01193 for (User *U : PN->users()) { 01194 LoadInst *LI = dyn_cast<LoadInst>(U); 01195 if (!LI || !LI->isSimple()) return false; 01196 01197 // For now we only allow loads in the same block as the PHI. This is a 01198 // common case that happens when instcombine merges two loads through a PHI. 01199 if (LI->getParent() != BB) return false; 01200 01201 // Ensure that there are no instructions between the PHI and the load that 01202 // could store. 01203 for (BasicBlock::iterator BBI = PN; &*BBI != LI; ++BBI) 01204 if (BBI->mayWriteToMemory()) 01205 return false; 01206 01207 MaxAlign = std::max(MaxAlign, LI->getAlignment()); 01208 } 01209 01210 // Okay, we know that we have one or more loads in the same block as the PHI. 01211 // We can transform this if it is safe to push the loads into the predecessor 01212 // blocks. The only thing to watch out for is that we can't put a possibly 01213 // trapping load in the predecessor if it is a critical edge. 01214 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 01215 BasicBlock *Pred = PN->getIncomingBlock(i); 01216 Value *InVal = PN->getIncomingValue(i); 01217 01218 // If the terminator of the predecessor has side-effects (an invoke), 01219 // there is no safe place to put a load in the predecessor. 01220 if (Pred->getTerminator()->mayHaveSideEffects()) 01221 return false; 01222 01223 // If the value is produced by the terminator of the predecessor 01224 // (an invoke), there is no valid place to put a load in the predecessor. 01225 if (Pred->getTerminator() == InVal) 01226 return false; 01227 01228 // If the predecessor has a single successor, then the edge isn't critical. 01229 if (Pred->getTerminator()->getNumSuccessors() == 1) 01230 continue; 01231 01232 // If this pointer is always safe to load, or if we can prove that there is 01233 // already a load in the block, then we can move the load to the pred block. 01234 if (InVal->isDereferenceablePointer(DL) || 01235 isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, DL)) 01236 continue; 01237 01238 return false; 01239 } 01240 01241 return true; 01242 } 01243 01244 01245 /// tryToMakeAllocaBePromotable - This returns true if the alloca only has 01246 /// direct (non-volatile) loads and stores to it. If the alloca is close but 01247 /// not quite there, this will transform the code to allow promotion. As such, 01248 /// it is a non-pure predicate. 01249 static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const DataLayout *DL) { 01250 SetVector<Instruction*, SmallVector<Instruction*, 4>, 01251 SmallPtrSet<Instruction*, 4> > InstsToRewrite; 01252 for (User *U : AI->users()) { 01253 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 01254 if (!LI->isSimple()) 01255 return false; 01256 continue; 01257 } 01258 01259 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 01260 if (SI->getOperand(0) == AI || !SI->isSimple()) 01261 return false; // Don't allow a store OF the AI, only INTO the AI. 01262 continue; 01263 } 01264 01265 if (SelectInst *SI = dyn_cast<SelectInst>(U)) { 01266 // If the condition being selected on is a constant, fold the select, yes 01267 // this does (rarely) happen early on. 01268 if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) { 01269 Value *Result = SI->getOperand(1+CI->isZero()); 01270 SI->replaceAllUsesWith(Result); 01271 SI->eraseFromParent(); 01272 01273 // This is very rare and we just scrambled the use list of AI, start 01274 // over completely. 01275 return tryToMakeAllocaBePromotable(AI, DL); 01276 } 01277 01278 // If it is safe to turn "load (select c, AI, ptr)" into a select of two 01279 // loads, then we can transform this by rewriting the select. 01280 if (!isSafeSelectToSpeculate(SI, DL)) 01281 return false; 01282 01283 InstsToRewrite.insert(SI); 01284 continue; 01285 } 01286 01287 if (PHINode *PN = dyn_cast<PHINode>(U)) { 01288 if (PN->use_empty()) { // Dead PHIs can be stripped. 01289 InstsToRewrite.insert(PN); 01290 continue; 01291 } 01292 01293 // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads 01294 // in the pred blocks, then we can transform this by rewriting the PHI. 01295 if (!isSafePHIToSpeculate(PN, DL)) 01296 return false; 01297 01298 InstsToRewrite.insert(PN); 01299 continue; 01300 } 01301 01302 if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) { 01303 if (onlyUsedByLifetimeMarkers(BCI)) { 01304 InstsToRewrite.insert(BCI); 01305 continue; 01306 } 01307 } 01308 01309 return false; 01310 } 01311 01312 // If there are no instructions to rewrite, then all uses are load/stores and 01313 // we're done! 01314 if (InstsToRewrite.empty()) 01315 return true; 01316 01317 // If we have instructions that need to be rewritten for this to be promotable 01318 // take care of it now. 01319 for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) { 01320 if (BitCastInst *BCI = dyn_cast<BitCastInst>(InstsToRewrite[i])) { 01321 // This could only be a bitcast used by nothing but lifetime intrinsics. 01322 for (BitCastInst::user_iterator I = BCI->user_begin(), E = BCI->user_end(); 01323 I != E;) 01324 cast<Instruction>(*I++)->eraseFromParent(); 01325 BCI->eraseFromParent(); 01326 continue; 01327 } 01328 01329 if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) { 01330 // Selects in InstsToRewrite only have load uses. Rewrite each as two 01331 // loads with a new select. 01332 while (!SI->use_empty()) { 01333 LoadInst *LI = cast<LoadInst>(SI->user_back()); 01334 01335 IRBuilder<> Builder(LI); 01336 LoadInst *TrueLoad = 01337 Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t"); 01338 LoadInst *FalseLoad = 01339 Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".f"); 01340 01341 // Transfer alignment and AA info if present. 01342 TrueLoad->setAlignment(LI->getAlignment()); 01343 FalseLoad->setAlignment(LI->getAlignment()); 01344 01345 AAMDNodes Tags; 01346 LI->getAAMetadata(Tags); 01347 if (Tags) { 01348 TrueLoad->setAAMetadata(Tags); 01349 FalseLoad->setAAMetadata(Tags); 01350 } 01351 01352 Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad); 01353 V->takeName(LI); 01354 LI->replaceAllUsesWith(V); 01355 LI->eraseFromParent(); 01356 } 01357 01358 // Now that all the loads are gone, the select is gone too. 01359 SI->eraseFromParent(); 01360 continue; 01361 } 01362 01363 // Otherwise, we have a PHI node which allows us to push the loads into the 01364 // predecessors. 01365 PHINode *PN = cast<PHINode>(InstsToRewrite[i]); 01366 if (PN->use_empty()) { 01367 PN->eraseFromParent(); 01368 continue; 01369 } 01370 01371 Type *LoadTy = cast<PointerType>(PN->getType())->getElementType(); 01372 PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(), 01373 PN->getName()+".ld", PN); 01374 01375 // Get the AA tags and alignment to use from one of the loads. It doesn't 01376 // matter which one we get and if any differ, it doesn't matter. 01377 LoadInst *SomeLoad = cast<LoadInst>(PN->user_back()); 01378 01379 AAMDNodes AATags; 01380 SomeLoad->getAAMetadata(AATags); 01381 unsigned Align = SomeLoad->getAlignment(); 01382 01383 // Rewrite all loads of the PN to use the new PHI. 01384 while (!PN->use_empty()) { 01385 LoadInst *LI = cast<LoadInst>(PN->user_back()); 01386 LI->replaceAllUsesWith(NewPN); 01387 LI->eraseFromParent(); 01388 } 01389 01390 // Inject loads into all of the pred blocks. Keep track of which blocks we 01391 // insert them into in case we have multiple edges from the same block. 01392 DenseMap<BasicBlock*, LoadInst*> InsertedLoads; 01393 01394 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 01395 BasicBlock *Pred = PN->getIncomingBlock(i); 01396 LoadInst *&Load = InsertedLoads[Pred]; 01397 if (!Load) { 01398 Load = new LoadInst(PN->getIncomingValue(i), 01399 PN->getName() + "." + Pred->getName(), 01400 Pred->getTerminator()); 01401 Load->setAlignment(Align); 01402 if (AATags) Load->setAAMetadata(AATags); 01403 } 01404 01405 NewPN->addIncoming(Load, Pred); 01406 } 01407 01408 PN->eraseFromParent(); 01409 } 01410 01411 ++NumAdjusted; 01412 return true; 01413 } 01414 01415 bool SROA::performPromotion(Function &F) { 01416 std::vector<AllocaInst*> Allocas; 01417 DominatorTree *DT = nullptr; 01418 if (HasDomTree) 01419 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 01420 AssumptionTracker *AT = &getAnalysis<AssumptionTracker>(); 01421 01422 BasicBlock &BB = F.getEntryBlock(); // Get the entry node for the function 01423 DIBuilder DIB(*F.getParent()); 01424 bool Changed = false; 01425 SmallVector<Instruction*, 64> Insts; 01426 while (1) { 01427 Allocas.clear(); 01428 01429 // Find allocas that are safe to promote, by looking at all instructions in 01430 // the entry node 01431 for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I) 01432 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) // Is it an alloca? 01433 if (tryToMakeAllocaBePromotable(AI, DL)) 01434 Allocas.push_back(AI); 01435 01436 if (Allocas.empty()) break; 01437 01438 if (HasDomTree) 01439 PromoteMemToReg(Allocas, *DT, nullptr, AT); 01440 else { 01441 SSAUpdater SSA; 01442 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) { 01443 AllocaInst *AI = Allocas[i]; 01444 01445 // Build list of instructions to promote. 01446 for (User *U : AI->users()) 01447 Insts.push_back(cast<Instruction>(U)); 01448 AllocaPromoter(Insts, SSA, &DIB).run(AI, Insts); 01449 Insts.clear(); 01450 } 01451 } 01452 NumPromoted += Allocas.size(); 01453 Changed = true; 01454 } 01455 01456 return Changed; 01457 } 01458 01459 01460 /// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for 01461 /// SROA. It must be a struct or array type with a small number of elements. 01462 bool SROA::ShouldAttemptScalarRepl(AllocaInst *AI) { 01463 Type *T = AI->getAllocatedType(); 01464 // Do not promote any struct that has too many members. 01465 if (StructType *ST = dyn_cast<StructType>(T)) 01466 return ST->getNumElements() <= StructMemberThreshold; 01467 // Do not promote any array that has too many elements. 01468 if (ArrayType *AT = dyn_cast<ArrayType>(T)) 01469 return AT->getNumElements() <= ArrayElementThreshold; 01470 return false; 01471 } 01472 01473 // performScalarRepl - This algorithm is a simple worklist driven algorithm, 01474 // which runs on all of the alloca instructions in the entry block, removing 01475 // them if they are only used by getelementptr instructions. 01476 // 01477 bool SROA::performScalarRepl(Function &F) { 01478 std::vector<AllocaInst*> WorkList; 01479 01480 // Scan the entry basic block, adding allocas to the worklist. 01481 BasicBlock &BB = F.getEntryBlock(); 01482 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I) 01483 if (AllocaInst *A = dyn_cast<AllocaInst>(I)) 01484 WorkList.push_back(A); 01485 01486 // Process the worklist 01487 bool Changed = false; 01488 while (!WorkList.empty()) { 01489 AllocaInst *AI = WorkList.back(); 01490 WorkList.pop_back(); 01491 01492 // Handle dead allocas trivially. These can be formed by SROA'ing arrays 01493 // with unused elements. 01494 if (AI->use_empty()) { 01495 AI->eraseFromParent(); 01496 Changed = true; 01497 continue; 01498 } 01499 01500 // If this alloca is impossible for us to promote, reject it early. 01501 if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized()) 01502 continue; 01503 01504 // Check to see if we can perform the core SROA transformation. We cannot 01505 // transform the allocation instruction if it is an array allocation 01506 // (allocations OF arrays are ok though), and an allocation of a scalar 01507 // value cannot be decomposed at all. 01508 uint64_t AllocaSize = DL->getTypeAllocSize(AI->getAllocatedType()); 01509 01510 // Do not promote [0 x %struct]. 01511 if (AllocaSize == 0) continue; 01512 01513 // Do not promote any struct whose size is too big. 01514 if (AllocaSize > SRThreshold) continue; 01515 01516 // If the alloca looks like a good candidate for scalar replacement, and if 01517 // all its users can be transformed, then split up the aggregate into its 01518 // separate elements. 01519 if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) { 01520 DoScalarReplacement(AI, WorkList); 01521 Changed = true; 01522 continue; 01523 } 01524 01525 // If we can turn this aggregate value (potentially with casts) into a 01526 // simple scalar value that can be mem2reg'd into a register value. 01527 // IsNotTrivial tracks whether this is something that mem2reg could have 01528 // promoted itself. If so, we don't want to transform it needlessly. Note 01529 // that we can't just check based on the type: the alloca may be of an i32 01530 // but that has pointer arithmetic to set byte 3 of it or something. 01531 if (AllocaInst *NewAI = ConvertToScalarInfo( 01532 (unsigned)AllocaSize, *DL, ScalarLoadThreshold).TryConvert(AI)) { 01533 NewAI->takeName(AI); 01534 AI->eraseFromParent(); 01535 ++NumConverted; 01536 Changed = true; 01537 continue; 01538 } 01539 01540 // Otherwise, couldn't process this alloca. 01541 } 01542 01543 return Changed; 01544 } 01545 01546 /// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl 01547 /// predicate, do SROA now. 01548 void SROA::DoScalarReplacement(AllocaInst *AI, 01549 std::vector<AllocaInst*> &WorkList) { 01550 DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n'); 01551 SmallVector<AllocaInst*, 32> ElementAllocas; 01552 if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) { 01553 ElementAllocas.reserve(ST->getNumContainedTypes()); 01554 for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) { 01555 AllocaInst *NA = new AllocaInst(ST->getContainedType(i), nullptr, 01556 AI->getAlignment(), 01557 AI->getName() + "." + Twine(i), AI); 01558 ElementAllocas.push_back(NA); 01559 WorkList.push_back(NA); // Add to worklist for recursive processing 01560 } 01561 } else { 01562 ArrayType *AT = cast<ArrayType>(AI->getAllocatedType()); 01563 ElementAllocas.reserve(AT->getNumElements()); 01564 Type *ElTy = AT->getElementType(); 01565 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) { 01566 AllocaInst *NA = new AllocaInst(ElTy, nullptr, AI->getAlignment(), 01567 AI->getName() + "." + Twine(i), AI); 01568 ElementAllocas.push_back(NA); 01569 WorkList.push_back(NA); // Add to worklist for recursive processing 01570 } 01571 } 01572 01573 // Now that we have created the new alloca instructions, rewrite all the 01574 // uses of the old alloca. 01575 RewriteForScalarRepl(AI, AI, 0, ElementAllocas); 01576 01577 // Now erase any instructions that were made dead while rewriting the alloca. 01578 DeleteDeadInstructions(); 01579 AI->eraseFromParent(); 01580 01581 ++NumReplaced; 01582 } 01583 01584 /// DeleteDeadInstructions - Erase instructions on the DeadInstrs list, 01585 /// recursively including all their operands that become trivially dead. 01586 void SROA::DeleteDeadInstructions() { 01587 while (!DeadInsts.empty()) { 01588 Instruction *I = cast<Instruction>(DeadInsts.pop_back_val()); 01589 01590 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) 01591 if (Instruction *U = dyn_cast<Instruction>(*OI)) { 01592 // Zero out the operand and see if it becomes trivially dead. 01593 // (But, don't add allocas to the dead instruction list -- they are 01594 // already on the worklist and will be deleted separately.) 01595 *OI = nullptr; 01596 if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U)) 01597 DeadInsts.push_back(U); 01598 } 01599 01600 I->eraseFromParent(); 01601 } 01602 } 01603 01604 /// isSafeForScalarRepl - Check if instruction I is a safe use with regard to 01605 /// performing scalar replacement of alloca AI. The results are flagged in 01606 /// the Info parameter. Offset indicates the position within AI that is 01607 /// referenced by this instruction. 01608 void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset, 01609 AllocaInfo &Info) { 01610 for (Use &U : I->uses()) { 01611 Instruction *User = cast<Instruction>(U.getUser()); 01612 01613 if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) { 01614 isSafeForScalarRepl(BC, Offset, Info); 01615 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) { 01616 uint64_t GEPOffset = Offset; 01617 isSafeGEP(GEPI, GEPOffset, Info); 01618 if (!Info.isUnsafe) 01619 isSafeForScalarRepl(GEPI, GEPOffset, Info); 01620 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) { 01621 ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength()); 01622 if (!Length || Length->isNegative()) 01623 return MarkUnsafe(Info, User); 01624 01625 isSafeMemAccess(Offset, Length->getZExtValue(), nullptr, 01626 U.getOperandNo() == 0, Info, MI, 01627 true /*AllowWholeAccess*/); 01628 } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) { 01629 if (!LI->isSimple()) 01630 return MarkUnsafe(Info, User); 01631 Type *LIType = LI->getType(); 01632 isSafeMemAccess(Offset, DL->getTypeAllocSize(LIType), 01633 LIType, false, Info, LI, true /*AllowWholeAccess*/); 01634 Info.hasALoadOrStore = true; 01635 01636 } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) { 01637 // Store is ok if storing INTO the pointer, not storing the pointer 01638 if (!SI->isSimple() || SI->getOperand(0) == I) 01639 return MarkUnsafe(Info, User); 01640 01641 Type *SIType = SI->getOperand(0)->getType(); 01642 isSafeMemAccess(Offset, DL->getTypeAllocSize(SIType), 01643 SIType, true, Info, SI, true /*AllowWholeAccess*/); 01644 Info.hasALoadOrStore = true; 01645 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) { 01646 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 01647 II->getIntrinsicID() != Intrinsic::lifetime_end) 01648 return MarkUnsafe(Info, User); 01649 } else if (isa<PHINode>(User) || isa<SelectInst>(User)) { 01650 isSafePHISelectUseForScalarRepl(User, Offset, Info); 01651 } else { 01652 return MarkUnsafe(Info, User); 01653 } 01654 if (Info.isUnsafe) return; 01655 } 01656 } 01657 01658 01659 /// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer 01660 /// derived from the alloca, we can often still split the alloca into elements. 01661 /// This is useful if we have a large alloca where one element is phi'd 01662 /// together somewhere: we can SRoA and promote all the other elements even if 01663 /// we end up not being able to promote this one. 01664 /// 01665 /// All we require is that the uses of the PHI do not index into other parts of 01666 /// the alloca. The most important use case for this is single load and stores 01667 /// that are PHI'd together, which can happen due to code sinking. 01668 void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset, 01669 AllocaInfo &Info) { 01670 // If we've already checked this PHI, don't do it again. 01671 if (PHINode *PN = dyn_cast<PHINode>(I)) 01672 if (!Info.CheckedPHIs.insert(PN)) 01673 return; 01674 01675 for (User *U : I->users()) { 01676 Instruction *UI = cast<Instruction>(U); 01677 01678 if (BitCastInst *BC = dyn_cast<BitCastInst>(UI)) { 01679 isSafePHISelectUseForScalarRepl(BC, Offset, Info); 01680 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) { 01681 // Only allow "bitcast" GEPs for simplicity. We could generalize this, 01682 // but would have to prove that we're staying inside of an element being 01683 // promoted. 01684 if (!GEPI->hasAllZeroIndices()) 01685 return MarkUnsafe(Info, UI); 01686 isSafePHISelectUseForScalarRepl(GEPI, Offset, Info); 01687 } else if (LoadInst *LI = dyn_cast<LoadInst>(UI)) { 01688 if (!LI->isSimple()) 01689 return MarkUnsafe(Info, UI); 01690 Type *LIType = LI->getType(); 01691 isSafeMemAccess(Offset, DL->getTypeAllocSize(LIType), 01692 LIType, false, Info, LI, false /*AllowWholeAccess*/); 01693 Info.hasALoadOrStore = true; 01694 01695 } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 01696 // Store is ok if storing INTO the pointer, not storing the pointer 01697 if (!SI->isSimple() || SI->getOperand(0) == I) 01698 return MarkUnsafe(Info, UI); 01699 01700 Type *SIType = SI->getOperand(0)->getType(); 01701 isSafeMemAccess(Offset, DL->getTypeAllocSize(SIType), 01702 SIType, true, Info, SI, false /*AllowWholeAccess*/); 01703 Info.hasALoadOrStore = true; 01704 } else if (isa<PHINode>(UI) || isa<SelectInst>(UI)) { 01705 isSafePHISelectUseForScalarRepl(UI, Offset, Info); 01706 } else { 01707 return MarkUnsafe(Info, UI); 01708 } 01709 if (Info.isUnsafe) return; 01710 } 01711 } 01712 01713 /// isSafeGEP - Check if a GEP instruction can be handled for scalar 01714 /// replacement. It is safe when all the indices are constant, in-bounds 01715 /// references, and when the resulting offset corresponds to an element within 01716 /// the alloca type. The results are flagged in the Info parameter. Upon 01717 /// return, Offset is adjusted as specified by the GEP indices. 01718 void SROA::isSafeGEP(GetElementPtrInst *GEPI, 01719 uint64_t &Offset, AllocaInfo &Info) { 01720 gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI); 01721 if (GEPIt == E) 01722 return; 01723 bool NonConstant = false; 01724 unsigned NonConstantIdxSize = 0; 01725 01726 // Walk through the GEP type indices, checking the types that this indexes 01727 // into. 01728 for (; GEPIt != E; ++GEPIt) { 01729 // Ignore struct elements, no extra checking needed for these. 01730 if ((*GEPIt)->isStructTy()) 01731 continue; 01732 01733 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand()); 01734 if (!IdxVal) 01735 return MarkUnsafe(Info, GEPI); 01736 } 01737 01738 // Compute the offset due to this GEP and check if the alloca has a 01739 // component element at that offset. 01740 SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end()); 01741 // If this GEP is non-constant then the last operand must have been a 01742 // dynamic index into a vector. Pop this now as it has no impact on the 01743 // constant part of the offset. 01744 if (NonConstant) 01745 Indices.pop_back(); 01746 Offset += DL->getIndexedOffset(GEPI->getPointerOperandType(), Indices); 01747 if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset, 01748 NonConstantIdxSize)) 01749 MarkUnsafe(Info, GEPI); 01750 } 01751 01752 /// isHomogeneousAggregate - Check if type T is a struct or array containing 01753 /// elements of the same type (which is always true for arrays). If so, 01754 /// return true with NumElts and EltTy set to the number of elements and the 01755 /// element type, respectively. 01756 static bool isHomogeneousAggregate(Type *T, unsigned &NumElts, 01757 Type *&EltTy) { 01758 if (ArrayType *AT = dyn_cast<ArrayType>(T)) { 01759 NumElts = AT->getNumElements(); 01760 EltTy = (NumElts == 0 ? nullptr : AT->getElementType()); 01761 return true; 01762 } 01763 if (StructType *ST = dyn_cast<StructType>(T)) { 01764 NumElts = ST->getNumContainedTypes(); 01765 EltTy = (NumElts == 0 ? nullptr : ST->getContainedType(0)); 01766 for (unsigned n = 1; n < NumElts; ++n) { 01767 if (ST->getContainedType(n) != EltTy) 01768 return false; 01769 } 01770 return true; 01771 } 01772 return false; 01773 } 01774 01775 /// isCompatibleAggregate - Check if T1 and T2 are either the same type or are 01776 /// "homogeneous" aggregates with the same element type and number of elements. 01777 static bool isCompatibleAggregate(Type *T1, Type *T2) { 01778 if (T1 == T2) 01779 return true; 01780 01781 unsigned NumElts1, NumElts2; 01782 Type *EltTy1, *EltTy2; 01783 if (isHomogeneousAggregate(T1, NumElts1, EltTy1) && 01784 isHomogeneousAggregate(T2, NumElts2, EltTy2) && 01785 NumElts1 == NumElts2 && 01786 EltTy1 == EltTy2) 01787 return true; 01788 01789 return false; 01790 } 01791 01792 /// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI 01793 /// alloca or has an offset and size that corresponds to a component element 01794 /// within it. The offset checked here may have been formed from a GEP with a 01795 /// pointer bitcasted to a different type. 01796 /// 01797 /// If AllowWholeAccess is true, then this allows uses of the entire alloca as a 01798 /// unit. If false, it only allows accesses known to be in a single element. 01799 void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize, 01800 Type *MemOpType, bool isStore, 01801 AllocaInfo &Info, Instruction *TheAccess, 01802 bool AllowWholeAccess) { 01803 // Check if this is a load/store of the entire alloca. 01804 if (Offset == 0 && AllowWholeAccess && 01805 MemSize == DL->getTypeAllocSize(Info.AI->getAllocatedType())) { 01806 // This can be safe for MemIntrinsics (where MemOpType is 0) and integer 01807 // loads/stores (which are essentially the same as the MemIntrinsics with 01808 // regard to copying padding between elements). But, if an alloca is 01809 // flagged as both a source and destination of such operations, we'll need 01810 // to check later for padding between elements. 01811 if (!MemOpType || MemOpType->isIntegerTy()) { 01812 if (isStore) 01813 Info.isMemCpyDst = true; 01814 else 01815 Info.isMemCpySrc = true; 01816 return; 01817 } 01818 // This is also safe for references using a type that is compatible with 01819 // the type of the alloca, so that loads/stores can be rewritten using 01820 // insertvalue/extractvalue. 01821 if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) { 01822 Info.hasSubelementAccess = true; 01823 return; 01824 } 01825 } 01826 // Check if the offset/size correspond to a component within the alloca type. 01827 Type *T = Info.AI->getAllocatedType(); 01828 if (TypeHasComponent(T, Offset, MemSize)) { 01829 Info.hasSubelementAccess = true; 01830 return; 01831 } 01832 01833 return MarkUnsafe(Info, TheAccess); 01834 } 01835 01836 /// TypeHasComponent - Return true if T has a component type with the 01837 /// specified offset and size. If Size is zero, do not check the size. 01838 bool SROA::TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size) { 01839 Type *EltTy; 01840 uint64_t EltSize; 01841 if (StructType *ST = dyn_cast<StructType>(T)) { 01842 const StructLayout *Layout = DL->getStructLayout(ST); 01843 unsigned EltIdx = Layout->getElementContainingOffset(Offset); 01844 EltTy = ST->getContainedType(EltIdx); 01845 EltSize = DL->getTypeAllocSize(EltTy); 01846 Offset -= Layout->getElementOffset(EltIdx); 01847 } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) { 01848 EltTy = AT->getElementType(); 01849 EltSize = DL->getTypeAllocSize(EltTy); 01850 if (Offset >= AT->getNumElements() * EltSize) 01851 return false; 01852 Offset %= EltSize; 01853 } else if (VectorType *VT = dyn_cast<VectorType>(T)) { 01854 EltTy = VT->getElementType(); 01855 EltSize = DL->getTypeAllocSize(EltTy); 01856 if (Offset >= VT->getNumElements() * EltSize) 01857 return false; 01858 Offset %= EltSize; 01859 } else { 01860 return false; 01861 } 01862 if (Offset == 0 && (Size == 0 || EltSize == Size)) 01863 return true; 01864 // Check if the component spans multiple elements. 01865 if (Offset + Size > EltSize) 01866 return false; 01867 return TypeHasComponent(EltTy, Offset, Size); 01868 } 01869 01870 /// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite 01871 /// the instruction I, which references it, to use the separate elements. 01872 /// Offset indicates the position within AI that is referenced by this 01873 /// instruction. 01874 void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset, 01875 SmallVectorImpl<AllocaInst *> &NewElts) { 01876 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) { 01877 Use &TheUse = *UI++; 01878 Instruction *User = cast<Instruction>(TheUse.getUser()); 01879 01880 if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) { 01881 RewriteBitCast(BC, AI, Offset, NewElts); 01882 continue; 01883 } 01884 01885 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) { 01886 RewriteGEP(GEPI, AI, Offset, NewElts); 01887 continue; 01888 } 01889 01890 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) { 01891 ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength()); 01892 uint64_t MemSize = Length->getZExtValue(); 01893 if (Offset == 0 && 01894 MemSize == DL->getTypeAllocSize(AI->getAllocatedType())) 01895 RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts); 01896 // Otherwise the intrinsic can only touch a single element and the 01897 // address operand will be updated, so nothing else needs to be done. 01898 continue; 01899 } 01900 01901 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) { 01902 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 01903 II->getIntrinsicID() == Intrinsic::lifetime_end) { 01904 RewriteLifetimeIntrinsic(II, AI, Offset, NewElts); 01905 } 01906 continue; 01907 } 01908 01909 if (LoadInst *LI = dyn_cast<LoadInst>(User)) { 01910 Type *LIType = LI->getType(); 01911 01912 if (isCompatibleAggregate(LIType, AI->getAllocatedType())) { 01913 // Replace: 01914 // %res = load { i32, i32 }* %alloc 01915 // with: 01916 // %load.0 = load i32* %alloc.0 01917 // %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0 01918 // %load.1 = load i32* %alloc.1 01919 // %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1 01920 // (Also works for arrays instead of structs) 01921 Value *Insert = UndefValue::get(LIType); 01922 IRBuilder<> Builder(LI); 01923 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) { 01924 Value *Load = Builder.CreateLoad(NewElts[i], "load"); 01925 Insert = Builder.CreateInsertValue(Insert, Load, i, "insert"); 01926 } 01927 LI->replaceAllUsesWith(Insert); 01928 DeadInsts.push_back(LI); 01929 } else if (LIType->isIntegerTy() && 01930 DL->getTypeAllocSize(LIType) == 01931 DL->getTypeAllocSize(AI->getAllocatedType())) { 01932 // If this is a load of the entire alloca to an integer, rewrite it. 01933 RewriteLoadUserOfWholeAlloca(LI, AI, NewElts); 01934 } 01935 continue; 01936 } 01937 01938 if (StoreInst *SI = dyn_cast<StoreInst>(User)) { 01939 Value *Val = SI->getOperand(0); 01940 Type *SIType = Val->getType(); 01941 if (isCompatibleAggregate(SIType, AI->getAllocatedType())) { 01942 // Replace: 01943 // store { i32, i32 } %val, { i32, i32 }* %alloc 01944 // with: 01945 // %val.0 = extractvalue { i32, i32 } %val, 0 01946 // store i32 %val.0, i32* %alloc.0 01947 // %val.1 = extractvalue { i32, i32 } %val, 1 01948 // store i32 %val.1, i32* %alloc.1 01949 // (Also works for arrays instead of structs) 01950 IRBuilder<> Builder(SI); 01951 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) { 01952 Value *Extract = Builder.CreateExtractValue(Val, i, Val->getName()); 01953 Builder.CreateStore(Extract, NewElts[i]); 01954 } 01955 DeadInsts.push_back(SI); 01956 } else if (SIType->isIntegerTy() && 01957 DL->getTypeAllocSize(SIType) == 01958 DL->getTypeAllocSize(AI->getAllocatedType())) { 01959 // If this is a store of the entire alloca from an integer, rewrite it. 01960 RewriteStoreUserOfWholeAlloca(SI, AI, NewElts); 01961 } 01962 continue; 01963 } 01964 01965 if (isa<SelectInst>(User) || isa<PHINode>(User)) { 01966 // If we have a PHI user of the alloca itself (as opposed to a GEP or 01967 // bitcast) we have to rewrite it. GEP and bitcast uses will be RAUW'd to 01968 // the new pointer. 01969 if (!isa<AllocaInst>(I)) continue; 01970 01971 assert(Offset == 0 && NewElts[0] && 01972 "Direct alloca use should have a zero offset"); 01973 01974 // If we have a use of the alloca, we know the derived uses will be 01975 // utilizing just the first element of the scalarized result. Insert a 01976 // bitcast of the first alloca before the user as required. 01977 AllocaInst *NewAI = NewElts[0]; 01978 BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI); 01979 NewAI->moveBefore(BCI); 01980 TheUse = BCI; 01981 continue; 01982 } 01983 } 01984 } 01985 01986 /// RewriteBitCast - Update a bitcast reference to the alloca being replaced 01987 /// and recursively continue updating all of its uses. 01988 void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset, 01989 SmallVectorImpl<AllocaInst *> &NewElts) { 01990 RewriteForScalarRepl(BC, AI, Offset, NewElts); 01991 if (BC->getOperand(0) != AI) 01992 return; 01993 01994 // The bitcast references the original alloca. Replace its uses with 01995 // references to the alloca containing offset zero (which is normally at 01996 // index zero, but might not be in cases involving structs with elements 01997 // of size zero). 01998 Type *T = AI->getAllocatedType(); 01999 uint64_t EltOffset = 0; 02000 Type *IdxTy; 02001 uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy); 02002 Instruction *Val = NewElts[Idx]; 02003 if (Val->getType() != BC->getDestTy()) { 02004 Val = new BitCastInst(Val, BC->getDestTy(), "", BC); 02005 Val->takeName(BC); 02006 } 02007 BC->replaceAllUsesWith(Val); 02008 DeadInsts.push_back(BC); 02009 } 02010 02011 /// FindElementAndOffset - Return the index of the element containing Offset 02012 /// within the specified type, which must be either a struct or an array. 02013 /// Sets T to the type of the element and Offset to the offset within that 02014 /// element. IdxTy is set to the type of the index result to be used in a 02015 /// GEP instruction. 02016 uint64_t SROA::FindElementAndOffset(Type *&T, uint64_t &Offset, 02017 Type *&IdxTy) { 02018 uint64_t Idx = 0; 02019 if (StructType *ST = dyn_cast<StructType>(T)) { 02020 const StructLayout *Layout = DL->getStructLayout(ST); 02021 Idx = Layout->getElementContainingOffset(Offset); 02022 T = ST->getContainedType(Idx); 02023 Offset -= Layout->getElementOffset(Idx); 02024 IdxTy = Type::getInt32Ty(T->getContext()); 02025 return Idx; 02026 } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) { 02027 T = AT->getElementType(); 02028 uint64_t EltSize = DL->getTypeAllocSize(T); 02029 Idx = Offset / EltSize; 02030 Offset -= Idx * EltSize; 02031 IdxTy = Type::getInt64Ty(T->getContext()); 02032 return Idx; 02033 } 02034 VectorType *VT = cast<VectorType>(T); 02035 T = VT->getElementType(); 02036 uint64_t EltSize = DL->getTypeAllocSize(T); 02037 Idx = Offset / EltSize; 02038 Offset -= Idx * EltSize; 02039 IdxTy = Type::getInt64Ty(T->getContext()); 02040 return Idx; 02041 } 02042 02043 /// RewriteGEP - Check if this GEP instruction moves the pointer across 02044 /// elements of the alloca that are being split apart, and if so, rewrite 02045 /// the GEP to be relative to the new element. 02046 void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset, 02047 SmallVectorImpl<AllocaInst *> &NewElts) { 02048 uint64_t OldOffset = Offset; 02049 SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end()); 02050 // If the GEP was dynamic then it must have been a dynamic vector lookup. 02051 // In this case, it must be the last GEP operand which is dynamic so keep that 02052 // aside until we've found the constant GEP offset then add it back in at the 02053 // end. 02054 Value* NonConstantIdx = nullptr; 02055 if (!GEPI->hasAllConstantIndices()) 02056 NonConstantIdx = Indices.pop_back_val(); 02057 Offset += DL->getIndexedOffset(GEPI->getPointerOperandType(), Indices); 02058 02059 RewriteForScalarRepl(GEPI, AI, Offset, NewElts); 02060 02061 Type *T = AI->getAllocatedType(); 02062 Type *IdxTy; 02063 uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy); 02064 if (GEPI->getOperand(0) == AI) 02065 OldIdx = ~0ULL; // Force the GEP to be rewritten. 02066 02067 T = AI->getAllocatedType(); 02068 uint64_t EltOffset = Offset; 02069 uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy); 02070 02071 // If this GEP does not move the pointer across elements of the alloca 02072 // being split, then it does not needs to be rewritten. 02073 if (Idx == OldIdx) 02074 return; 02075 02076 Type *i32Ty = Type::getInt32Ty(AI->getContext()); 02077 SmallVector<Value*, 8> NewArgs; 02078 NewArgs.push_back(Constant::getNullValue(i32Ty)); 02079 while (EltOffset != 0) { 02080 uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy); 02081 NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx)); 02082 } 02083 if (NonConstantIdx) { 02084 Type* GepTy = T; 02085 // This GEP has a dynamic index. We need to add "i32 0" to index through 02086 // any structs or arrays in the original type until we get to the vector 02087 // to index. 02088 while (!isa<VectorType>(GepTy)) { 02089 NewArgs.push_back(Constant::getNullValue(i32Ty)); 02090 GepTy = cast<CompositeType>(GepTy)->getTypeAtIndex(0U); 02091 } 02092 NewArgs.push_back(NonConstantIdx); 02093 } 02094 Instruction *Val = NewElts[Idx]; 02095 if (NewArgs.size() > 1) { 02096 Val = GetElementPtrInst::CreateInBounds(Val, NewArgs, "", GEPI); 02097 Val->takeName(GEPI); 02098 } 02099 if (Val->getType() != GEPI->getType()) 02100 Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI); 02101 GEPI->replaceAllUsesWith(Val); 02102 DeadInsts.push_back(GEPI); 02103 } 02104 02105 /// RewriteLifetimeIntrinsic - II is a lifetime.start/lifetime.end. Rewrite it 02106 /// to mark the lifetime of the scalarized memory. 02107 void SROA::RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI, 02108 uint64_t Offset, 02109 SmallVectorImpl<AllocaInst *> &NewElts) { 02110 ConstantInt *OldSize = cast<ConstantInt>(II->getArgOperand(0)); 02111 // Put matching lifetime markers on everything from Offset up to 02112 // Offset+OldSize. 02113 Type *AIType = AI->getAllocatedType(); 02114 uint64_t NewOffset = Offset; 02115 Type *IdxTy; 02116 uint64_t Idx = FindElementAndOffset(AIType, NewOffset, IdxTy); 02117 02118 IRBuilder<> Builder(II); 02119 uint64_t Size = OldSize->getLimitedValue(); 02120 02121 if (NewOffset) { 02122 // Splice the first element and index 'NewOffset' bytes in. SROA will 02123 // split the alloca again later. 02124 unsigned AS = AI->getType()->getAddressSpace(); 02125 Value *V = Builder.CreateBitCast(NewElts[Idx], Builder.getInt8PtrTy(AS)); 02126 V = Builder.CreateGEP(V, Builder.getInt64(NewOffset)); 02127 02128 IdxTy = NewElts[Idx]->getAllocatedType(); 02129 uint64_t EltSize = DL->getTypeAllocSize(IdxTy) - NewOffset; 02130 if (EltSize > Size) { 02131 EltSize = Size; 02132 Size = 0; 02133 } else { 02134 Size -= EltSize; 02135 } 02136 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 02137 Builder.CreateLifetimeStart(V, Builder.getInt64(EltSize)); 02138 else 02139 Builder.CreateLifetimeEnd(V, Builder.getInt64(EltSize)); 02140 ++Idx; 02141 } 02142 02143 for (; Idx != NewElts.size() && Size; ++Idx) { 02144 IdxTy = NewElts[Idx]->getAllocatedType(); 02145 uint64_t EltSize = DL->getTypeAllocSize(IdxTy); 02146 if (EltSize > Size) { 02147 EltSize = Size; 02148 Size = 0; 02149 } else { 02150 Size -= EltSize; 02151 } 02152 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 02153 Builder.CreateLifetimeStart(NewElts[Idx], 02154 Builder.getInt64(EltSize)); 02155 else 02156 Builder.CreateLifetimeEnd(NewElts[Idx], 02157 Builder.getInt64(EltSize)); 02158 } 02159 DeadInsts.push_back(II); 02160 } 02161 02162 /// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI. 02163 /// Rewrite it to copy or set the elements of the scalarized memory. 02164 void 02165 SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst, 02166 AllocaInst *AI, 02167 SmallVectorImpl<AllocaInst *> &NewElts) { 02168 // If this is a memcpy/memmove, construct the other pointer as the 02169 // appropriate type. The "Other" pointer is the pointer that goes to memory 02170 // that doesn't have anything to do with the alloca that we are promoting. For 02171 // memset, this Value* stays null. 02172 Value *OtherPtr = nullptr; 02173 unsigned MemAlignment = MI->getAlignment(); 02174 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy 02175 if (Inst == MTI->getRawDest()) 02176 OtherPtr = MTI->getRawSource(); 02177 else { 02178 assert(Inst == MTI->getRawSource()); 02179 OtherPtr = MTI->getRawDest(); 02180 } 02181 } 02182 02183 // If there is an other pointer, we want to convert it to the same pointer 02184 // type as AI has, so we can GEP through it safely. 02185 if (OtherPtr) { 02186 unsigned AddrSpace = 02187 cast<PointerType>(OtherPtr->getType())->getAddressSpace(); 02188 02189 // Remove bitcasts and all-zero GEPs from OtherPtr. This is an 02190 // optimization, but it's also required to detect the corner case where 02191 // both pointer operands are referencing the same memory, and where 02192 // OtherPtr may be a bitcast or GEP that currently being rewritten. (This 02193 // function is only called for mem intrinsics that access the whole 02194 // aggregate, so non-zero GEPs are not an issue here.) 02195 OtherPtr = OtherPtr->stripPointerCasts(); 02196 02197 // Copying the alloca to itself is a no-op: just delete it. 02198 if (OtherPtr == AI || OtherPtr == NewElts[0]) { 02199 // This code will run twice for a no-op memcpy -- once for each operand. 02200 // Put only one reference to MI on the DeadInsts list. 02201 for (SmallVectorImpl<Value *>::const_iterator I = DeadInsts.begin(), 02202 E = DeadInsts.end(); I != E; ++I) 02203 if (*I == MI) return; 02204 DeadInsts.push_back(MI); 02205 return; 02206 } 02207 02208 // If the pointer is not the right type, insert a bitcast to the right 02209 // type. 02210 Type *NewTy = 02211 PointerType::get(AI->getType()->getElementType(), AddrSpace); 02212 02213 if (OtherPtr->getType() != NewTy) 02214 OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI); 02215 } 02216 02217 // Process each element of the aggregate. 02218 bool SROADest = MI->getRawDest() == Inst; 02219 02220 Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext())); 02221 02222 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) { 02223 // If this is a memcpy/memmove, emit a GEP of the other element address. 02224 Value *OtherElt = nullptr; 02225 unsigned OtherEltAlign = MemAlignment; 02226 02227 if (OtherPtr) { 02228 Value *Idx[2] = { Zero, 02229 ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) }; 02230 OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, 02231 OtherPtr->getName()+"."+Twine(i), 02232 MI); 02233 uint64_t EltOffset; 02234 PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType()); 02235 Type *OtherTy = OtherPtrTy->getElementType(); 02236 if (StructType *ST = dyn_cast<StructType>(OtherTy)) { 02237 EltOffset = DL->getStructLayout(ST)->getElementOffset(i); 02238 } else { 02239 Type *EltTy = cast<SequentialType>(OtherTy)->getElementType(); 02240 EltOffset = DL->getTypeAllocSize(EltTy)*i; 02241 } 02242 02243 // The alignment of the other pointer is the guaranteed alignment of the 02244 // element, which is affected by both the known alignment of the whole 02245 // mem intrinsic and the alignment of the element. If the alignment of 02246 // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the 02247 // known alignment is just 4 bytes. 02248 OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset); 02249 } 02250 02251 Value *EltPtr = NewElts[i]; 02252 Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType(); 02253 02254 // If we got down to a scalar, insert a load or store as appropriate. 02255 if (EltTy->isSingleValueType()) { 02256 if (isa<MemTransferInst>(MI)) { 02257 if (SROADest) { 02258 // From Other to Alloca. 02259 Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI); 02260 new StoreInst(Elt, EltPtr, MI); 02261 } else { 02262 // From Alloca to Other. 02263 Value *Elt = new LoadInst(EltPtr, "tmp", MI); 02264 new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI); 02265 } 02266 continue; 02267 } 02268 assert(isa<MemSetInst>(MI)); 02269 02270 // If the stored element is zero (common case), just store a null 02271 // constant. 02272 Constant *StoreVal; 02273 if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) { 02274 if (CI->isZero()) { 02275 StoreVal = Constant::getNullValue(EltTy); // 0.0, null, 0, <0,0> 02276 } else { 02277 // If EltTy is a vector type, get the element type. 02278 Type *ValTy = EltTy->getScalarType(); 02279 02280 // Construct an integer with the right value. 02281 unsigned EltSize = DL->getTypeSizeInBits(ValTy); 02282 APInt OneVal(EltSize, CI->getZExtValue()); 02283 APInt TotalVal(OneVal); 02284 // Set each byte. 02285 for (unsigned i = 0; 8*i < EltSize; ++i) { 02286 TotalVal = TotalVal.shl(8); 02287 TotalVal |= OneVal; 02288 } 02289 02290 // Convert the integer value to the appropriate type. 02291 StoreVal = ConstantInt::get(CI->getContext(), TotalVal); 02292 if (ValTy->isPointerTy()) 02293 StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy); 02294 else if (ValTy->isFloatingPointTy()) 02295 StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy); 02296 assert(StoreVal->getType() == ValTy && "Type mismatch!"); 02297 02298 // If the requested value was a vector constant, create it. 02299 if (EltTy->isVectorTy()) { 02300 unsigned NumElts = cast<VectorType>(EltTy)->getNumElements(); 02301 StoreVal = ConstantVector::getSplat(NumElts, StoreVal); 02302 } 02303 } 02304 new StoreInst(StoreVal, EltPtr, MI); 02305 continue; 02306 } 02307 // Otherwise, if we're storing a byte variable, use a memset call for 02308 // this element. 02309 } 02310 02311 unsigned EltSize = DL->getTypeAllocSize(EltTy); 02312 if (!EltSize) 02313 continue; 02314 02315 IRBuilder<> Builder(MI); 02316 02317 // Finally, insert the meminst for this element. 02318 if (isa<MemSetInst>(MI)) { 02319 Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize, 02320 MI->isVolatile()); 02321 } else { 02322 assert(isa<MemTransferInst>(MI)); 02323 Value *Dst = SROADest ? EltPtr : OtherElt; // Dest ptr 02324 Value *Src = SROADest ? OtherElt : EltPtr; // Src ptr 02325 02326 if (isa<MemCpyInst>(MI)) 02327 Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile()); 02328 else 02329 Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile()); 02330 } 02331 } 02332 DeadInsts.push_back(MI); 02333 } 02334 02335 /// RewriteStoreUserOfWholeAlloca - We found a store of an integer that 02336 /// overwrites the entire allocation. Extract out the pieces of the stored 02337 /// integer and store them individually. 02338 void 02339 SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI, 02340 SmallVectorImpl<AllocaInst *> &NewElts) { 02341 // Extract each element out of the integer according to its structure offset 02342 // and store the element value to the individual alloca. 02343 Value *SrcVal = SI->getOperand(0); 02344 Type *AllocaEltTy = AI->getAllocatedType(); 02345 uint64_t AllocaSizeBits = DL->getTypeAllocSizeInBits(AllocaEltTy); 02346 02347 IRBuilder<> Builder(SI); 02348 02349 // Handle tail padding by extending the operand 02350 if (DL->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits) 02351 SrcVal = Builder.CreateZExt(SrcVal, 02352 IntegerType::get(SI->getContext(), AllocaSizeBits)); 02353 02354 DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI 02355 << '\n'); 02356 02357 // There are two forms here: AI could be an array or struct. Both cases 02358 // have different ways to compute the element offset. 02359 if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) { 02360 const StructLayout *Layout = DL->getStructLayout(EltSTy); 02361 02362 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) { 02363 // Get the number of bits to shift SrcVal to get the value. 02364 Type *FieldTy = EltSTy->getElementType(i); 02365 uint64_t Shift = Layout->getElementOffsetInBits(i); 02366 02367 if (DL->isBigEndian()) 02368 Shift = AllocaSizeBits-Shift-DL->getTypeAllocSizeInBits(FieldTy); 02369 02370 Value *EltVal = SrcVal; 02371 if (Shift) { 02372 Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift); 02373 EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt"); 02374 } 02375 02376 // Truncate down to an integer of the right size. 02377 uint64_t FieldSizeBits = DL->getTypeSizeInBits(FieldTy); 02378 02379 // Ignore zero sized fields like {}, they obviously contain no data. 02380 if (FieldSizeBits == 0) continue; 02381 02382 if (FieldSizeBits != AllocaSizeBits) 02383 EltVal = Builder.CreateTrunc(EltVal, 02384 IntegerType::get(SI->getContext(), FieldSizeBits)); 02385 Value *DestField = NewElts[i]; 02386 if (EltVal->getType() == FieldTy) { 02387 // Storing to an integer field of this size, just do it. 02388 } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) { 02389 // Bitcast to the right element type (for fp/vector values). 02390 EltVal = Builder.CreateBitCast(EltVal, FieldTy); 02391 } else { 02392 // Otherwise, bitcast the dest pointer (for aggregates). 02393 DestField = Builder.CreateBitCast(DestField, 02394 PointerType::getUnqual(EltVal->getType())); 02395 } 02396 new StoreInst(EltVal, DestField, SI); 02397 } 02398 02399 } else { 02400 ArrayType *ATy = cast<ArrayType>(AllocaEltTy); 02401 Type *ArrayEltTy = ATy->getElementType(); 02402 uint64_t ElementOffset = DL->getTypeAllocSizeInBits(ArrayEltTy); 02403 uint64_t ElementSizeBits = DL->getTypeSizeInBits(ArrayEltTy); 02404 02405 uint64_t Shift; 02406 02407 if (DL->isBigEndian()) 02408 Shift = AllocaSizeBits-ElementOffset; 02409 else 02410 Shift = 0; 02411 02412 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) { 02413 // Ignore zero sized fields like {}, they obviously contain no data. 02414 if (ElementSizeBits == 0) continue; 02415 02416 Value *EltVal = SrcVal; 02417 if (Shift) { 02418 Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift); 02419 EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt"); 02420 } 02421 02422 // Truncate down to an integer of the right size. 02423 if (ElementSizeBits != AllocaSizeBits) 02424 EltVal = Builder.CreateTrunc(EltVal, 02425 IntegerType::get(SI->getContext(), 02426 ElementSizeBits)); 02427 Value *DestField = NewElts[i]; 02428 if (EltVal->getType() == ArrayEltTy) { 02429 // Storing to an integer field of this size, just do it. 02430 } else if (ArrayEltTy->isFloatingPointTy() || 02431 ArrayEltTy->isVectorTy()) { 02432 // Bitcast to the right element type (for fp/vector values). 02433 EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy); 02434 } else { 02435 // Otherwise, bitcast the dest pointer (for aggregates). 02436 DestField = Builder.CreateBitCast(DestField, 02437 PointerType::getUnqual(EltVal->getType())); 02438 } 02439 new StoreInst(EltVal, DestField, SI); 02440 02441 if (DL->isBigEndian()) 02442 Shift -= ElementOffset; 02443 else 02444 Shift += ElementOffset; 02445 } 02446 } 02447 02448 DeadInsts.push_back(SI); 02449 } 02450 02451 /// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to 02452 /// an integer. Load the individual pieces to form the aggregate value. 02453 void 02454 SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI, 02455 SmallVectorImpl<AllocaInst *> &NewElts) { 02456 // Extract each element out of the NewElts according to its structure offset 02457 // and form the result value. 02458 Type *AllocaEltTy = AI->getAllocatedType(); 02459 uint64_t AllocaSizeBits = DL->getTypeAllocSizeInBits(AllocaEltTy); 02460 02461 DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI 02462 << '\n'); 02463 02464 // There are two forms here: AI could be an array or struct. Both cases 02465 // have different ways to compute the element offset. 02466 const StructLayout *Layout = nullptr; 02467 uint64_t ArrayEltBitOffset = 0; 02468 if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) { 02469 Layout = DL->getStructLayout(EltSTy); 02470 } else { 02471 Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType(); 02472 ArrayEltBitOffset = DL->getTypeAllocSizeInBits(ArrayEltTy); 02473 } 02474 02475 Value *ResultVal = 02476 Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits)); 02477 02478 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) { 02479 // Load the value from the alloca. If the NewElt is an aggregate, cast 02480 // the pointer to an integer of the same size before doing the load. 02481 Value *SrcField = NewElts[i]; 02482 Type *FieldTy = 02483 cast<PointerType>(SrcField->getType())->getElementType(); 02484 uint64_t FieldSizeBits = DL->getTypeSizeInBits(FieldTy); 02485 02486 // Ignore zero sized fields like {}, they obviously contain no data. 02487 if (FieldSizeBits == 0) continue; 02488 02489 IntegerType *FieldIntTy = IntegerType::get(LI->getContext(), 02490 FieldSizeBits); 02491 if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() && 02492 !FieldTy->isVectorTy()) 02493 SrcField = new BitCastInst(SrcField, 02494 PointerType::getUnqual(FieldIntTy), 02495 "", LI); 02496 SrcField = new LoadInst(SrcField, "sroa.load.elt", LI); 02497 02498 // If SrcField is a fp or vector of the right size but that isn't an 02499 // integer type, bitcast to an integer so we can shift it. 02500 if (SrcField->getType() != FieldIntTy) 02501 SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI); 02502 02503 // Zero extend the field to be the same size as the final alloca so that 02504 // we can shift and insert it. 02505 if (SrcField->getType() != ResultVal->getType()) 02506 SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI); 02507 02508 // Determine the number of bits to shift SrcField. 02509 uint64_t Shift; 02510 if (Layout) // Struct case. 02511 Shift = Layout->getElementOffsetInBits(i); 02512 else // Array case. 02513 Shift = i*ArrayEltBitOffset; 02514 02515 if (DL->isBigEndian()) 02516 Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth(); 02517 02518 if (Shift) { 02519 Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift); 02520 SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI); 02521 } 02522 02523 // Don't create an 'or x, 0' on the first iteration. 02524 if (!isa<Constant>(ResultVal) || 02525 !cast<Constant>(ResultVal)->isNullValue()) 02526 ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI); 02527 else 02528 ResultVal = SrcField; 02529 } 02530 02531 // Handle tail padding by truncating the result 02532 if (DL->getTypeSizeInBits(LI->getType()) != AllocaSizeBits) 02533 ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI); 02534 02535 LI->replaceAllUsesWith(ResultVal); 02536 DeadInsts.push_back(LI); 02537 } 02538 02539 /// HasPadding - Return true if the specified type has any structure or 02540 /// alignment padding in between the elements that would be split apart 02541 /// by SROA; return false otherwise. 02542 static bool HasPadding(Type *Ty, const DataLayout &DL) { 02543 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 02544 Ty = ATy->getElementType(); 02545 return DL.getTypeSizeInBits(Ty) != DL.getTypeAllocSizeInBits(Ty); 02546 } 02547 02548 // SROA currently handles only Arrays and Structs. 02549 StructType *STy = cast<StructType>(Ty); 02550 const StructLayout *SL = DL.getStructLayout(STy); 02551 unsigned PrevFieldBitOffset = 0; 02552 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 02553 unsigned FieldBitOffset = SL->getElementOffsetInBits(i); 02554 02555 // Check to see if there is any padding between this element and the 02556 // previous one. 02557 if (i) { 02558 unsigned PrevFieldEnd = 02559 PrevFieldBitOffset+DL.getTypeSizeInBits(STy->getElementType(i-1)); 02560 if (PrevFieldEnd < FieldBitOffset) 02561 return true; 02562 } 02563 PrevFieldBitOffset = FieldBitOffset; 02564 } 02565 // Check for tail padding. 02566 if (unsigned EltCount = STy->getNumElements()) { 02567 unsigned PrevFieldEnd = PrevFieldBitOffset + 02568 DL.getTypeSizeInBits(STy->getElementType(EltCount-1)); 02569 if (PrevFieldEnd < SL->getSizeInBits()) 02570 return true; 02571 } 02572 return false; 02573 } 02574 02575 /// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of 02576 /// an aggregate can be broken down into elements. Return 0 if not, 3 if safe, 02577 /// or 1 if safe after canonicalization has been performed. 02578 bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) { 02579 // Loop over the use list of the alloca. We can only transform it if all of 02580 // the users are safe to transform. 02581 AllocaInfo Info(AI); 02582 02583 isSafeForScalarRepl(AI, 0, Info); 02584 if (Info.isUnsafe) { 02585 DEBUG(dbgs() << "Cannot transform: " << *AI << '\n'); 02586 return false; 02587 } 02588 02589 // Okay, we know all the users are promotable. If the aggregate is a memcpy 02590 // source and destination, we have to be careful. In particular, the memcpy 02591 // could be moving around elements that live in structure padding of the LLVM 02592 // types, but may actually be used. In these cases, we refuse to promote the 02593 // struct. 02594 if (Info.isMemCpySrc && Info.isMemCpyDst && 02595 HasPadding(AI->getAllocatedType(), *DL)) 02596 return false; 02597 02598 // If the alloca never has an access to just *part* of it, but is accessed 02599 // via loads and stores, then we should use ConvertToScalarInfo to promote 02600 // the alloca instead of promoting each piece at a time and inserting fission 02601 // and fusion code. 02602 if (!Info.hasSubelementAccess && Info.hasALoadOrStore) { 02603 // If the struct/array just has one element, use basic SRoA. 02604 if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) { 02605 if (ST->getNumElements() > 1) return false; 02606 } else { 02607 if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1) 02608 return false; 02609 } 02610 } 02611 02612 return true; 02613 }