LLVM API Documentation
00001 //===- llvm/Support/ScaledNumber.h - Support for scaled numbers -*- C++ -*-===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file contains functions (and a class) useful for working with scaled 00011 // numbers -- in particular, pairs of integers where one represents digits and 00012 // another represents a scale. The functions are helpers and live in the 00013 // namespace ScaledNumbers. The class ScaledNumber is useful for modelling 00014 // certain cost metrics that need simple, integer-like semantics that are easy 00015 // to reason about. 00016 // 00017 // These might remind you of soft-floats. If you want one of those, you're in 00018 // the wrong place. Look at include/llvm/ADT/APFloat.h instead. 00019 // 00020 //===----------------------------------------------------------------------===// 00021 00022 #ifndef LLVM_SUPPORT_SCALEDNUMBER_H 00023 #define LLVM_SUPPORT_SCALEDNUMBER_H 00024 00025 #include "llvm/Support/MathExtras.h" 00026 00027 #include <algorithm> 00028 #include <cstdint> 00029 #include <limits> 00030 #include <string> 00031 #include <tuple> 00032 #include <utility> 00033 00034 namespace llvm { 00035 namespace ScaledNumbers { 00036 00037 /// \brief Maximum scale; same as APFloat for easy debug printing. 00038 const int32_t MaxScale = 16383; 00039 00040 /// \brief Maximum scale; same as APFloat for easy debug printing. 00041 const int32_t MinScale = -16382; 00042 00043 /// \brief Get the width of a number. 00044 template <class DigitsT> inline int getWidth() { return sizeof(DigitsT) * 8; } 00045 00046 /// \brief Conditionally round up a scaled number. 00047 /// 00048 /// Given \c Digits and \c Scale, round up iff \c ShouldRound is \c true. 00049 /// Always returns \c Scale unless there's an overflow, in which case it 00050 /// returns \c 1+Scale. 00051 /// 00052 /// \pre adding 1 to \c Scale will not overflow INT16_MAX. 00053 template <class DigitsT> 00054 inline std::pair<DigitsT, int16_t> getRounded(DigitsT Digits, int16_t Scale, 00055 bool ShouldRound) { 00056 static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned"); 00057 00058 if (ShouldRound) 00059 if (!++Digits) 00060 // Overflow. 00061 return std::make_pair(DigitsT(1) << (getWidth<DigitsT>() - 1), Scale + 1); 00062 return std::make_pair(Digits, Scale); 00063 } 00064 00065 /// \brief Convenience helper for 32-bit rounding. 00066 inline std::pair<uint32_t, int16_t> getRounded32(uint32_t Digits, int16_t Scale, 00067 bool ShouldRound) { 00068 return getRounded(Digits, Scale, ShouldRound); 00069 } 00070 00071 /// \brief Convenience helper for 64-bit rounding. 00072 inline std::pair<uint64_t, int16_t> getRounded64(uint64_t Digits, int16_t Scale, 00073 bool ShouldRound) { 00074 return getRounded(Digits, Scale, ShouldRound); 00075 } 00076 00077 /// \brief Adjust a 64-bit scaled number down to the appropriate width. 00078 /// 00079 /// \pre Adding 64 to \c Scale will not overflow INT16_MAX. 00080 template <class DigitsT> 00081 inline std::pair<DigitsT, int16_t> getAdjusted(uint64_t Digits, 00082 int16_t Scale = 0) { 00083 static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned"); 00084 00085 const int Width = getWidth<DigitsT>(); 00086 if (Width == 64 || Digits <= std::numeric_limits<DigitsT>::max()) 00087 return std::make_pair(Digits, Scale); 00088 00089 // Shift right and round. 00090 int Shift = 64 - Width - countLeadingZeros(Digits); 00091 return getRounded<DigitsT>(Digits >> Shift, Scale + Shift, 00092 Digits & (UINT64_C(1) << (Shift - 1))); 00093 } 00094 00095 /// \brief Convenience helper for adjusting to 32 bits. 00096 inline std::pair<uint32_t, int16_t> getAdjusted32(uint64_t Digits, 00097 int16_t Scale = 0) { 00098 return getAdjusted<uint32_t>(Digits, Scale); 00099 } 00100 00101 /// \brief Convenience helper for adjusting to 64 bits. 00102 inline std::pair<uint64_t, int16_t> getAdjusted64(uint64_t Digits, 00103 int16_t Scale = 0) { 00104 return getAdjusted<uint64_t>(Digits, Scale); 00105 } 00106 00107 /// \brief Multiply two 64-bit integers to create a 64-bit scaled number. 00108 /// 00109 /// Implemented with four 64-bit integer multiplies. 00110 std::pair<uint64_t, int16_t> multiply64(uint64_t LHS, uint64_t RHS); 00111 00112 /// \brief Multiply two 32-bit integers to create a 32-bit scaled number. 00113 /// 00114 /// Implemented with one 64-bit integer multiply. 00115 template <class DigitsT> 00116 inline std::pair<DigitsT, int16_t> getProduct(DigitsT LHS, DigitsT RHS) { 00117 static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned"); 00118 00119 if (getWidth<DigitsT>() <= 32 || (LHS <= UINT32_MAX && RHS <= UINT32_MAX)) 00120 return getAdjusted<DigitsT>(uint64_t(LHS) * RHS); 00121 00122 return multiply64(LHS, RHS); 00123 } 00124 00125 /// \brief Convenience helper for 32-bit product. 00126 inline std::pair<uint32_t, int16_t> getProduct32(uint32_t LHS, uint32_t RHS) { 00127 return getProduct(LHS, RHS); 00128 } 00129 00130 /// \brief Convenience helper for 64-bit product. 00131 inline std::pair<uint64_t, int16_t> getProduct64(uint64_t LHS, uint64_t RHS) { 00132 return getProduct(LHS, RHS); 00133 } 00134 00135 /// \brief Divide two 64-bit integers to create a 64-bit scaled number. 00136 /// 00137 /// Implemented with long division. 00138 /// 00139 /// \pre \c Dividend and \c Divisor are non-zero. 00140 std::pair<uint64_t, int16_t> divide64(uint64_t Dividend, uint64_t Divisor); 00141 00142 /// \brief Divide two 32-bit integers to create a 32-bit scaled number. 00143 /// 00144 /// Implemented with one 64-bit integer divide/remainder pair. 00145 /// 00146 /// \pre \c Dividend and \c Divisor are non-zero. 00147 std::pair<uint32_t, int16_t> divide32(uint32_t Dividend, uint32_t Divisor); 00148 00149 /// \brief Divide two 32-bit numbers to create a 32-bit scaled number. 00150 /// 00151 /// Implemented with one 64-bit integer divide/remainder pair. 00152 /// 00153 /// Returns \c (DigitsT_MAX, MaxScale) for divide-by-zero (0 for 0/0). 00154 template <class DigitsT> 00155 std::pair<DigitsT, int16_t> getQuotient(DigitsT Dividend, DigitsT Divisor) { 00156 static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned"); 00157 static_assert(sizeof(DigitsT) == 4 || sizeof(DigitsT) == 8, 00158 "expected 32-bit or 64-bit digits"); 00159 00160 // Check for zero. 00161 if (!Dividend) 00162 return std::make_pair(0, 0); 00163 if (!Divisor) 00164 return std::make_pair(std::numeric_limits<DigitsT>::max(), MaxScale); 00165 00166 if (getWidth<DigitsT>() == 64) 00167 return divide64(Dividend, Divisor); 00168 return divide32(Dividend, Divisor); 00169 } 00170 00171 /// \brief Convenience helper for 32-bit quotient. 00172 inline std::pair<uint32_t, int16_t> getQuotient32(uint32_t Dividend, 00173 uint32_t Divisor) { 00174 return getQuotient(Dividend, Divisor); 00175 } 00176 00177 /// \brief Convenience helper for 64-bit quotient. 00178 inline std::pair<uint64_t, int16_t> getQuotient64(uint64_t Dividend, 00179 uint64_t Divisor) { 00180 return getQuotient(Dividend, Divisor); 00181 } 00182 00183 /// \brief Implementation of getLg() and friends. 00184 /// 00185 /// Returns the rounded lg of \c Digits*2^Scale and an int specifying whether 00186 /// this was rounded up (1), down (-1), or exact (0). 00187 /// 00188 /// Returns \c INT32_MIN when \c Digits is zero. 00189 template <class DigitsT> 00190 inline std::pair<int32_t, int> getLgImpl(DigitsT Digits, int16_t Scale) { 00191 static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned"); 00192 00193 if (!Digits) 00194 return std::make_pair(INT32_MIN, 0); 00195 00196 // Get the floor of the lg of Digits. 00197 int32_t LocalFloor = sizeof(Digits) * 8 - countLeadingZeros(Digits) - 1; 00198 00199 // Get the actual floor. 00200 int32_t Floor = Scale + LocalFloor; 00201 if (Digits == UINT64_C(1) << LocalFloor) 00202 return std::make_pair(Floor, 0); 00203 00204 // Round based on the next digit. 00205 assert(LocalFloor >= 1); 00206 bool Round = Digits & UINT64_C(1) << (LocalFloor - 1); 00207 return std::make_pair(Floor + Round, Round ? 1 : -1); 00208 } 00209 00210 /// \brief Get the lg (rounded) of a scaled number. 00211 /// 00212 /// Get the lg of \c Digits*2^Scale. 00213 /// 00214 /// Returns \c INT32_MIN when \c Digits is zero. 00215 template <class DigitsT> int32_t getLg(DigitsT Digits, int16_t Scale) { 00216 return getLgImpl(Digits, Scale).first; 00217 } 00218 00219 /// \brief Get the lg floor of a scaled number. 00220 /// 00221 /// Get the floor of the lg of \c Digits*2^Scale. 00222 /// 00223 /// Returns \c INT32_MIN when \c Digits is zero. 00224 template <class DigitsT> int32_t getLgFloor(DigitsT Digits, int16_t Scale) { 00225 auto Lg = getLgImpl(Digits, Scale); 00226 return Lg.first - (Lg.second > 0); 00227 } 00228 00229 /// \brief Get the lg ceiling of a scaled number. 00230 /// 00231 /// Get the ceiling of the lg of \c Digits*2^Scale. 00232 /// 00233 /// Returns \c INT32_MIN when \c Digits is zero. 00234 template <class DigitsT> int32_t getLgCeiling(DigitsT Digits, int16_t Scale) { 00235 auto Lg = getLgImpl(Digits, Scale); 00236 return Lg.first + (Lg.second < 0); 00237 } 00238 00239 /// \brief Implementation for comparing scaled numbers. 00240 /// 00241 /// Compare two 64-bit numbers with different scales. Given that the scale of 00242 /// \c L is higher than that of \c R by \c ScaleDiff, compare them. Return -1, 00243 /// 1, and 0 for less than, greater than, and equal, respectively. 00244 /// 00245 /// \pre 0 <= ScaleDiff < 64. 00246 int compareImpl(uint64_t L, uint64_t R, int ScaleDiff); 00247 00248 /// \brief Compare two scaled numbers. 00249 /// 00250 /// Compare two scaled numbers. Returns 0 for equal, -1 for less than, and 1 00251 /// for greater than. 00252 template <class DigitsT> 00253 int compare(DigitsT LDigits, int16_t LScale, DigitsT RDigits, int16_t RScale) { 00254 static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned"); 00255 00256 // Check for zero. 00257 if (!LDigits) 00258 return RDigits ? -1 : 0; 00259 if (!RDigits) 00260 return 1; 00261 00262 // Check for the scale. Use getLgFloor to be sure that the scale difference 00263 // is always lower than 64. 00264 int32_t lgL = getLgFloor(LDigits, LScale), lgR = getLgFloor(RDigits, RScale); 00265 if (lgL != lgR) 00266 return lgL < lgR ? -1 : 1; 00267 00268 // Compare digits. 00269 if (LScale < RScale) 00270 return compareImpl(LDigits, RDigits, RScale - LScale); 00271 00272 return -compareImpl(RDigits, LDigits, LScale - RScale); 00273 } 00274 00275 /// \brief Match scales of two numbers. 00276 /// 00277 /// Given two scaled numbers, match up their scales. Change the digits and 00278 /// scales in place. Shift the digits as necessary to form equivalent numbers, 00279 /// losing precision only when necessary. 00280 /// 00281 /// If the output value of \c LDigits (\c RDigits) is \c 0, the output value of 00282 /// \c LScale (\c RScale) is unspecified. 00283 /// 00284 /// As a convenience, returns the matching scale. If the output value of one 00285 /// number is zero, returns the scale of the other. If both are zero, which 00286 /// scale is returned is unspecifed. 00287 template <class DigitsT> 00288 int16_t matchScales(DigitsT &LDigits, int16_t &LScale, DigitsT &RDigits, 00289 int16_t &RScale) { 00290 static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned"); 00291 00292 if (LScale < RScale) 00293 // Swap arguments. 00294 return matchScales(RDigits, RScale, LDigits, LScale); 00295 if (!LDigits) 00296 return RScale; 00297 if (!RDigits || LScale == RScale) 00298 return LScale; 00299 00300 // Now LScale > RScale. Get the difference. 00301 int32_t ScaleDiff = int32_t(LScale) - RScale; 00302 if (ScaleDiff >= 2 * getWidth<DigitsT>()) { 00303 // Don't bother shifting. RDigits will get zero-ed out anyway. 00304 RDigits = 0; 00305 return LScale; 00306 } 00307 00308 // Shift LDigits left as much as possible, then shift RDigits right. 00309 int32_t ShiftL = std::min<int32_t>(countLeadingZeros(LDigits), ScaleDiff); 00310 assert(ShiftL < getWidth<DigitsT>() && "can't shift more than width"); 00311 00312 int32_t ShiftR = ScaleDiff - ShiftL; 00313 if (ShiftR >= getWidth<DigitsT>()) { 00314 // Don't bother shifting. RDigits will get zero-ed out anyway. 00315 RDigits = 0; 00316 return LScale; 00317 } 00318 00319 LDigits <<= ShiftL; 00320 RDigits >>= ShiftR; 00321 00322 LScale -= ShiftL; 00323 RScale += ShiftR; 00324 assert(LScale == RScale && "scales should match"); 00325 return LScale; 00326 } 00327 00328 /// \brief Get the sum of two scaled numbers. 00329 /// 00330 /// Get the sum of two scaled numbers with as much precision as possible. 00331 /// 00332 /// \pre Adding 1 to \c LScale (or \c RScale) will not overflow INT16_MAX. 00333 template <class DigitsT> 00334 std::pair<DigitsT, int16_t> getSum(DigitsT LDigits, int16_t LScale, 00335 DigitsT RDigits, int16_t RScale) { 00336 static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned"); 00337 00338 // Check inputs up front. This is only relevent if addition overflows, but 00339 // testing here should catch more bugs. 00340 assert(LScale < INT16_MAX && "scale too large"); 00341 assert(RScale < INT16_MAX && "scale too large"); 00342 00343 // Normalize digits to match scales. 00344 int16_t Scale = matchScales(LDigits, LScale, RDigits, RScale); 00345 00346 // Compute sum. 00347 DigitsT Sum = LDigits + RDigits; 00348 if (Sum >= RDigits) 00349 return std::make_pair(Sum, Scale); 00350 00351 // Adjust sum after arithmetic overflow. 00352 DigitsT HighBit = DigitsT(1) << (getWidth<DigitsT>() - 1); 00353 return std::make_pair(HighBit | Sum >> 1, Scale + 1); 00354 } 00355 00356 /// \brief Convenience helper for 32-bit sum. 00357 inline std::pair<uint32_t, int16_t> getSum32(uint32_t LDigits, int16_t LScale, 00358 uint32_t RDigits, int16_t RScale) { 00359 return getSum(LDigits, LScale, RDigits, RScale); 00360 } 00361 00362 /// \brief Convenience helper for 64-bit sum. 00363 inline std::pair<uint64_t, int16_t> getSum64(uint64_t LDigits, int16_t LScale, 00364 uint64_t RDigits, int16_t RScale) { 00365 return getSum(LDigits, LScale, RDigits, RScale); 00366 } 00367 00368 /// \brief Get the difference of two scaled numbers. 00369 /// 00370 /// Get LHS minus RHS with as much precision as possible. 00371 /// 00372 /// Returns \c (0, 0) if the RHS is larger than the LHS. 00373 template <class DigitsT> 00374 std::pair<DigitsT, int16_t> getDifference(DigitsT LDigits, int16_t LScale, 00375 DigitsT RDigits, int16_t RScale) { 00376 static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned"); 00377 00378 // Normalize digits to match scales. 00379 const DigitsT SavedRDigits = RDigits; 00380 const int16_t SavedRScale = RScale; 00381 matchScales(LDigits, LScale, RDigits, RScale); 00382 00383 // Compute difference. 00384 if (LDigits <= RDigits) 00385 return std::make_pair(0, 0); 00386 if (RDigits || !SavedRDigits) 00387 return std::make_pair(LDigits - RDigits, LScale); 00388 00389 // Check if RDigits just barely lost its last bit. E.g., for 32-bit: 00390 // 00391 // 1*2^32 - 1*2^0 == 0xffffffff != 1*2^32 00392 const auto RLgFloor = getLgFloor(SavedRDigits, SavedRScale); 00393 if (!compare(LDigits, LScale, DigitsT(1), RLgFloor + getWidth<DigitsT>())) 00394 return std::make_pair(std::numeric_limits<DigitsT>::max(), RLgFloor); 00395 00396 return std::make_pair(LDigits, LScale); 00397 } 00398 00399 /// \brief Convenience helper for 32-bit difference. 00400 inline std::pair<uint32_t, int16_t> getDifference32(uint32_t LDigits, 00401 int16_t LScale, 00402 uint32_t RDigits, 00403 int16_t RScale) { 00404 return getDifference(LDigits, LScale, RDigits, RScale); 00405 } 00406 00407 /// \brief Convenience helper for 64-bit difference. 00408 inline std::pair<uint64_t, int16_t> getDifference64(uint64_t LDigits, 00409 int16_t LScale, 00410 uint64_t RDigits, 00411 int16_t RScale) { 00412 return getDifference(LDigits, LScale, RDigits, RScale); 00413 } 00414 00415 } // end namespace ScaledNumbers 00416 } // end namespace llvm 00417 00418 namespace llvm { 00419 00420 class raw_ostream; 00421 class ScaledNumberBase { 00422 public: 00423 static const int DefaultPrecision = 10; 00424 00425 static void dump(uint64_t D, int16_t E, int Width); 00426 static raw_ostream &print(raw_ostream &OS, uint64_t D, int16_t E, int Width, 00427 unsigned Precision); 00428 static std::string toString(uint64_t D, int16_t E, int Width, 00429 unsigned Precision); 00430 static int countLeadingZeros32(uint32_t N) { return countLeadingZeros(N); } 00431 static int countLeadingZeros64(uint64_t N) { return countLeadingZeros(N); } 00432 static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); } 00433 00434 static std::pair<uint64_t, bool> splitSigned(int64_t N) { 00435 if (N >= 0) 00436 return std::make_pair(N, false); 00437 uint64_t Unsigned = N == INT64_MIN ? UINT64_C(1) << 63 : uint64_t(-N); 00438 return std::make_pair(Unsigned, true); 00439 } 00440 static int64_t joinSigned(uint64_t U, bool IsNeg) { 00441 if (U > uint64_t(INT64_MAX)) 00442 return IsNeg ? INT64_MIN : INT64_MAX; 00443 return IsNeg ? -int64_t(U) : int64_t(U); 00444 } 00445 }; 00446 00447 /// \brief Simple representation of a scaled number. 00448 /// 00449 /// ScaledNumber is a number represented by digits and a scale. It uses simple 00450 /// saturation arithmetic and every operation is well-defined for every value. 00451 /// It's somewhat similar in behaviour to a soft-float, but is *not* a 00452 /// replacement for one. If you're doing numerics, look at \a APFloat instead. 00453 /// Nevertheless, we've found these semantics useful for modelling certain cost 00454 /// metrics. 00455 /// 00456 /// The number is split into a signed scale and unsigned digits. The number 00457 /// represented is \c getDigits()*2^getScale(). In this way, the digits are 00458 /// much like the mantissa in the x87 long double, but there is no canonical 00459 /// form so the same number can be represented by many bit representations. 00460 /// 00461 /// ScaledNumber is templated on the underlying integer type for digits, which 00462 /// is expected to be unsigned. 00463 /// 00464 /// Unlike APFloat, ScaledNumber does not model architecture floating point 00465 /// behaviour -- while this might make it a little faster and easier to reason 00466 /// about, it certainly makes it more dangerous for general numerics. 00467 /// 00468 /// ScaledNumber is totally ordered. However, there is no canonical form, so 00469 /// there are multiple representations of most scalars. E.g.: 00470 /// 00471 /// ScaledNumber(8u, 0) == ScaledNumber(4u, 1) 00472 /// ScaledNumber(4u, 1) == ScaledNumber(2u, 2) 00473 /// ScaledNumber(2u, 2) == ScaledNumber(1u, 3) 00474 /// 00475 /// ScaledNumber implements most arithmetic operations. Precision is kept 00476 /// where possible. Uses simple saturation arithmetic, so that operations 00477 /// saturate to 0.0 or getLargest() rather than under or overflowing. It has 00478 /// some extra arithmetic for unit inversion. 0.0/0.0 is defined to be 0.0. 00479 /// Any other division by 0.0 is defined to be getLargest(). 00480 /// 00481 /// As a convenience for modifying the exponent, left and right shifting are 00482 /// both implemented, and both interpret negative shifts as positive shifts in 00483 /// the opposite direction. 00484 /// 00485 /// Scales are limited to the range accepted by x87 long double. This makes 00486 /// it trivial to add functionality to convert to APFloat (this is already 00487 /// relied on for the implementation of printing). 00488 /// 00489 /// Possible (and conflicting) future directions: 00490 /// 00491 /// 1. Turn this into a wrapper around \a APFloat. 00492 /// 2. Share the algorithm implementations with \a APFloat. 00493 /// 3. Allow \a ScaledNumber to represent a signed number. 00494 template <class DigitsT> class ScaledNumber : ScaledNumberBase { 00495 public: 00496 static_assert(!std::numeric_limits<DigitsT>::is_signed, 00497 "only unsigned floats supported"); 00498 00499 typedef DigitsT DigitsType; 00500 00501 private: 00502 typedef std::numeric_limits<DigitsType> DigitsLimits; 00503 00504 static const int Width = sizeof(DigitsType) * 8; 00505 static_assert(Width <= 64, "invalid integer width for digits"); 00506 00507 private: 00508 DigitsType Digits; 00509 int16_t Scale; 00510 00511 public: 00512 ScaledNumber() : Digits(0), Scale(0) {} 00513 00514 ScaledNumber(DigitsType Digits, int16_t Scale) 00515 : Digits(Digits), Scale(Scale) {} 00516 00517 private: 00518 ScaledNumber(const std::pair<uint64_t, int16_t> &X) 00519 : Digits(X.first), Scale(X.second) {} 00520 00521 public: 00522 static ScaledNumber getZero() { return ScaledNumber(0, 0); } 00523 static ScaledNumber getOne() { return ScaledNumber(1, 0); } 00524 static ScaledNumber getLargest() { 00525 return ScaledNumber(DigitsLimits::max(), ScaledNumbers::MaxScale); 00526 } 00527 static ScaledNumber get(uint64_t N) { return adjustToWidth(N, 0); } 00528 static ScaledNumber getInverse(uint64_t N) { 00529 return get(N).invert(); 00530 } 00531 static ScaledNumber getFraction(DigitsType N, DigitsType D) { 00532 return getQuotient(N, D); 00533 } 00534 00535 int16_t getScale() const { return Scale; } 00536 DigitsType getDigits() const { return Digits; } 00537 00538 /// \brief Convert to the given integer type. 00539 /// 00540 /// Convert to \c IntT using simple saturating arithmetic, truncating if 00541 /// necessary. 00542 template <class IntT> IntT toInt() const; 00543 00544 bool isZero() const { return !Digits; } 00545 bool isLargest() const { return *this == getLargest(); } 00546 bool isOne() const { 00547 if (Scale > 0 || Scale <= -Width) 00548 return false; 00549 return Digits == DigitsType(1) << -Scale; 00550 } 00551 00552 /// \brief The log base 2, rounded. 00553 /// 00554 /// Get the lg of the scalar. lg 0 is defined to be INT32_MIN. 00555 int32_t lg() const { return ScaledNumbers::getLg(Digits, Scale); } 00556 00557 /// \brief The log base 2, rounded towards INT32_MIN. 00558 /// 00559 /// Get the lg floor. lg 0 is defined to be INT32_MIN. 00560 int32_t lgFloor() const { return ScaledNumbers::getLgFloor(Digits, Scale); } 00561 00562 /// \brief The log base 2, rounded towards INT32_MAX. 00563 /// 00564 /// Get the lg ceiling. lg 0 is defined to be INT32_MIN. 00565 int32_t lgCeiling() const { 00566 return ScaledNumbers::getLgCeiling(Digits, Scale); 00567 } 00568 00569 bool operator==(const ScaledNumber &X) const { return compare(X) == 0; } 00570 bool operator<(const ScaledNumber &X) const { return compare(X) < 0; } 00571 bool operator!=(const ScaledNumber &X) const { return compare(X) != 0; } 00572 bool operator>(const ScaledNumber &X) const { return compare(X) > 0; } 00573 bool operator<=(const ScaledNumber &X) const { return compare(X) <= 0; } 00574 bool operator>=(const ScaledNumber &X) const { return compare(X) >= 0; } 00575 00576 bool operator!() const { return isZero(); } 00577 00578 /// \brief Convert to a decimal representation in a string. 00579 /// 00580 /// Convert to a string. Uses scientific notation for very large/small 00581 /// numbers. Scientific notation is used roughly for numbers outside of the 00582 /// range 2^-64 through 2^64. 00583 /// 00584 /// \c Precision indicates the number of decimal digits of precision to use; 00585 /// 0 requests the maximum available. 00586 /// 00587 /// As a special case to make debugging easier, if the number is small enough 00588 /// to convert without scientific notation and has more than \c Precision 00589 /// digits before the decimal place, it's printed accurately to the first 00590 /// digit past zero. E.g., assuming 10 digits of precision: 00591 /// 00592 /// 98765432198.7654... => 98765432198.8 00593 /// 8765432198.7654... => 8765432198.8 00594 /// 765432198.7654... => 765432198.8 00595 /// 65432198.7654... => 65432198.77 00596 /// 5432198.7654... => 5432198.765 00597 std::string toString(unsigned Precision = DefaultPrecision) { 00598 return ScaledNumberBase::toString(Digits, Scale, Width, Precision); 00599 } 00600 00601 /// \brief Print a decimal representation. 00602 /// 00603 /// Print a string. See toString for documentation. 00604 raw_ostream &print(raw_ostream &OS, 00605 unsigned Precision = DefaultPrecision) const { 00606 return ScaledNumberBase::print(OS, Digits, Scale, Width, Precision); 00607 } 00608 void dump() const { return ScaledNumberBase::dump(Digits, Scale, Width); } 00609 00610 ScaledNumber &operator+=(const ScaledNumber &X) { 00611 std::tie(Digits, Scale) = 00612 ScaledNumbers::getSum(Digits, Scale, X.Digits, X.Scale); 00613 // Check for exponent past MaxScale. 00614 if (Scale > ScaledNumbers::MaxScale) 00615 *this = getLargest(); 00616 return *this; 00617 } 00618 ScaledNumber &operator-=(const ScaledNumber &X) { 00619 std::tie(Digits, Scale) = 00620 ScaledNumbers::getDifference(Digits, Scale, X.Digits, X.Scale); 00621 return *this; 00622 } 00623 ScaledNumber &operator*=(const ScaledNumber &X); 00624 ScaledNumber &operator/=(const ScaledNumber &X); 00625 ScaledNumber &operator<<=(int16_t Shift) { 00626 shiftLeft(Shift); 00627 return *this; 00628 } 00629 ScaledNumber &operator>>=(int16_t Shift) { 00630 shiftRight(Shift); 00631 return *this; 00632 } 00633 00634 private: 00635 void shiftLeft(int32_t Shift); 00636 void shiftRight(int32_t Shift); 00637 00638 /// \brief Adjust two floats to have matching exponents. 00639 /// 00640 /// Adjust \c this and \c X to have matching exponents. Returns the new \c X 00641 /// by value. Does nothing if \a isZero() for either. 00642 /// 00643 /// The value that compares smaller will lose precision, and possibly become 00644 /// \a isZero(). 00645 ScaledNumber matchScales(ScaledNumber X) { 00646 ScaledNumbers::matchScales(Digits, Scale, X.Digits, X.Scale); 00647 return X; 00648 } 00649 00650 public: 00651 /// \brief Scale a large number accurately. 00652 /// 00653 /// Scale N (multiply it by this). Uses full precision multiplication, even 00654 /// if Width is smaller than 64, so information is not lost. 00655 uint64_t scale(uint64_t N) const; 00656 uint64_t scaleByInverse(uint64_t N) const { 00657 // TODO: implement directly, rather than relying on inverse. Inverse is 00658 // expensive. 00659 return inverse().scale(N); 00660 } 00661 int64_t scale(int64_t N) const { 00662 std::pair<uint64_t, bool> Unsigned = splitSigned(N); 00663 return joinSigned(scale(Unsigned.first), Unsigned.second); 00664 } 00665 int64_t scaleByInverse(int64_t N) const { 00666 std::pair<uint64_t, bool> Unsigned = splitSigned(N); 00667 return joinSigned(scaleByInverse(Unsigned.first), Unsigned.second); 00668 } 00669 00670 int compare(const ScaledNumber &X) const { 00671 return ScaledNumbers::compare(Digits, Scale, X.Digits, X.Scale); 00672 } 00673 int compareTo(uint64_t N) const { 00674 ScaledNumber Scaled = get(N); 00675 int Compare = compare(Scaled); 00676 if (Width == 64 || Compare != 0) 00677 return Compare; 00678 00679 // Check for precision loss. We know *this == RoundTrip. 00680 uint64_t RoundTrip = Scaled.template toInt<uint64_t>(); 00681 return N == RoundTrip ? 0 : RoundTrip < N ? -1 : 1; 00682 } 00683 int compareTo(int64_t N) const { return N < 0 ? 1 : compareTo(uint64_t(N)); } 00684 00685 ScaledNumber &invert() { return *this = ScaledNumber::get(1) / *this; } 00686 ScaledNumber inverse() const { return ScaledNumber(*this).invert(); } 00687 00688 private: 00689 static ScaledNumber getProduct(DigitsType LHS, DigitsType RHS) { 00690 return ScaledNumbers::getProduct(LHS, RHS); 00691 } 00692 static ScaledNumber getQuotient(DigitsType Dividend, DigitsType Divisor) { 00693 return ScaledNumbers::getQuotient(Dividend, Divisor); 00694 } 00695 00696 static int countLeadingZerosWidth(DigitsType Digits) { 00697 if (Width == 64) 00698 return countLeadingZeros64(Digits); 00699 if (Width == 32) 00700 return countLeadingZeros32(Digits); 00701 return countLeadingZeros32(Digits) + Width - 32; 00702 } 00703 00704 /// \brief Adjust a number to width, rounding up if necessary. 00705 /// 00706 /// Should only be called for \c Shift close to zero. 00707 /// 00708 /// \pre Shift >= MinScale && Shift + 64 <= MaxScale. 00709 static ScaledNumber adjustToWidth(uint64_t N, int32_t Shift) { 00710 assert(Shift >= ScaledNumbers::MinScale && "Shift should be close to 0"); 00711 assert(Shift <= ScaledNumbers::MaxScale - 64 && 00712 "Shift should be close to 0"); 00713 auto Adjusted = ScaledNumbers::getAdjusted<DigitsT>(N, Shift); 00714 return Adjusted; 00715 } 00716 00717 static ScaledNumber getRounded(ScaledNumber P, bool Round) { 00718 // Saturate. 00719 if (P.isLargest()) 00720 return P; 00721 00722 return ScaledNumbers::getRounded(P.Digits, P.Scale, Round); 00723 } 00724 }; 00725 00726 #define SCALED_NUMBER_BOP(op, base) \ 00727 template <class DigitsT> \ 00728 ScaledNumber<DigitsT> operator op(const ScaledNumber<DigitsT> &L, \ 00729 const ScaledNumber<DigitsT> &R) { \ 00730 return ScaledNumber<DigitsT>(L) base R; \ 00731 } 00732 SCALED_NUMBER_BOP(+, += ) 00733 SCALED_NUMBER_BOP(-, -= ) 00734 SCALED_NUMBER_BOP(*, *= ) 00735 SCALED_NUMBER_BOP(/, /= ) 00736 SCALED_NUMBER_BOP(<<, <<= ) 00737 SCALED_NUMBER_BOP(>>, >>= ) 00738 #undef SCALED_NUMBER_BOP 00739 00740 template <class DigitsT> 00741 raw_ostream &operator<<(raw_ostream &OS, const ScaledNumber<DigitsT> &X) { 00742 return X.print(OS, 10); 00743 } 00744 00745 #define SCALED_NUMBER_COMPARE_TO_TYPE(op, T1, T2) \ 00746 template <class DigitsT> \ 00747 bool operator op(const ScaledNumber<DigitsT> &L, T1 R) { \ 00748 return L.compareTo(T2(R)) op 0; \ 00749 } \ 00750 template <class DigitsT> \ 00751 bool operator op(T1 L, const ScaledNumber<DigitsT> &R) { \ 00752 return 0 op R.compareTo(T2(L)); \ 00753 } 00754 #define SCALED_NUMBER_COMPARE_TO(op) \ 00755 SCALED_NUMBER_COMPARE_TO_TYPE(op, uint64_t, uint64_t) \ 00756 SCALED_NUMBER_COMPARE_TO_TYPE(op, uint32_t, uint64_t) \ 00757 SCALED_NUMBER_COMPARE_TO_TYPE(op, int64_t, int64_t) \ 00758 SCALED_NUMBER_COMPARE_TO_TYPE(op, int32_t, int64_t) 00759 SCALED_NUMBER_COMPARE_TO(< ) 00760 SCALED_NUMBER_COMPARE_TO(> ) 00761 SCALED_NUMBER_COMPARE_TO(== ) 00762 SCALED_NUMBER_COMPARE_TO(!= ) 00763 SCALED_NUMBER_COMPARE_TO(<= ) 00764 SCALED_NUMBER_COMPARE_TO(>= ) 00765 #undef SCALED_NUMBER_COMPARE_TO 00766 #undef SCALED_NUMBER_COMPARE_TO_TYPE 00767 00768 template <class DigitsT> 00769 uint64_t ScaledNumber<DigitsT>::scale(uint64_t N) const { 00770 if (Width == 64 || N <= DigitsLimits::max()) 00771 return (get(N) * *this).template toInt<uint64_t>(); 00772 00773 // Defer to the 64-bit version. 00774 return ScaledNumber<uint64_t>(Digits, Scale).scale(N); 00775 } 00776 00777 template <class DigitsT> 00778 template <class IntT> 00779 IntT ScaledNumber<DigitsT>::toInt() const { 00780 typedef std::numeric_limits<IntT> Limits; 00781 if (*this < 1) 00782 return 0; 00783 if (*this >= Limits::max()) 00784 return Limits::max(); 00785 00786 IntT N = Digits; 00787 if (Scale > 0) { 00788 assert(size_t(Scale) < sizeof(IntT) * 8); 00789 return N << Scale; 00790 } 00791 if (Scale < 0) { 00792 assert(size_t(-Scale) < sizeof(IntT) * 8); 00793 return N >> -Scale; 00794 } 00795 return N; 00796 } 00797 00798 template <class DigitsT> 00799 ScaledNumber<DigitsT> &ScaledNumber<DigitsT>:: 00800 operator*=(const ScaledNumber &X) { 00801 if (isZero()) 00802 return *this; 00803 if (X.isZero()) 00804 return *this = X; 00805 00806 // Save the exponents. 00807 int32_t Scales = int32_t(Scale) + int32_t(X.Scale); 00808 00809 // Get the raw product. 00810 *this = getProduct(Digits, X.Digits); 00811 00812 // Combine with exponents. 00813 return *this <<= Scales; 00814 } 00815 template <class DigitsT> 00816 ScaledNumber<DigitsT> &ScaledNumber<DigitsT>:: 00817 operator/=(const ScaledNumber &X) { 00818 if (isZero()) 00819 return *this; 00820 if (X.isZero()) 00821 return *this = getLargest(); 00822 00823 // Save the exponents. 00824 int32_t Scales = int32_t(Scale) - int32_t(X.Scale); 00825 00826 // Get the raw quotient. 00827 *this = getQuotient(Digits, X.Digits); 00828 00829 // Combine with exponents. 00830 return *this <<= Scales; 00831 } 00832 template <class DigitsT> void ScaledNumber<DigitsT>::shiftLeft(int32_t Shift) { 00833 if (!Shift || isZero()) 00834 return; 00835 assert(Shift != INT32_MIN); 00836 if (Shift < 0) { 00837 shiftRight(-Shift); 00838 return; 00839 } 00840 00841 // Shift as much as we can in the exponent. 00842 int32_t ScaleShift = std::min(Shift, ScaledNumbers::MaxScale - Scale); 00843 Scale += ScaleShift; 00844 if (ScaleShift == Shift) 00845 return; 00846 00847 // Check this late, since it's rare. 00848 if (isLargest()) 00849 return; 00850 00851 // Shift the digits themselves. 00852 Shift -= ScaleShift; 00853 if (Shift > countLeadingZerosWidth(Digits)) { 00854 // Saturate. 00855 *this = getLargest(); 00856 return; 00857 } 00858 00859 Digits <<= Shift; 00860 return; 00861 } 00862 00863 template <class DigitsT> void ScaledNumber<DigitsT>::shiftRight(int32_t Shift) { 00864 if (!Shift || isZero()) 00865 return; 00866 assert(Shift != INT32_MIN); 00867 if (Shift < 0) { 00868 shiftLeft(-Shift); 00869 return; 00870 } 00871 00872 // Shift as much as we can in the exponent. 00873 int32_t ScaleShift = std::min(Shift, Scale - ScaledNumbers::MinScale); 00874 Scale -= ScaleShift; 00875 if (ScaleShift == Shift) 00876 return; 00877 00878 // Shift the digits themselves. 00879 Shift -= ScaleShift; 00880 if (Shift >= Width) { 00881 // Saturate. 00882 *this = getZero(); 00883 return; 00884 } 00885 00886 Digits >>= Shift; 00887 return; 00888 } 00889 00890 template <typename T> struct isPodLike; 00891 template <typename T> struct isPodLike<ScaledNumber<T>> { 00892 static const bool value = true; 00893 }; 00894 00895 } // end namespace llvm 00896 00897 #endif