LLVM API Documentation
00001 //===-- SelectionDAGBuilder.h - Selection-DAG building --------*- C++ -*---===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This implements routines for translating from LLVM IR into SelectionDAG IR. 00011 // 00012 //===----------------------------------------------------------------------===// 00013 00014 #ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H 00015 #define LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H 00016 00017 #include "llvm/ADT/APInt.h" 00018 #include "llvm/ADT/DenseMap.h" 00019 #include "llvm/CodeGen/SelectionDAG.h" 00020 #include "llvm/CodeGen/SelectionDAGNodes.h" 00021 #include "llvm/IR/CallSite.h" 00022 #include "llvm/IR/Constants.h" 00023 #include "llvm/Support/ErrorHandling.h" 00024 #include <vector> 00025 00026 namespace llvm { 00027 00028 class AddrSpaceCastInst; 00029 class AliasAnalysis; 00030 class AllocaInst; 00031 class BasicBlock; 00032 class BitCastInst; 00033 class BranchInst; 00034 class CallInst; 00035 class DbgValueInst; 00036 class ExtractElementInst; 00037 class ExtractValueInst; 00038 class FCmpInst; 00039 class FPExtInst; 00040 class FPToSIInst; 00041 class FPToUIInst; 00042 class FPTruncInst; 00043 class Function; 00044 class FunctionLoweringInfo; 00045 class GetElementPtrInst; 00046 class GCFunctionInfo; 00047 class ICmpInst; 00048 class IntToPtrInst; 00049 class IndirectBrInst; 00050 class InvokeInst; 00051 class InsertElementInst; 00052 class InsertValueInst; 00053 class Instruction; 00054 class LoadInst; 00055 class MachineBasicBlock; 00056 class MachineInstr; 00057 class MachineRegisterInfo; 00058 class MDNode; 00059 class MVT; 00060 class PHINode; 00061 class PtrToIntInst; 00062 class ReturnInst; 00063 class SDDbgValue; 00064 class SExtInst; 00065 class SelectInst; 00066 class ShuffleVectorInst; 00067 class SIToFPInst; 00068 class StoreInst; 00069 class SwitchInst; 00070 class DataLayout; 00071 class TargetLibraryInfo; 00072 class TargetLowering; 00073 class TruncInst; 00074 class UIToFPInst; 00075 class UnreachableInst; 00076 class VAArgInst; 00077 class ZExtInst; 00078 00079 //===----------------------------------------------------------------------===// 00080 /// SelectionDAGBuilder - This is the common target-independent lowering 00081 /// implementation that is parameterized by a TargetLowering object. 00082 /// 00083 class SelectionDAGBuilder { 00084 /// CurInst - The current instruction being visited 00085 const Instruction *CurInst; 00086 00087 DenseMap<const Value*, SDValue> NodeMap; 00088 00089 /// UnusedArgNodeMap - Maps argument value for unused arguments. This is used 00090 /// to preserve debug information for incoming arguments. 00091 DenseMap<const Value*, SDValue> UnusedArgNodeMap; 00092 00093 /// DanglingDebugInfo - Helper type for DanglingDebugInfoMap. 00094 class DanglingDebugInfo { 00095 const DbgValueInst* DI; 00096 DebugLoc dl; 00097 unsigned SDNodeOrder; 00098 public: 00099 DanglingDebugInfo() : DI(nullptr), dl(DebugLoc()), SDNodeOrder(0) { } 00100 DanglingDebugInfo(const DbgValueInst *di, DebugLoc DL, unsigned SDNO) : 00101 DI(di), dl(DL), SDNodeOrder(SDNO) { } 00102 const DbgValueInst* getDI() { return DI; } 00103 DebugLoc getdl() { return dl; } 00104 unsigned getSDNodeOrder() { return SDNodeOrder; } 00105 }; 00106 00107 /// DanglingDebugInfoMap - Keeps track of dbg_values for which we have not 00108 /// yet seen the referent. We defer handling these until we do see it. 00109 DenseMap<const Value*, DanglingDebugInfo> DanglingDebugInfoMap; 00110 00111 public: 00112 /// PendingLoads - Loads are not emitted to the program immediately. We bunch 00113 /// them up and then emit token factor nodes when possible. This allows us to 00114 /// get simple disambiguation between loads without worrying about alias 00115 /// analysis. 00116 SmallVector<SDValue, 8> PendingLoads; 00117 private: 00118 00119 /// PendingExports - CopyToReg nodes that copy values to virtual registers 00120 /// for export to other blocks need to be emitted before any terminator 00121 /// instruction, but they have no other ordering requirements. We bunch them 00122 /// up and the emit a single tokenfactor for them just before terminator 00123 /// instructions. 00124 SmallVector<SDValue, 8> PendingExports; 00125 00126 /// SDNodeOrder - A unique monotonically increasing number used to order the 00127 /// SDNodes we create. 00128 unsigned SDNodeOrder; 00129 00130 /// Case - A struct to record the Value for a switch case, and the 00131 /// case's target basic block. 00132 struct Case { 00133 const Constant *Low; 00134 const Constant *High; 00135 MachineBasicBlock* BB; 00136 uint32_t ExtraWeight; 00137 00138 Case() : Low(nullptr), High(nullptr), BB(nullptr), ExtraWeight(0) { } 00139 Case(const Constant *low, const Constant *high, MachineBasicBlock *bb, 00140 uint32_t extraweight) : Low(low), High(high), BB(bb), 00141 ExtraWeight(extraweight) { } 00142 00143 APInt size() const { 00144 const APInt &rHigh = cast<ConstantInt>(High)->getValue(); 00145 const APInt &rLow = cast<ConstantInt>(Low)->getValue(); 00146 return (rHigh - rLow + 1ULL); 00147 } 00148 }; 00149 00150 struct CaseBits { 00151 uint64_t Mask; 00152 MachineBasicBlock* BB; 00153 unsigned Bits; 00154 uint32_t ExtraWeight; 00155 00156 CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits, 00157 uint32_t Weight): 00158 Mask(mask), BB(bb), Bits(bits), ExtraWeight(Weight) { } 00159 }; 00160 00161 typedef std::vector<Case> CaseVector; 00162 typedef std::vector<CaseBits> CaseBitsVector; 00163 typedef CaseVector::iterator CaseItr; 00164 typedef std::pair<CaseItr, CaseItr> CaseRange; 00165 00166 /// CaseRec - A struct with ctor used in lowering switches to a binary tree 00167 /// of conditional branches. 00168 struct CaseRec { 00169 CaseRec(MachineBasicBlock *bb, const Constant *lt, const Constant *ge, 00170 CaseRange r) : 00171 CaseBB(bb), LT(lt), GE(ge), Range(r) {} 00172 00173 /// CaseBB - The MBB in which to emit the compare and branch 00174 MachineBasicBlock *CaseBB; 00175 /// LT, GE - If nonzero, we know the current case value must be less-than or 00176 /// greater-than-or-equal-to these Constants. 00177 const Constant *LT; 00178 const Constant *GE; 00179 /// Range - A pair of iterators representing the range of case values to be 00180 /// processed at this point in the binary search tree. 00181 CaseRange Range; 00182 }; 00183 00184 typedef std::vector<CaseRec> CaseRecVector; 00185 00186 /// The comparison function for sorting the switch case values in the vector. 00187 /// WARNING: Case ranges should be disjoint! 00188 struct CaseCmp { 00189 bool operator()(const Case &C1, const Case &C2) { 00190 assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High)); 00191 const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low); 00192 const ConstantInt* CI2 = cast<const ConstantInt>(C2.High); 00193 return CI1->getValue().slt(CI2->getValue()); 00194 } 00195 }; 00196 00197 struct CaseBitsCmp { 00198 bool operator()(const CaseBits &C1, const CaseBits &C2) { 00199 return C1.Bits > C2.Bits; 00200 } 00201 }; 00202 00203 size_t Clusterify(CaseVector &Cases, const SwitchInst &SI); 00204 00205 /// CaseBlock - This structure is used to communicate between 00206 /// SelectionDAGBuilder and SDISel for the code generation of additional basic 00207 /// blocks needed by multi-case switch statements. 00208 struct CaseBlock { 00209 CaseBlock(ISD::CondCode cc, const Value *cmplhs, const Value *cmprhs, 00210 const Value *cmpmiddle, 00211 MachineBasicBlock *truebb, MachineBasicBlock *falsebb, 00212 MachineBasicBlock *me, 00213 uint32_t trueweight = 0, uint32_t falseweight = 0) 00214 : CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs), 00215 TrueBB(truebb), FalseBB(falsebb), ThisBB(me), 00216 TrueWeight(trueweight), FalseWeight(falseweight) { } 00217 00218 // CC - the condition code to use for the case block's setcc node 00219 ISD::CondCode CC; 00220 00221 // CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit. 00222 // Emit by default LHS op RHS. MHS is used for range comparisons: 00223 // If MHS is not null: (LHS <= MHS) and (MHS <= RHS). 00224 const Value *CmpLHS, *CmpMHS, *CmpRHS; 00225 00226 // TrueBB/FalseBB - the block to branch to if the setcc is true/false. 00227 MachineBasicBlock *TrueBB, *FalseBB; 00228 00229 // ThisBB - the block into which to emit the code for the setcc and branches 00230 MachineBasicBlock *ThisBB; 00231 00232 // TrueWeight/FalseWeight - branch weights. 00233 uint32_t TrueWeight, FalseWeight; 00234 }; 00235 00236 struct JumpTable { 00237 JumpTable(unsigned R, unsigned J, MachineBasicBlock *M, 00238 MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {} 00239 00240 /// Reg - the virtual register containing the index of the jump table entry 00241 //. to jump to. 00242 unsigned Reg; 00243 /// JTI - the JumpTableIndex for this jump table in the function. 00244 unsigned JTI; 00245 /// MBB - the MBB into which to emit the code for the indirect jump. 00246 MachineBasicBlock *MBB; 00247 /// Default - the MBB of the default bb, which is a successor of the range 00248 /// check MBB. This is when updating PHI nodes in successors. 00249 MachineBasicBlock *Default; 00250 }; 00251 struct JumpTableHeader { 00252 JumpTableHeader(APInt F, APInt L, const Value *SV, MachineBasicBlock *H, 00253 bool E = false): 00254 First(F), Last(L), SValue(SV), HeaderBB(H), Emitted(E) {} 00255 APInt First; 00256 APInt Last; 00257 const Value *SValue; 00258 MachineBasicBlock *HeaderBB; 00259 bool Emitted; 00260 }; 00261 typedef std::pair<JumpTableHeader, JumpTable> JumpTableBlock; 00262 00263 struct BitTestCase { 00264 BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr, 00265 uint32_t Weight): 00266 Mask(M), ThisBB(T), TargetBB(Tr), ExtraWeight(Weight) { } 00267 uint64_t Mask; 00268 MachineBasicBlock *ThisBB; 00269 MachineBasicBlock *TargetBB; 00270 uint32_t ExtraWeight; 00271 }; 00272 00273 typedef SmallVector<BitTestCase, 3> BitTestInfo; 00274 00275 struct BitTestBlock { 00276 BitTestBlock(APInt F, APInt R, const Value* SV, 00277 unsigned Rg, MVT RgVT, bool E, 00278 MachineBasicBlock* P, MachineBasicBlock* D, 00279 const BitTestInfo& C): 00280 First(F), Range(R), SValue(SV), Reg(Rg), RegVT(RgVT), Emitted(E), 00281 Parent(P), Default(D), Cases(C) { } 00282 APInt First; 00283 APInt Range; 00284 const Value *SValue; 00285 unsigned Reg; 00286 MVT RegVT; 00287 bool Emitted; 00288 MachineBasicBlock *Parent; 00289 MachineBasicBlock *Default; 00290 BitTestInfo Cases; 00291 }; 00292 00293 /// A class which encapsulates all of the information needed to generate a 00294 /// stack protector check and signals to isel via its state being initialized 00295 /// that a stack protector needs to be generated. 00296 /// 00297 /// *NOTE* The following is a high level documentation of SelectionDAG Stack 00298 /// Protector Generation. The reason that it is placed here is for a lack of 00299 /// other good places to stick it. 00300 /// 00301 /// High Level Overview of SelectionDAG Stack Protector Generation: 00302 /// 00303 /// Previously, generation of stack protectors was done exclusively in the 00304 /// pre-SelectionDAG Codegen LLVM IR Pass "Stack Protector". This necessitated 00305 /// splitting basic blocks at the IR level to create the success/failure basic 00306 /// blocks in the tail of the basic block in question. As a result of this, 00307 /// calls that would have qualified for the sibling call optimization were no 00308 /// longer eligible for optimization since said calls were no longer right in 00309 /// the "tail position" (i.e. the immediate predecessor of a ReturnInst 00310 /// instruction). 00311 /// 00312 /// Then it was noticed that since the sibling call optimization causes the 00313 /// callee to reuse the caller's stack, if we could delay the generation of 00314 /// the stack protector check until later in CodeGen after the sibling call 00315 /// decision was made, we get both the tail call optimization and the stack 00316 /// protector check! 00317 /// 00318 /// A few goals in solving this problem were: 00319 /// 00320 /// 1. Preserve the architecture independence of stack protector generation. 00321 /// 00322 /// 2. Preserve the normal IR level stack protector check for platforms like 00323 /// OpenBSD for which we support platform-specific stack protector 00324 /// generation. 00325 /// 00326 /// The main problem that guided the present solution is that one can not 00327 /// solve this problem in an architecture independent manner at the IR level 00328 /// only. This is because: 00329 /// 00330 /// 1. The decision on whether or not to perform a sibling call on certain 00331 /// platforms (for instance i386) requires lower level information 00332 /// related to available registers that can not be known at the IR level. 00333 /// 00334 /// 2. Even if the previous point were not true, the decision on whether to 00335 /// perform a tail call is done in LowerCallTo in SelectionDAG which 00336 /// occurs after the Stack Protector Pass. As a result, one would need to 00337 /// put the relevant callinst into the stack protector check success 00338 /// basic block (where the return inst is placed) and then move it back 00339 /// later at SelectionDAG/MI time before the stack protector check if the 00340 /// tail call optimization failed. The MI level option was nixed 00341 /// immediately since it would require platform-specific pattern 00342 /// matching. The SelectionDAG level option was nixed because 00343 /// SelectionDAG only processes one IR level basic block at a time 00344 /// implying one could not create a DAG Combine to move the callinst. 00345 /// 00346 /// To get around this problem a few things were realized: 00347 /// 00348 /// 1. While one can not handle multiple IR level basic blocks at the 00349 /// SelectionDAG Level, one can generate multiple machine basic blocks 00350 /// for one IR level basic block. This is how we handle bit tests and 00351 /// switches. 00352 /// 00353 /// 2. At the MI level, tail calls are represented via a special return 00354 /// MIInst called "tcreturn". Thus if we know the basic block in which we 00355 /// wish to insert the stack protector check, we get the correct behavior 00356 /// by always inserting the stack protector check right before the return 00357 /// statement. This is a "magical transformation" since no matter where 00358 /// the stack protector check intrinsic is, we always insert the stack 00359 /// protector check code at the end of the BB. 00360 /// 00361 /// Given the aforementioned constraints, the following solution was devised: 00362 /// 00363 /// 1. On platforms that do not support SelectionDAG stack protector check 00364 /// generation, allow for the normal IR level stack protector check 00365 /// generation to continue. 00366 /// 00367 /// 2. On platforms that do support SelectionDAG stack protector check 00368 /// generation: 00369 /// 00370 /// a. Use the IR level stack protector pass to decide if a stack 00371 /// protector is required/which BB we insert the stack protector check 00372 /// in by reusing the logic already therein. If we wish to generate a 00373 /// stack protector check in a basic block, we place a special IR 00374 /// intrinsic called llvm.stackprotectorcheck right before the BB's 00375 /// returninst or if there is a callinst that could potentially be 00376 /// sibling call optimized, before the call inst. 00377 /// 00378 /// b. Then when a BB with said intrinsic is processed, we codegen the BB 00379 /// normally via SelectBasicBlock. In said process, when we visit the 00380 /// stack protector check, we do not actually emit anything into the 00381 /// BB. Instead, we just initialize the stack protector descriptor 00382 /// class (which involves stashing information/creating the success 00383 /// mbbb and the failure mbb if we have not created one for this 00384 /// function yet) and export the guard variable that we are going to 00385 /// compare. 00386 /// 00387 /// c. After we finish selecting the basic block, in FinishBasicBlock if 00388 /// the StackProtectorDescriptor attached to the SelectionDAGBuilder is 00389 /// initialized, we first find a splice point in the parent basic block 00390 /// before the terminator and then splice the terminator of said basic 00391 /// block into the success basic block. Then we code-gen a new tail for 00392 /// the parent basic block consisting of the two loads, the comparison, 00393 /// and finally two branches to the success/failure basic blocks. We 00394 /// conclude by code-gening the failure basic block if we have not 00395 /// code-gened it already (all stack protector checks we generate in 00396 /// the same function, use the same failure basic block). 00397 class StackProtectorDescriptor { 00398 public: 00399 StackProtectorDescriptor() : ParentMBB(nullptr), SuccessMBB(nullptr), 00400 FailureMBB(nullptr), Guard(nullptr), 00401 GuardReg(0) { } 00402 ~StackProtectorDescriptor() { } 00403 00404 /// Returns true if all fields of the stack protector descriptor are 00405 /// initialized implying that we should/are ready to emit a stack protector. 00406 bool shouldEmitStackProtector() const { 00407 return ParentMBB && SuccessMBB && FailureMBB && Guard; 00408 } 00409 00410 /// Initialize the stack protector descriptor structure for a new basic 00411 /// block. 00412 void initialize(const BasicBlock *BB, 00413 MachineBasicBlock *MBB, 00414 const CallInst &StackProtCheckCall) { 00415 // Make sure we are not initialized yet. 00416 assert(!shouldEmitStackProtector() && "Stack Protector Descriptor is " 00417 "already initialized!"); 00418 ParentMBB = MBB; 00419 SuccessMBB = AddSuccessorMBB(BB, MBB); 00420 FailureMBB = AddSuccessorMBB(BB, MBB, FailureMBB); 00421 if (!Guard) 00422 Guard = StackProtCheckCall.getArgOperand(0); 00423 } 00424 00425 /// Reset state that changes when we handle different basic blocks. 00426 /// 00427 /// This currently includes: 00428 /// 00429 /// 1. The specific basic block we are generating a 00430 /// stack protector for (ParentMBB). 00431 /// 00432 /// 2. The successor machine basic block that will contain the tail of 00433 /// parent mbb after we create the stack protector check (SuccessMBB). This 00434 /// BB is visited only on stack protector check success. 00435 void resetPerBBState() { 00436 ParentMBB = nullptr; 00437 SuccessMBB = nullptr; 00438 } 00439 00440 /// Reset state that only changes when we switch functions. 00441 /// 00442 /// This currently includes: 00443 /// 00444 /// 1. FailureMBB since we reuse the failure code path for all stack 00445 /// protector checks created in an individual function. 00446 /// 00447 /// 2.The guard variable since the guard variable we are checking against is 00448 /// always the same. 00449 void resetPerFunctionState() { 00450 FailureMBB = nullptr; 00451 Guard = nullptr; 00452 } 00453 00454 MachineBasicBlock *getParentMBB() { return ParentMBB; } 00455 MachineBasicBlock *getSuccessMBB() { return SuccessMBB; } 00456 MachineBasicBlock *getFailureMBB() { return FailureMBB; } 00457 const Value *getGuard() { return Guard; } 00458 00459 unsigned getGuardReg() const { return GuardReg; } 00460 void setGuardReg(unsigned R) { GuardReg = R; } 00461 00462 private: 00463 /// The basic block for which we are generating the stack protector. 00464 /// 00465 /// As a result of stack protector generation, we will splice the 00466 /// terminators of this basic block into the successor mbb SuccessMBB and 00467 /// replace it with a compare/branch to the successor mbbs 00468 /// SuccessMBB/FailureMBB depending on whether or not the stack protector 00469 /// was violated. 00470 MachineBasicBlock *ParentMBB; 00471 00472 /// A basic block visited on stack protector check success that contains the 00473 /// terminators of ParentMBB. 00474 MachineBasicBlock *SuccessMBB; 00475 00476 /// This basic block visited on stack protector check failure that will 00477 /// contain a call to __stack_chk_fail(). 00478 MachineBasicBlock *FailureMBB; 00479 00480 /// The guard variable which we will compare against the stored value in the 00481 /// stack protector stack slot. 00482 const Value *Guard; 00483 00484 /// The virtual register holding the stack guard value. 00485 unsigned GuardReg; 00486 00487 /// Add a successor machine basic block to ParentMBB. If the successor mbb 00488 /// has not been created yet (i.e. if SuccMBB = 0), then the machine basic 00489 /// block will be created. 00490 MachineBasicBlock *AddSuccessorMBB(const BasicBlock *BB, 00491 MachineBasicBlock *ParentMBB, 00492 MachineBasicBlock *SuccMBB = nullptr); 00493 }; 00494 00495 private: 00496 const TargetMachine &TM; 00497 public: 00498 /// Lowest valid SDNodeOrder. The special case 0 is reserved for scheduling 00499 /// nodes without a corresponding SDNode. 00500 static const unsigned LowestSDNodeOrder = 1; 00501 00502 SelectionDAG &DAG; 00503 const DataLayout *DL; 00504 AliasAnalysis *AA; 00505 const TargetLibraryInfo *LibInfo; 00506 00507 /// SwitchCases - Vector of CaseBlock structures used to communicate 00508 /// SwitchInst code generation information. 00509 std::vector<CaseBlock> SwitchCases; 00510 /// JTCases - Vector of JumpTable structures used to communicate 00511 /// SwitchInst code generation information. 00512 std::vector<JumpTableBlock> JTCases; 00513 /// BitTestCases - Vector of BitTestBlock structures used to communicate 00514 /// SwitchInst code generation information. 00515 std::vector<BitTestBlock> BitTestCases; 00516 /// A StackProtectorDescriptor structure used to communicate stack protector 00517 /// information in between SelectBasicBlock and FinishBasicBlock. 00518 StackProtectorDescriptor SPDescriptor; 00519 00520 // Emit PHI-node-operand constants only once even if used by multiple 00521 // PHI nodes. 00522 DenseMap<const Constant *, unsigned> ConstantsOut; 00523 00524 /// FuncInfo - Information about the function as a whole. 00525 /// 00526 FunctionLoweringInfo &FuncInfo; 00527 00528 /// OptLevel - What optimization level we're generating code for. 00529 /// 00530 CodeGenOpt::Level OptLevel; 00531 00532 /// GFI - Garbage collection metadata for the function. 00533 GCFunctionInfo *GFI; 00534 00535 /// LPadToCallSiteMap - Map a landing pad to the call site indexes. 00536 DenseMap<MachineBasicBlock*, SmallVector<unsigned, 4> > LPadToCallSiteMap; 00537 00538 /// HasTailCall - This is set to true if a call in the current 00539 /// block has been translated as a tail call. In this case, 00540 /// no subsequent DAG nodes should be created. 00541 /// 00542 bool HasTailCall; 00543 00544 LLVMContext *Context; 00545 00546 SelectionDAGBuilder(SelectionDAG &dag, FunctionLoweringInfo &funcinfo, 00547 CodeGenOpt::Level ol) 00548 : CurInst(nullptr), SDNodeOrder(LowestSDNodeOrder), TM(dag.getTarget()), 00549 DAG(dag), FuncInfo(funcinfo), OptLevel(ol), 00550 HasTailCall(false) { 00551 } 00552 00553 void init(GCFunctionInfo *gfi, AliasAnalysis &aa, 00554 const TargetLibraryInfo *li); 00555 00556 /// clear - Clear out the current SelectionDAG and the associated 00557 /// state and prepare this SelectionDAGBuilder object to be used 00558 /// for a new block. This doesn't clear out information about 00559 /// additional blocks that are needed to complete switch lowering 00560 /// or PHI node updating; that information is cleared out as it is 00561 /// consumed. 00562 void clear(); 00563 00564 /// clearDanglingDebugInfo - Clear the dangling debug information 00565 /// map. This function is separated from the clear so that debug 00566 /// information that is dangling in a basic block can be properly 00567 /// resolved in a different basic block. This allows the 00568 /// SelectionDAG to resolve dangling debug information attached 00569 /// to PHI nodes. 00570 void clearDanglingDebugInfo(); 00571 00572 /// getRoot - Return the current virtual root of the Selection DAG, 00573 /// flushing any PendingLoad items. This must be done before emitting 00574 /// a store or any other node that may need to be ordered after any 00575 /// prior load instructions. 00576 /// 00577 SDValue getRoot(); 00578 00579 /// getControlRoot - Similar to getRoot, but instead of flushing all the 00580 /// PendingLoad items, flush all the PendingExports items. It is necessary 00581 /// to do this before emitting a terminator instruction. 00582 /// 00583 SDValue getControlRoot(); 00584 00585 SDLoc getCurSDLoc() const { 00586 return SDLoc(CurInst, SDNodeOrder); 00587 } 00588 00589 DebugLoc getCurDebugLoc() const { 00590 return CurInst ? CurInst->getDebugLoc() : DebugLoc(); 00591 } 00592 00593 unsigned getSDNodeOrder() const { return SDNodeOrder; } 00594 00595 void CopyValueToVirtualRegister(const Value *V, unsigned Reg); 00596 00597 void visit(const Instruction &I); 00598 00599 void visit(unsigned Opcode, const User &I); 00600 00601 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 00602 // generate the debug data structures now that we've seen its definition. 00603 void resolveDanglingDebugInfo(const Value *V, SDValue Val); 00604 SDValue getValue(const Value *V); 00605 SDValue getNonRegisterValue(const Value *V); 00606 SDValue getValueImpl(const Value *V); 00607 00608 void setValue(const Value *V, SDValue NewN) { 00609 SDValue &N = NodeMap[V]; 00610 assert(!N.getNode() && "Already set a value for this node!"); 00611 N = NewN; 00612 } 00613 00614 void setUnusedArgValue(const Value *V, SDValue NewN) { 00615 SDValue &N = UnusedArgNodeMap[V]; 00616 assert(!N.getNode() && "Already set a value for this node!"); 00617 N = NewN; 00618 } 00619 00620 void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB, 00621 MachineBasicBlock *FBB, MachineBasicBlock *CurBB, 00622 MachineBasicBlock *SwitchBB, unsigned Opc, 00623 uint32_t TW, uint32_t FW); 00624 void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB, 00625 MachineBasicBlock *FBB, 00626 MachineBasicBlock *CurBB, 00627 MachineBasicBlock *SwitchBB, 00628 uint32_t TW, uint32_t FW); 00629 bool ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases); 00630 bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB); 00631 void CopyToExportRegsIfNeeded(const Value *V); 00632 void ExportFromCurrentBlock(const Value *V); 00633 void LowerCallTo(ImmutableCallSite CS, SDValue Callee, bool IsTailCall, 00634 MachineBasicBlock *LandingPad = nullptr); 00635 00636 std::pair<SDValue, SDValue> LowerCallOperands(const CallInst &CI, 00637 unsigned ArgIdx, 00638 unsigned NumArgs, 00639 SDValue Callee, 00640 bool useVoidTy = false); 00641 00642 /// UpdateSplitBlock - When an MBB was split during scheduling, update the 00643 /// references that need to refer to the last resulting block. 00644 void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last); 00645 00646 private: 00647 // Terminator instructions. 00648 void visitRet(const ReturnInst &I); 00649 void visitBr(const BranchInst &I); 00650 void visitSwitch(const SwitchInst &I); 00651 void visitIndirectBr(const IndirectBrInst &I); 00652 void visitUnreachable(const UnreachableInst &I); 00653 00654 // Helpers for visitSwitch 00655 bool handleSmallSwitchRange(CaseRec& CR, 00656 CaseRecVector& WorkList, 00657 const Value* SV, 00658 MachineBasicBlock* Default, 00659 MachineBasicBlock *SwitchBB); 00660 bool handleJTSwitchCase(CaseRec& CR, 00661 CaseRecVector& WorkList, 00662 const Value* SV, 00663 MachineBasicBlock* Default, 00664 MachineBasicBlock *SwitchBB); 00665 bool handleBTSplitSwitchCase(CaseRec& CR, 00666 CaseRecVector& WorkList, 00667 const Value* SV, 00668 MachineBasicBlock* Default, 00669 MachineBasicBlock *SwitchBB); 00670 bool handleBitTestsSwitchCase(CaseRec& CR, 00671 CaseRecVector& WorkList, 00672 const Value* SV, 00673 MachineBasicBlock* Default, 00674 MachineBasicBlock *SwitchBB); 00675 00676 uint32_t getEdgeWeight(const MachineBasicBlock *Src, 00677 const MachineBasicBlock *Dst) const; 00678 void addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 00679 uint32_t Weight = 0); 00680 public: 00681 void visitSwitchCase(CaseBlock &CB, 00682 MachineBasicBlock *SwitchBB); 00683 void visitSPDescriptorParent(StackProtectorDescriptor &SPD, 00684 MachineBasicBlock *ParentBB); 00685 void visitSPDescriptorFailure(StackProtectorDescriptor &SPD); 00686 void visitBitTestHeader(BitTestBlock &B, MachineBasicBlock *SwitchBB); 00687 void visitBitTestCase(BitTestBlock &BB, 00688 MachineBasicBlock* NextMBB, 00689 uint32_t BranchWeightToNext, 00690 unsigned Reg, 00691 BitTestCase &B, 00692 MachineBasicBlock *SwitchBB); 00693 void visitJumpTable(JumpTable &JT); 00694 void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH, 00695 MachineBasicBlock *SwitchBB); 00696 00697 private: 00698 // These all get lowered before this pass. 00699 void visitInvoke(const InvokeInst &I); 00700 void visitResume(const ResumeInst &I); 00701 00702 void visitBinary(const User &I, unsigned OpCode); 00703 void visitShift(const User &I, unsigned Opcode); 00704 void visitAdd(const User &I) { visitBinary(I, ISD::ADD); } 00705 void visitFAdd(const User &I) { visitBinary(I, ISD::FADD); } 00706 void visitSub(const User &I) { visitBinary(I, ISD::SUB); } 00707 void visitFSub(const User &I); 00708 void visitMul(const User &I) { visitBinary(I, ISD::MUL); } 00709 void visitFMul(const User &I) { visitBinary(I, ISD::FMUL); } 00710 void visitURem(const User &I) { visitBinary(I, ISD::UREM); } 00711 void visitSRem(const User &I) { visitBinary(I, ISD::SREM); } 00712 void visitFRem(const User &I) { visitBinary(I, ISD::FREM); } 00713 void visitUDiv(const User &I) { visitBinary(I, ISD::UDIV); } 00714 void visitSDiv(const User &I); 00715 void visitFDiv(const User &I) { visitBinary(I, ISD::FDIV); } 00716 void visitAnd (const User &I) { visitBinary(I, ISD::AND); } 00717 void visitOr (const User &I) { visitBinary(I, ISD::OR); } 00718 void visitXor (const User &I) { visitBinary(I, ISD::XOR); } 00719 void visitShl (const User &I) { visitShift(I, ISD::SHL); } 00720 void visitLShr(const User &I) { visitShift(I, ISD::SRL); } 00721 void visitAShr(const User &I) { visitShift(I, ISD::SRA); } 00722 void visitICmp(const User &I); 00723 void visitFCmp(const User &I); 00724 // Visit the conversion instructions 00725 void visitTrunc(const User &I); 00726 void visitZExt(const User &I); 00727 void visitSExt(const User &I); 00728 void visitFPTrunc(const User &I); 00729 void visitFPExt(const User &I); 00730 void visitFPToUI(const User &I); 00731 void visitFPToSI(const User &I); 00732 void visitUIToFP(const User &I); 00733 void visitSIToFP(const User &I); 00734 void visitPtrToInt(const User &I); 00735 void visitIntToPtr(const User &I); 00736 void visitBitCast(const User &I); 00737 void visitAddrSpaceCast(const User &I); 00738 00739 void visitExtractElement(const User &I); 00740 void visitInsertElement(const User &I); 00741 void visitShuffleVector(const User &I); 00742 00743 void visitExtractValue(const ExtractValueInst &I); 00744 void visitInsertValue(const InsertValueInst &I); 00745 void visitLandingPad(const LandingPadInst &I); 00746 00747 void visitGetElementPtr(const User &I); 00748 void visitSelect(const User &I); 00749 00750 void visitAlloca(const AllocaInst &I); 00751 void visitLoad(const LoadInst &I); 00752 void visitStore(const StoreInst &I); 00753 void visitAtomicCmpXchg(const AtomicCmpXchgInst &I); 00754 void visitAtomicRMW(const AtomicRMWInst &I); 00755 void visitFence(const FenceInst &I); 00756 void visitPHI(const PHINode &I); 00757 void visitCall(const CallInst &I); 00758 bool visitMemCmpCall(const CallInst &I); 00759 bool visitMemChrCall(const CallInst &I); 00760 bool visitStrCpyCall(const CallInst &I, bool isStpcpy); 00761 bool visitStrCmpCall(const CallInst &I); 00762 bool visitStrLenCall(const CallInst &I); 00763 bool visitStrNLenCall(const CallInst &I); 00764 bool visitUnaryFloatCall(const CallInst &I, unsigned Opcode); 00765 void visitAtomicLoad(const LoadInst &I); 00766 void visitAtomicStore(const StoreInst &I); 00767 00768 void visitInlineAsm(ImmutableCallSite CS); 00769 const char *visitIntrinsicCall(const CallInst &I, unsigned Intrinsic); 00770 void visitTargetIntrinsic(const CallInst &I, unsigned Intrinsic); 00771 00772 void visitVAStart(const CallInst &I); 00773 void visitVAArg(const VAArgInst &I); 00774 void visitVAEnd(const CallInst &I); 00775 void visitVACopy(const CallInst &I); 00776 void visitStackmap(const CallInst &I); 00777 void visitPatchpoint(const CallInst &I); 00778 00779 void visitUserOp1(const Instruction &I) { 00780 llvm_unreachable("UserOp1 should not exist at instruction selection time!"); 00781 } 00782 void visitUserOp2(const Instruction &I) { 00783 llvm_unreachable("UserOp2 should not exist at instruction selection time!"); 00784 } 00785 00786 void processIntegerCallValue(const Instruction &I, 00787 SDValue Value, bool IsSigned); 00788 00789 void HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB); 00790 00791 /// EmitFuncArgumentDbgValue - If V is an function argument then create 00792 /// corresponding DBG_VALUE machine instruction for it now. At the end of 00793 /// instruction selection, they will be inserted to the entry BB. 00794 bool EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 00795 int64_t Offset, bool IsIndirect, 00796 const SDValue &N); 00797 }; 00798 00799 } // end namespace llvm 00800 00801 #endif