LLVM API Documentation
00001 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file implements induction variable simplification. It does 00011 // not define any actual pass or policy, but provides a single function to 00012 // simplify a loop's induction variables based on ScalarEvolution. 00013 // 00014 //===----------------------------------------------------------------------===// 00015 00016 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 00017 #include "llvm/ADT/STLExtras.h" 00018 #include "llvm/ADT/SmallVector.h" 00019 #include "llvm/ADT/Statistic.h" 00020 #include "llvm/Analysis/IVUsers.h" 00021 #include "llvm/Analysis/LoopInfo.h" 00022 #include "llvm/Analysis/LoopPass.h" 00023 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 00024 #include "llvm/IR/DataLayout.h" 00025 #include "llvm/IR/Dominators.h" 00026 #include "llvm/IR/IRBuilder.h" 00027 #include "llvm/IR/Instructions.h" 00028 #include "llvm/IR/IntrinsicInst.h" 00029 #include "llvm/Support/CommandLine.h" 00030 #include "llvm/Support/Debug.h" 00031 #include "llvm/Support/raw_ostream.h" 00032 00033 using namespace llvm; 00034 00035 #define DEBUG_TYPE "indvars" 00036 00037 STATISTIC(NumElimIdentity, "Number of IV identities eliminated"); 00038 STATISTIC(NumElimOperand, "Number of IV operands folded into a use"); 00039 STATISTIC(NumElimRem , "Number of IV remainder operations eliminated"); 00040 STATISTIC(NumElimCmp , "Number of IV comparisons eliminated"); 00041 00042 namespace { 00043 /// SimplifyIndvar - This is a utility for simplifying induction variables 00044 /// based on ScalarEvolution. It is the primary instrument of the 00045 /// IndvarSimplify pass, but it may also be directly invoked to cleanup after 00046 /// other loop passes that preserve SCEV. 00047 class SimplifyIndvar { 00048 Loop *L; 00049 LoopInfo *LI; 00050 ScalarEvolution *SE; 00051 const DataLayout *DL; // May be NULL 00052 00053 SmallVectorImpl<WeakVH> &DeadInsts; 00054 00055 bool Changed; 00056 00057 public: 00058 SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, LPPassManager *LPM, 00059 SmallVectorImpl<WeakVH> &Dead, IVUsers *IVU = nullptr) : 00060 L(Loop), 00061 LI(LPM->getAnalysisIfAvailable<LoopInfo>()), 00062 SE(SE), 00063 DeadInsts(Dead), 00064 Changed(false) { 00065 DataLayoutPass *DLP = LPM->getAnalysisIfAvailable<DataLayoutPass>(); 00066 DL = DLP ? &DLP->getDataLayout() : nullptr; 00067 assert(LI && "IV simplification requires LoopInfo"); 00068 } 00069 00070 bool hasChanged() const { return Changed; } 00071 00072 /// Iteratively perform simplification on a worklist of users of the 00073 /// specified induction variable. This is the top-level driver that applies 00074 /// all simplicitions to users of an IV. 00075 void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr); 00076 00077 Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand); 00078 00079 bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand); 00080 void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand); 00081 void eliminateIVRemainder(BinaryOperator *Rem, Value *IVOperand, 00082 bool IsSigned); 00083 00084 Instruction *splitOverflowIntrinsic(Instruction *IVUser, 00085 const DominatorTree *DT); 00086 }; 00087 } 00088 00089 /// foldIVUser - Fold an IV operand into its use. This removes increments of an 00090 /// aligned IV when used by a instruction that ignores the low bits. 00091 /// 00092 /// IVOperand is guaranteed SCEVable, but UseInst may not be. 00093 /// 00094 /// Return the operand of IVOperand for this induction variable if IVOperand can 00095 /// be folded (in case more folding opportunities have been exposed). 00096 /// Otherwise return null. 00097 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) { 00098 Value *IVSrc = nullptr; 00099 unsigned OperIdx = 0; 00100 const SCEV *FoldedExpr = nullptr; 00101 switch (UseInst->getOpcode()) { 00102 default: 00103 return nullptr; 00104 case Instruction::UDiv: 00105 case Instruction::LShr: 00106 // We're only interested in the case where we know something about 00107 // the numerator and have a constant denominator. 00108 if (IVOperand != UseInst->getOperand(OperIdx) || 00109 !isa<ConstantInt>(UseInst->getOperand(1))) 00110 return nullptr; 00111 00112 // Attempt to fold a binary operator with constant operand. 00113 // e.g. ((I + 1) >> 2) => I >> 2 00114 if (!isa<BinaryOperator>(IVOperand) 00115 || !isa<ConstantInt>(IVOperand->getOperand(1))) 00116 return nullptr; 00117 00118 IVSrc = IVOperand->getOperand(0); 00119 // IVSrc must be the (SCEVable) IV, since the other operand is const. 00120 assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand"); 00121 00122 ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1)); 00123 if (UseInst->getOpcode() == Instruction::LShr) { 00124 // Get a constant for the divisor. See createSCEV. 00125 uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth(); 00126 if (D->getValue().uge(BitWidth)) 00127 return nullptr; 00128 00129 D = ConstantInt::get(UseInst->getContext(), 00130 APInt::getOneBitSet(BitWidth, D->getZExtValue())); 00131 } 00132 FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D)); 00133 } 00134 // We have something that might fold it's operand. Compare SCEVs. 00135 if (!SE->isSCEVable(UseInst->getType())) 00136 return nullptr; 00137 00138 // Bypass the operand if SCEV can prove it has no effect. 00139 if (SE->getSCEV(UseInst) != FoldedExpr) 00140 return nullptr; 00141 00142 DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand 00143 << " -> " << *UseInst << '\n'); 00144 00145 UseInst->setOperand(OperIdx, IVSrc); 00146 assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper"); 00147 00148 ++NumElimOperand; 00149 Changed = true; 00150 if (IVOperand->use_empty()) 00151 DeadInsts.push_back(IVOperand); 00152 return IVSrc; 00153 } 00154 00155 /// eliminateIVComparison - SimplifyIVUsers helper for eliminating useless 00156 /// comparisons against an induction variable. 00157 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) { 00158 unsigned IVOperIdx = 0; 00159 ICmpInst::Predicate Pred = ICmp->getPredicate(); 00160 if (IVOperand != ICmp->getOperand(0)) { 00161 // Swapped 00162 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 00163 IVOperIdx = 1; 00164 Pred = ICmpInst::getSwappedPredicate(Pred); 00165 } 00166 00167 // Get the SCEVs for the ICmp operands. 00168 const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx)); 00169 const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx)); 00170 00171 // Simplify unnecessary loops away. 00172 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 00173 S = SE->getSCEVAtScope(S, ICmpLoop); 00174 X = SE->getSCEVAtScope(X, ICmpLoop); 00175 00176 // If the condition is always true or always false, replace it with 00177 // a constant value. 00178 if (SE->isKnownPredicate(Pred, S, X)) 00179 ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext())); 00180 else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) 00181 ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext())); 00182 else 00183 return; 00184 00185 DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); 00186 ++NumElimCmp; 00187 Changed = true; 00188 DeadInsts.push_back(ICmp); 00189 } 00190 00191 /// eliminateIVRemainder - SimplifyIVUsers helper for eliminating useless 00192 /// remainder operations operating on an induction variable. 00193 void SimplifyIndvar::eliminateIVRemainder(BinaryOperator *Rem, 00194 Value *IVOperand, 00195 bool IsSigned) { 00196 // We're only interested in the case where we know something about 00197 // the numerator. 00198 if (IVOperand != Rem->getOperand(0)) 00199 return; 00200 00201 // Get the SCEVs for the ICmp operands. 00202 const SCEV *S = SE->getSCEV(Rem->getOperand(0)); 00203 const SCEV *X = SE->getSCEV(Rem->getOperand(1)); 00204 00205 // Simplify unnecessary loops away. 00206 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent()); 00207 S = SE->getSCEVAtScope(S, ICmpLoop); 00208 X = SE->getSCEVAtScope(X, ICmpLoop); 00209 00210 // i % n --> i if i is in [0,n). 00211 if ((!IsSigned || SE->isKnownNonNegative(S)) && 00212 SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 00213 S, X)) 00214 Rem->replaceAllUsesWith(Rem->getOperand(0)); 00215 else { 00216 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n). 00217 const SCEV *LessOne = 00218 SE->getMinusSCEV(S, SE->getConstant(S->getType(), 1)); 00219 if (IsSigned && !SE->isKnownNonNegative(LessOne)) 00220 return; 00221 00222 if (!SE->isKnownPredicate(IsSigned ? 00223 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 00224 LessOne, X)) 00225 return; 00226 00227 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, 00228 Rem->getOperand(0), Rem->getOperand(1)); 00229 SelectInst *Sel = 00230 SelectInst::Create(ICmp, 00231 ConstantInt::get(Rem->getType(), 0), 00232 Rem->getOperand(0), "tmp", Rem); 00233 Rem->replaceAllUsesWith(Sel); 00234 } 00235 00236 DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 00237 ++NumElimRem; 00238 Changed = true; 00239 DeadInsts.push_back(Rem); 00240 } 00241 00242 /// eliminateIVUser - Eliminate an operation that consumes a simple IV and has 00243 /// no observable side-effect given the range of IV values. 00244 /// IVOperand is guaranteed SCEVable, but UseInst may not be. 00245 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst, 00246 Instruction *IVOperand) { 00247 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 00248 eliminateIVComparison(ICmp, IVOperand); 00249 return true; 00250 } 00251 if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) { 00252 bool IsSigned = Rem->getOpcode() == Instruction::SRem; 00253 if (IsSigned || Rem->getOpcode() == Instruction::URem) { 00254 eliminateIVRemainder(Rem, IVOperand, IsSigned); 00255 return true; 00256 } 00257 } 00258 00259 // Eliminate any operation that SCEV can prove is an identity function. 00260 if (!SE->isSCEVable(UseInst->getType()) || 00261 (UseInst->getType() != IVOperand->getType()) || 00262 (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand))) 00263 return false; 00264 00265 DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n'); 00266 00267 UseInst->replaceAllUsesWith(IVOperand); 00268 ++NumElimIdentity; 00269 Changed = true; 00270 DeadInsts.push_back(UseInst); 00271 return true; 00272 } 00273 00274 /// \brief Split sadd.with.overflow into add + sadd.with.overflow to allow 00275 /// analysis and optimization. 00276 /// 00277 /// \return A new value representing the non-overflowing add if possible, 00278 /// otherwise return the original value. 00279 Instruction *SimplifyIndvar::splitOverflowIntrinsic(Instruction *IVUser, 00280 const DominatorTree *DT) { 00281 IntrinsicInst *II = dyn_cast<IntrinsicInst>(IVUser); 00282 if (!II || II->getIntrinsicID() != Intrinsic::sadd_with_overflow) 00283 return IVUser; 00284 00285 // Find a branch guarded by the overflow check. 00286 BranchInst *Branch = nullptr; 00287 Instruction *AddVal = nullptr; 00288 for (User *U : II->users()) { 00289 if (ExtractValueInst *ExtractInst = dyn_cast<ExtractValueInst>(U)) { 00290 if (ExtractInst->getNumIndices() != 1) 00291 continue; 00292 if (ExtractInst->getIndices()[0] == 0) 00293 AddVal = ExtractInst; 00294 else if (ExtractInst->getIndices()[0] == 1 && ExtractInst->hasOneUse()) 00295 Branch = dyn_cast<BranchInst>(ExtractInst->user_back()); 00296 } 00297 } 00298 if (!AddVal || !Branch) 00299 return IVUser; 00300 00301 BasicBlock *ContinueBB = Branch->getSuccessor(1); 00302 if (std::next(pred_begin(ContinueBB)) != pred_end(ContinueBB)) 00303 return IVUser; 00304 00305 // Check if all users of the add are provably NSW. 00306 bool AllNSW = true; 00307 for (Use &U : AddVal->uses()) { 00308 if (Instruction *UseInst = dyn_cast<Instruction>(U.getUser())) { 00309 BasicBlock *UseBB = UseInst->getParent(); 00310 if (PHINode *PHI = dyn_cast<PHINode>(UseInst)) 00311 UseBB = PHI->getIncomingBlock(U); 00312 if (!DT->dominates(ContinueBB, UseBB)) { 00313 AllNSW = false; 00314 break; 00315 } 00316 } 00317 } 00318 if (!AllNSW) 00319 return IVUser; 00320 00321 // Go for it... 00322 IRBuilder<> Builder(IVUser); 00323 Instruction *AddInst = dyn_cast<Instruction>( 00324 Builder.CreateNSWAdd(II->getOperand(0), II->getOperand(1))); 00325 00326 // The caller expects the new add to have the same form as the intrinsic. The 00327 // IV operand position must be the same. 00328 assert((AddInst->getOpcode() == Instruction::Add && 00329 AddInst->getOperand(0) == II->getOperand(0)) && 00330 "Bad add instruction created from overflow intrinsic."); 00331 00332 AddVal->replaceAllUsesWith(AddInst); 00333 DeadInsts.push_back(AddVal); 00334 return AddInst; 00335 } 00336 00337 /// pushIVUsers - Add all uses of Def to the current IV's worklist. 00338 /// 00339 static void pushIVUsers( 00340 Instruction *Def, 00341 SmallPtrSet<Instruction*,16> &Simplified, 00342 SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) { 00343 00344 for (User *U : Def->users()) { 00345 Instruction *UI = cast<Instruction>(U); 00346 00347 // Avoid infinite or exponential worklist processing. 00348 // Also ensure unique worklist users. 00349 // If Def is a LoopPhi, it may not be in the Simplified set, so check for 00350 // self edges first. 00351 if (UI != Def && Simplified.insert(UI)) 00352 SimpleIVUsers.push_back(std::make_pair(UI, Def)); 00353 } 00354 } 00355 00356 /// isSimpleIVUser - Return true if this instruction generates a simple SCEV 00357 /// expression in terms of that IV. 00358 /// 00359 /// This is similar to IVUsers' isInteresting() but processes each instruction 00360 /// non-recursively when the operand is already known to be a simpleIVUser. 00361 /// 00362 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) { 00363 if (!SE->isSCEVable(I->getType())) 00364 return false; 00365 00366 // Get the symbolic expression for this instruction. 00367 const SCEV *S = SE->getSCEV(I); 00368 00369 // Only consider affine recurrences. 00370 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 00371 if (AR && AR->getLoop() == L) 00372 return true; 00373 00374 return false; 00375 } 00376 00377 /// simplifyUsers - Iteratively perform simplification on a worklist of users 00378 /// of the specified induction variable. Each successive simplification may push 00379 /// more users which may themselves be candidates for simplification. 00380 /// 00381 /// This algorithm does not require IVUsers analysis. Instead, it simplifies 00382 /// instructions in-place during analysis. Rather than rewriting induction 00383 /// variables bottom-up from their users, it transforms a chain of IVUsers 00384 /// top-down, updating the IR only when it encouters a clear optimization 00385 /// opportunitiy. 00386 /// 00387 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers. 00388 /// 00389 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) { 00390 if (!SE->isSCEVable(CurrIV->getType())) 00391 return; 00392 00393 // Instructions processed by SimplifyIndvar for CurrIV. 00394 SmallPtrSet<Instruction*,16> Simplified; 00395 00396 // Use-def pairs if IV users waiting to be processed for CurrIV. 00397 SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers; 00398 00399 // Push users of the current LoopPhi. In rare cases, pushIVUsers may be 00400 // called multiple times for the same LoopPhi. This is the proper thing to 00401 // do for loop header phis that use each other. 00402 pushIVUsers(CurrIV, Simplified, SimpleIVUsers); 00403 00404 while (!SimpleIVUsers.empty()) { 00405 std::pair<Instruction*, Instruction*> UseOper = 00406 SimpleIVUsers.pop_back_val(); 00407 Instruction *UseInst = UseOper.first; 00408 00409 // Bypass back edges to avoid extra work. 00410 if (UseInst == CurrIV) continue; 00411 00412 if (V && V->shouldSplitOverflowInstrinsics()) { 00413 UseInst = splitOverflowIntrinsic(UseInst, V->getDomTree()); 00414 if (!UseInst) 00415 continue; 00416 } 00417 00418 Instruction *IVOperand = UseOper.second; 00419 for (unsigned N = 0; IVOperand; ++N) { 00420 assert(N <= Simplified.size() && "runaway iteration"); 00421 00422 Value *NewOper = foldIVUser(UseOper.first, IVOperand); 00423 if (!NewOper) 00424 break; // done folding 00425 IVOperand = dyn_cast<Instruction>(NewOper); 00426 } 00427 if (!IVOperand) 00428 continue; 00429 00430 if (eliminateIVUser(UseOper.first, IVOperand)) { 00431 pushIVUsers(IVOperand, Simplified, SimpleIVUsers); 00432 continue; 00433 } 00434 CastInst *Cast = dyn_cast<CastInst>(UseOper.first); 00435 if (V && Cast) { 00436 V->visitCast(Cast); 00437 continue; 00438 } 00439 if (isSimpleIVUser(UseOper.first, L, SE)) { 00440 pushIVUsers(UseOper.first, Simplified, SimpleIVUsers); 00441 } 00442 } 00443 } 00444 00445 namespace llvm { 00446 00447 void IVVisitor::anchor() { } 00448 00449 /// simplifyUsersOfIV - Simplify instructions that use this induction variable 00450 /// by using ScalarEvolution to analyze the IV's recurrence. 00451 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, LPPassManager *LPM, 00452 SmallVectorImpl<WeakVH> &Dead, IVVisitor *V) 00453 { 00454 LoopInfo *LI = &LPM->getAnalysis<LoopInfo>(); 00455 SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, LPM, Dead); 00456 SIV.simplifyUsers(CurrIV, V); 00457 return SIV.hasChanged(); 00458 } 00459 00460 /// simplifyLoopIVs - Simplify users of induction variables within this 00461 /// loop. This does not actually change or add IVs. 00462 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, LPPassManager *LPM, 00463 SmallVectorImpl<WeakVH> &Dead) { 00464 bool Changed = false; 00465 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 00466 Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, LPM, Dead); 00467 } 00468 return Changed; 00469 } 00470 00471 } // namespace llvm