LLVM API Documentation

TailRecursionElimination.cpp
Go to the documentation of this file.
00001 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This file transforms calls of the current function (self recursion) followed
00011 // by a return instruction with a branch to the entry of the function, creating
00012 // a loop.  This pass also implements the following extensions to the basic
00013 // algorithm:
00014 //
00015 //  1. Trivial instructions between the call and return do not prevent the
00016 //     transformation from taking place, though currently the analysis cannot
00017 //     support moving any really useful instructions (only dead ones).
00018 //  2. This pass transforms functions that are prevented from being tail
00019 //     recursive by an associative and commutative expression to use an
00020 //     accumulator variable, thus compiling the typical naive factorial or
00021 //     'fib' implementation into efficient code.
00022 //  3. TRE is performed if the function returns void, if the return
00023 //     returns the result returned by the call, or if the function returns a
00024 //     run-time constant on all exits from the function.  It is possible, though
00025 //     unlikely, that the return returns something else (like constant 0), and
00026 //     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
00027 //     the function return the exact same value.
00028 //  4. If it can prove that callees do not access their caller stack frame,
00029 //     they are marked as eligible for tail call elimination (by the code
00030 //     generator).
00031 //
00032 // There are several improvements that could be made:
00033 //
00034 //  1. If the function has any alloca instructions, these instructions will be
00035 //     moved out of the entry block of the function, causing them to be
00036 //     evaluated each time through the tail recursion.  Safely keeping allocas
00037 //     in the entry block requires analysis to proves that the tail-called
00038 //     function does not read or write the stack object.
00039 //  2. Tail recursion is only performed if the call immediately precedes the
00040 //     return instruction.  It's possible that there could be a jump between
00041 //     the call and the return.
00042 //  3. There can be intervening operations between the call and the return that
00043 //     prevent the TRE from occurring.  For example, there could be GEP's and
00044 //     stores to memory that will not be read or written by the call.  This
00045 //     requires some substantial analysis (such as with DSA) to prove safe to
00046 //     move ahead of the call, but doing so could allow many more TREs to be
00047 //     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
00048 //  4. The algorithm we use to detect if callees access their caller stack
00049 //     frames is very primitive.
00050 //
00051 //===----------------------------------------------------------------------===//
00052 
00053 #include "llvm/Transforms/Scalar.h"
00054 #include "llvm/ADT/STLExtras.h"
00055 #include "llvm/ADT/SmallPtrSet.h"
00056 #include "llvm/ADT/Statistic.h"
00057 #include "llvm/Analysis/CaptureTracking.h"
00058 #include "llvm/Analysis/CFG.h"
00059 #include "llvm/Analysis/InlineCost.h"
00060 #include "llvm/Analysis/InstructionSimplify.h"
00061 #include "llvm/Analysis/Loads.h"
00062 #include "llvm/Analysis/TargetTransformInfo.h"
00063 #include "llvm/IR/CFG.h"
00064 #include "llvm/IR/CallSite.h"
00065 #include "llvm/IR/Constants.h"
00066 #include "llvm/IR/DerivedTypes.h"
00067 #include "llvm/IR/DiagnosticInfo.h"
00068 #include "llvm/IR/Function.h"
00069 #include "llvm/IR/Instructions.h"
00070 #include "llvm/IR/IntrinsicInst.h"
00071 #include "llvm/IR/Module.h"
00072 #include "llvm/IR/ValueHandle.h"
00073 #include "llvm/Pass.h"
00074 #include "llvm/Support/Debug.h"
00075 #include "llvm/Support/raw_ostream.h"
00076 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
00077 #include "llvm/Transforms/Utils/Local.h"
00078 using namespace llvm;
00079 
00080 #define DEBUG_TYPE "tailcallelim"
00081 
00082 STATISTIC(NumEliminated, "Number of tail calls removed");
00083 STATISTIC(NumRetDuped,   "Number of return duplicated");
00084 STATISTIC(NumAccumAdded, "Number of accumulators introduced");
00085 
00086 namespace {
00087   struct TailCallElim : public FunctionPass {
00088     const TargetTransformInfo *TTI;
00089 
00090     static char ID; // Pass identification, replacement for typeid
00091     TailCallElim() : FunctionPass(ID) {
00092       initializeTailCallElimPass(*PassRegistry::getPassRegistry());
00093     }
00094 
00095     void getAnalysisUsage(AnalysisUsage &AU) const override;
00096 
00097     bool runOnFunction(Function &F) override;
00098 
00099   private:
00100     bool runTRE(Function &F);
00101     bool markTails(Function &F, bool &AllCallsAreTailCalls);
00102 
00103     CallInst *FindTRECandidate(Instruction *I,
00104                                bool CannotTailCallElimCallsMarkedTail);
00105     bool EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
00106                                     BasicBlock *&OldEntry,
00107                                     bool &TailCallsAreMarkedTail,
00108                                     SmallVectorImpl<PHINode *> &ArgumentPHIs,
00109                                     bool CannotTailCallElimCallsMarkedTail);
00110     bool FoldReturnAndProcessPred(BasicBlock *BB,
00111                                   ReturnInst *Ret, BasicBlock *&OldEntry,
00112                                   bool &TailCallsAreMarkedTail,
00113                                   SmallVectorImpl<PHINode *> &ArgumentPHIs,
00114                                   bool CannotTailCallElimCallsMarkedTail);
00115     bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry,
00116                                bool &TailCallsAreMarkedTail,
00117                                SmallVectorImpl<PHINode *> &ArgumentPHIs,
00118                                bool CannotTailCallElimCallsMarkedTail);
00119     bool CanMoveAboveCall(Instruction *I, CallInst *CI);
00120     Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI);
00121   };
00122 }
00123 
00124 char TailCallElim::ID = 0;
00125 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim",
00126                       "Tail Call Elimination", false, false)
00127 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
00128 INITIALIZE_PASS_END(TailCallElim, "tailcallelim",
00129                     "Tail Call Elimination", false, false)
00130 
00131 // Public interface to the TailCallElimination pass
00132 FunctionPass *llvm::createTailCallEliminationPass() {
00133   return new TailCallElim();
00134 }
00135 
00136 void TailCallElim::getAnalysisUsage(AnalysisUsage &AU) const {
00137   AU.addRequired<TargetTransformInfo>();
00138 }
00139 
00140 /// \brief Scan the specified function for alloca instructions.
00141 /// If it contains any dynamic allocas, returns false.
00142 static bool CanTRE(Function &F) {
00143   // Because of PR962, we don't TRE dynamic allocas.
00144   for (auto &BB : F) {
00145     for (auto &I : BB) {
00146       if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
00147         if (!AI->isStaticAlloca())
00148           return false;
00149       }
00150     }
00151   }
00152 
00153   return true;
00154 }
00155 
00156 bool TailCallElim::runOnFunction(Function &F) {
00157   if (skipOptnoneFunction(F))
00158     return false;
00159 
00160   bool AllCallsAreTailCalls = false;
00161   bool Modified = markTails(F, AllCallsAreTailCalls);
00162   if (AllCallsAreTailCalls)
00163     Modified |= runTRE(F);
00164   return Modified;
00165 }
00166 
00167 namespace {
00168 struct AllocaDerivedValueTracker {
00169   // Start at a root value and walk its use-def chain to mark calls that use the
00170   // value or a derived value in AllocaUsers, and places where it may escape in
00171   // EscapePoints.
00172   void walk(Value *Root) {
00173     SmallVector<Use *, 32> Worklist;
00174     SmallPtrSet<Use *, 32> Visited;
00175 
00176     auto AddUsesToWorklist = [&](Value *V) {
00177       for (auto &U : V->uses()) {
00178         if (!Visited.insert(&U))
00179           continue;
00180         Worklist.push_back(&U);
00181       }
00182     };
00183 
00184     AddUsesToWorklist(Root);
00185 
00186     while (!Worklist.empty()) {
00187       Use *U = Worklist.pop_back_val();
00188       Instruction *I = cast<Instruction>(U->getUser());
00189 
00190       switch (I->getOpcode()) {
00191       case Instruction::Call:
00192       case Instruction::Invoke: {
00193         CallSite CS(I);
00194         bool IsNocapture = !CS.isCallee(U) &&
00195                            CS.doesNotCapture(CS.getArgumentNo(U));
00196         callUsesLocalStack(CS, IsNocapture);
00197         if (IsNocapture) {
00198           // If the alloca-derived argument is passed in as nocapture, then it
00199           // can't propagate to the call's return. That would be capturing.
00200           continue;
00201         }
00202         break;
00203       }
00204       case Instruction::Load: {
00205         // The result of a load is not alloca-derived (unless an alloca has
00206         // otherwise escaped, but this is a local analysis).
00207         continue;
00208       }
00209       case Instruction::Store: {
00210         if (U->getOperandNo() == 0)
00211           EscapePoints.insert(I);
00212         continue;  // Stores have no users to analyze.
00213       }
00214       case Instruction::BitCast:
00215       case Instruction::GetElementPtr:
00216       case Instruction::PHI:
00217       case Instruction::Select:
00218       case Instruction::AddrSpaceCast:
00219         break;
00220       default:
00221         EscapePoints.insert(I);
00222         break;
00223       }
00224 
00225       AddUsesToWorklist(I);
00226     }
00227   }
00228 
00229   void callUsesLocalStack(CallSite CS, bool IsNocapture) {
00230     // Add it to the list of alloca users.
00231     AllocaUsers.insert(CS.getInstruction());
00232 
00233     // If it's nocapture then it can't capture this alloca.
00234     if (IsNocapture)
00235       return;
00236 
00237     // If it can write to memory, it can leak the alloca value.
00238     if (!CS.onlyReadsMemory())
00239       EscapePoints.insert(CS.getInstruction());
00240   }
00241 
00242   SmallPtrSet<Instruction *, 32> AllocaUsers;
00243   SmallPtrSet<Instruction *, 32> EscapePoints;
00244 };
00245 }
00246 
00247 bool TailCallElim::markTails(Function &F, bool &AllCallsAreTailCalls) {
00248   if (F.callsFunctionThatReturnsTwice())
00249     return false;
00250   AllCallsAreTailCalls = true;
00251 
00252   // The local stack holds all alloca instructions and all byval arguments.
00253   AllocaDerivedValueTracker Tracker;
00254   for (Argument &Arg : F.args()) {
00255     if (Arg.hasByValAttr())
00256       Tracker.walk(&Arg);
00257   }
00258   for (auto &BB : F) {
00259     for (auto &I : BB)
00260       if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
00261         Tracker.walk(AI);
00262   }
00263 
00264   bool Modified = false;
00265 
00266   // Track whether a block is reachable after an alloca has escaped. Blocks that
00267   // contain the escaping instruction will be marked as being visited without an
00268   // escaped alloca, since that is how the block began.
00269   enum VisitType {
00270     UNVISITED,
00271     UNESCAPED,
00272     ESCAPED
00273   };
00274   DenseMap<BasicBlock *, VisitType> Visited;
00275 
00276   // We propagate the fact that an alloca has escaped from block to successor.
00277   // Visit the blocks that are propagating the escapedness first. To do this, we
00278   // maintain two worklists.
00279   SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped;
00280 
00281   // We may enter a block and visit it thinking that no alloca has escaped yet,
00282   // then see an escape point and go back around a loop edge and come back to
00283   // the same block twice. Because of this, we defer setting tail on calls when
00284   // we first encounter them in a block. Every entry in this list does not
00285   // statically use an alloca via use-def chain analysis, but may find an alloca
00286   // through other means if the block turns out to be reachable after an escape
00287   // point.
00288   SmallVector<CallInst *, 32> DeferredTails;
00289 
00290   BasicBlock *BB = &F.getEntryBlock();
00291   VisitType Escaped = UNESCAPED;
00292   do {
00293     for (auto &I : *BB) {
00294       if (Tracker.EscapePoints.count(&I))
00295         Escaped = ESCAPED;
00296 
00297       CallInst *CI = dyn_cast<CallInst>(&I);
00298       if (!CI || CI->isTailCall())
00299         continue;
00300 
00301       if (CI->doesNotAccessMemory()) {
00302         // A call to a readnone function whose arguments are all things computed
00303         // outside this function can be marked tail. Even if you stored the
00304         // alloca address into a global, a readnone function can't load the
00305         // global anyhow.
00306         //
00307         // Note that this runs whether we know an alloca has escaped or not. If
00308         // it has, then we can't trust Tracker.AllocaUsers to be accurate.
00309         bool SafeToTail = true;
00310         for (auto &Arg : CI->arg_operands()) {
00311           if (isa<Constant>(Arg.getUser()))
00312             continue;
00313           if (Argument *A = dyn_cast<Argument>(Arg.getUser()))
00314             if (!A->hasByValAttr())
00315               continue;
00316           SafeToTail = false;
00317           break;
00318         }
00319         if (SafeToTail) {
00320           emitOptimizationRemark(
00321               F.getContext(), "tailcallelim", F, CI->getDebugLoc(),
00322               "marked this readnone call a tail call candidate");
00323           CI->setTailCall();
00324           Modified = true;
00325           continue;
00326         }
00327       }
00328 
00329       if (Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) {
00330         DeferredTails.push_back(CI);
00331       } else {
00332         AllCallsAreTailCalls = false;
00333       }
00334     }
00335 
00336     for (auto *SuccBB : make_range(succ_begin(BB), succ_end(BB))) {
00337       auto &State = Visited[SuccBB];
00338       if (State < Escaped) {
00339         State = Escaped;
00340         if (State == ESCAPED)
00341           WorklistEscaped.push_back(SuccBB);
00342         else
00343           WorklistUnescaped.push_back(SuccBB);
00344       }
00345     }
00346 
00347     if (!WorklistEscaped.empty()) {
00348       BB = WorklistEscaped.pop_back_val();
00349       Escaped = ESCAPED;
00350     } else {
00351       BB = nullptr;
00352       while (!WorklistUnescaped.empty()) {
00353         auto *NextBB = WorklistUnescaped.pop_back_val();
00354         if (Visited[NextBB] == UNESCAPED) {
00355           BB = NextBB;
00356           Escaped = UNESCAPED;
00357           break;
00358         }
00359       }
00360     }
00361   } while (BB);
00362 
00363   for (CallInst *CI : DeferredTails) {
00364     if (Visited[CI->getParent()] != ESCAPED) {
00365       // If the escape point was part way through the block, calls after the
00366       // escape point wouldn't have been put into DeferredTails.
00367       emitOptimizationRemark(F.getContext(), "tailcallelim", F,
00368                              CI->getDebugLoc(),
00369                              "marked this call a tail call candidate");
00370       CI->setTailCall();
00371       Modified = true;
00372     } else {
00373       AllCallsAreTailCalls = false;
00374     }
00375   }
00376 
00377   return Modified;
00378 }
00379 
00380 bool TailCallElim::runTRE(Function &F) {
00381   // If this function is a varargs function, we won't be able to PHI the args
00382   // right, so don't even try to convert it...
00383   if (F.getFunctionType()->isVarArg()) return false;
00384 
00385   TTI = &getAnalysis<TargetTransformInfo>();
00386   BasicBlock *OldEntry = nullptr;
00387   bool TailCallsAreMarkedTail = false;
00388   SmallVector<PHINode*, 8> ArgumentPHIs;
00389   bool MadeChange = false;
00390 
00391   // CanTRETailMarkedCall - If false, we cannot perform TRE on tail calls
00392   // marked with the 'tail' attribute, because doing so would cause the stack
00393   // size to increase (real TRE would deallocate variable sized allocas, TRE
00394   // doesn't).
00395   bool CanTRETailMarkedCall = CanTRE(F);
00396 
00397   // Change any tail recursive calls to loops.
00398   //
00399   // FIXME: The code generator produces really bad code when an 'escaping
00400   // alloca' is changed from being a static alloca to being a dynamic alloca.
00401   // Until this is resolved, disable this transformation if that would ever
00402   // happen.  This bug is PR962.
00403   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
00404     if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) {
00405       bool Change = ProcessReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
00406                                           ArgumentPHIs, !CanTRETailMarkedCall);
00407       if (!Change && BB->getFirstNonPHIOrDbg() == Ret)
00408         Change = FoldReturnAndProcessPred(BB, Ret, OldEntry,
00409                                           TailCallsAreMarkedTail, ArgumentPHIs,
00410                                           !CanTRETailMarkedCall);
00411       MadeChange |= Change;
00412     }
00413   }
00414 
00415   // If we eliminated any tail recursions, it's possible that we inserted some
00416   // silly PHI nodes which just merge an initial value (the incoming operand)
00417   // with themselves.  Check to see if we did and clean up our mess if so.  This
00418   // occurs when a function passes an argument straight through to its tail
00419   // call.
00420   for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) {
00421     PHINode *PN = ArgumentPHIs[i];
00422 
00423     // If the PHI Node is a dynamic constant, replace it with the value it is.
00424     if (Value *PNV = SimplifyInstruction(PN)) {
00425       PN->replaceAllUsesWith(PNV);
00426       PN->eraseFromParent();
00427     }
00428   }
00429 
00430   return MadeChange;
00431 }
00432 
00433 
00434 /// CanMoveAboveCall - Return true if it is safe to move the specified
00435 /// instruction from after the call to before the call, assuming that all
00436 /// instructions between the call and this instruction are movable.
00437 ///
00438 bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) {
00439   // FIXME: We can move load/store/call/free instructions above the call if the
00440   // call does not mod/ref the memory location being processed.
00441   if (I->mayHaveSideEffects())  // This also handles volatile loads.
00442     return false;
00443 
00444   if (LoadInst *L = dyn_cast<LoadInst>(I)) {
00445     // Loads may always be moved above calls without side effects.
00446     if (CI->mayHaveSideEffects()) {
00447       // Non-volatile loads may be moved above a call with side effects if it
00448       // does not write to memory and the load provably won't trap.
00449       // FIXME: Writes to memory only matter if they may alias the pointer
00450       // being loaded from.
00451       if (CI->mayWriteToMemory() ||
00452           !isSafeToLoadUnconditionally(L->getPointerOperand(), L,
00453                                        L->getAlignment()))
00454         return false;
00455     }
00456   }
00457 
00458   // Otherwise, if this is a side-effect free instruction, check to make sure
00459   // that it does not use the return value of the call.  If it doesn't use the
00460   // return value of the call, it must only use things that are defined before
00461   // the call, or movable instructions between the call and the instruction
00462   // itself.
00463   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
00464     if (I->getOperand(i) == CI)
00465       return false;
00466   return true;
00467 }
00468 
00469 // isDynamicConstant - Return true if the specified value is the same when the
00470 // return would exit as it was when the initial iteration of the recursive
00471 // function was executed.
00472 //
00473 // We currently handle static constants and arguments that are not modified as
00474 // part of the recursion.
00475 //
00476 static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) {
00477   if (isa<Constant>(V)) return true; // Static constants are always dyn consts
00478 
00479   // Check to see if this is an immutable argument, if so, the value
00480   // will be available to initialize the accumulator.
00481   if (Argument *Arg = dyn_cast<Argument>(V)) {
00482     // Figure out which argument number this is...
00483     unsigned ArgNo = 0;
00484     Function *F = CI->getParent()->getParent();
00485     for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
00486       ++ArgNo;
00487 
00488     // If we are passing this argument into call as the corresponding
00489     // argument operand, then the argument is dynamically constant.
00490     // Otherwise, we cannot transform this function safely.
00491     if (CI->getArgOperand(ArgNo) == Arg)
00492       return true;
00493   }
00494 
00495   // Switch cases are always constant integers. If the value is being switched
00496   // on and the return is only reachable from one of its cases, it's
00497   // effectively constant.
00498   if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor())
00499     if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator()))
00500       if (SI->getCondition() == V)
00501         return SI->getDefaultDest() != RI->getParent();
00502 
00503   // Not a constant or immutable argument, we can't safely transform.
00504   return false;
00505 }
00506 
00507 // getCommonReturnValue - Check to see if the function containing the specified
00508 // tail call consistently returns the same runtime-constant value at all exit
00509 // points except for IgnoreRI.  If so, return the returned value.
00510 //
00511 static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) {
00512   Function *F = CI->getParent()->getParent();
00513   Value *ReturnedValue = nullptr;
00514 
00515   for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) {
00516     ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator());
00517     if (RI == nullptr || RI == IgnoreRI) continue;
00518 
00519     // We can only perform this transformation if the value returned is
00520     // evaluatable at the start of the initial invocation of the function,
00521     // instead of at the end of the evaluation.
00522     //
00523     Value *RetOp = RI->getOperand(0);
00524     if (!isDynamicConstant(RetOp, CI, RI))
00525       return nullptr;
00526 
00527     if (ReturnedValue && RetOp != ReturnedValue)
00528       return nullptr;     // Cannot transform if differing values are returned.
00529     ReturnedValue = RetOp;
00530   }
00531   return ReturnedValue;
00532 }
00533 
00534 /// CanTransformAccumulatorRecursion - If the specified instruction can be
00535 /// transformed using accumulator recursion elimination, return the constant
00536 /// which is the start of the accumulator value.  Otherwise return null.
00537 ///
00538 Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I,
00539                                                       CallInst *CI) {
00540   if (!I->isAssociative() || !I->isCommutative()) return nullptr;
00541   assert(I->getNumOperands() == 2 &&
00542          "Associative/commutative operations should have 2 args!");
00543 
00544   // Exactly one operand should be the result of the call instruction.
00545   if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
00546       (I->getOperand(0) != CI && I->getOperand(1) != CI))
00547     return nullptr;
00548 
00549   // The only user of this instruction we allow is a single return instruction.
00550   if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back()))
00551     return nullptr;
00552 
00553   // Ok, now we have to check all of the other return instructions in this
00554   // function.  If they return non-constants or differing values, then we cannot
00555   // transform the function safely.
00556   return getCommonReturnValue(cast<ReturnInst>(I->user_back()), CI);
00557 }
00558 
00559 static Instruction *FirstNonDbg(BasicBlock::iterator I) {
00560   while (isa<DbgInfoIntrinsic>(I))
00561     ++I;
00562   return &*I;
00563 }
00564 
00565 CallInst*
00566 TailCallElim::FindTRECandidate(Instruction *TI,
00567                                bool CannotTailCallElimCallsMarkedTail) {
00568   BasicBlock *BB = TI->getParent();
00569   Function *F = BB->getParent();
00570 
00571   if (&BB->front() == TI) // Make sure there is something before the terminator.
00572     return nullptr;
00573 
00574   // Scan backwards from the return, checking to see if there is a tail call in
00575   // this block.  If so, set CI to it.
00576   CallInst *CI = nullptr;
00577   BasicBlock::iterator BBI = TI;
00578   while (true) {
00579     CI = dyn_cast<CallInst>(BBI);
00580     if (CI && CI->getCalledFunction() == F)
00581       break;
00582 
00583     if (BBI == BB->begin())
00584       return nullptr;          // Didn't find a potential tail call.
00585     --BBI;
00586   }
00587 
00588   // If this call is marked as a tail call, and if there are dynamic allocas in
00589   // the function, we cannot perform this optimization.
00590   if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
00591     return nullptr;
00592 
00593   // As a special case, detect code like this:
00594   //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
00595   // and disable this xform in this case, because the code generator will
00596   // lower the call to fabs into inline code.
00597   if (BB == &F->getEntryBlock() &&
00598       FirstNonDbg(BB->front()) == CI &&
00599       FirstNonDbg(std::next(BB->begin())) == TI &&
00600       CI->getCalledFunction() &&
00601       !TTI->isLoweredToCall(CI->getCalledFunction())) {
00602     // A single-block function with just a call and a return. Check that
00603     // the arguments match.
00604     CallSite::arg_iterator I = CallSite(CI).arg_begin(),
00605                            E = CallSite(CI).arg_end();
00606     Function::arg_iterator FI = F->arg_begin(),
00607                            FE = F->arg_end();
00608     for (; I != E && FI != FE; ++I, ++FI)
00609       if (*I != &*FI) break;
00610     if (I == E && FI == FE)
00611       return nullptr;
00612   }
00613 
00614   return CI;
00615 }
00616 
00617 bool TailCallElim::EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
00618                                        BasicBlock *&OldEntry,
00619                                        bool &TailCallsAreMarkedTail,
00620                                        SmallVectorImpl<PHINode *> &ArgumentPHIs,
00621                                        bool CannotTailCallElimCallsMarkedTail) {
00622   // If we are introducing accumulator recursion to eliminate operations after
00623   // the call instruction that are both associative and commutative, the initial
00624   // value for the accumulator is placed in this variable.  If this value is set
00625   // then we actually perform accumulator recursion elimination instead of
00626   // simple tail recursion elimination.  If the operation is an LLVM instruction
00627   // (eg: "add") then it is recorded in AccumulatorRecursionInstr.  If not, then
00628   // we are handling the case when the return instruction returns a constant C
00629   // which is different to the constant returned by other return instructions
00630   // (which is recorded in AccumulatorRecursionEliminationInitVal).  This is a
00631   // special case of accumulator recursion, the operation being "return C".
00632   Value *AccumulatorRecursionEliminationInitVal = nullptr;
00633   Instruction *AccumulatorRecursionInstr = nullptr;
00634 
00635   // Ok, we found a potential tail call.  We can currently only transform the
00636   // tail call if all of the instructions between the call and the return are
00637   // movable to above the call itself, leaving the call next to the return.
00638   // Check that this is the case now.
00639   BasicBlock::iterator BBI = CI;
00640   for (++BBI; &*BBI != Ret; ++BBI) {
00641     if (CanMoveAboveCall(BBI, CI)) continue;
00642 
00643     // If we can't move the instruction above the call, it might be because it
00644     // is an associative and commutative operation that could be transformed
00645     // using accumulator recursion elimination.  Check to see if this is the
00646     // case, and if so, remember the initial accumulator value for later.
00647     if ((AccumulatorRecursionEliminationInitVal =
00648                            CanTransformAccumulatorRecursion(BBI, CI))) {
00649       // Yes, this is accumulator recursion.  Remember which instruction
00650       // accumulates.
00651       AccumulatorRecursionInstr = BBI;
00652     } else {
00653       return false;   // Otherwise, we cannot eliminate the tail recursion!
00654     }
00655   }
00656 
00657   // We can only transform call/return pairs that either ignore the return value
00658   // of the call and return void, ignore the value of the call and return a
00659   // constant, return the value returned by the tail call, or that are being
00660   // accumulator recursion variable eliminated.
00661   if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI &&
00662       !isa<UndefValue>(Ret->getReturnValue()) &&
00663       AccumulatorRecursionEliminationInitVal == nullptr &&
00664       !getCommonReturnValue(nullptr, CI)) {
00665     // One case remains that we are able to handle: the current return
00666     // instruction returns a constant, and all other return instructions
00667     // return a different constant.
00668     if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret))
00669       return false; // Current return instruction does not return a constant.
00670     // Check that all other return instructions return a common constant.  If
00671     // so, record it in AccumulatorRecursionEliminationInitVal.
00672     AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI);
00673     if (!AccumulatorRecursionEliminationInitVal)
00674       return false;
00675   }
00676 
00677   BasicBlock *BB = Ret->getParent();
00678   Function *F = BB->getParent();
00679 
00680   emitOptimizationRemark(F->getContext(), "tailcallelim", *F, CI->getDebugLoc(),
00681                          "transforming tail recursion to loop");
00682 
00683   // OK! We can transform this tail call.  If this is the first one found,
00684   // create the new entry block, allowing us to branch back to the old entry.
00685   if (!OldEntry) {
00686     OldEntry = &F->getEntryBlock();
00687     BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry);
00688     NewEntry->takeName(OldEntry);
00689     OldEntry->setName("tailrecurse");
00690     BranchInst::Create(OldEntry, NewEntry);
00691 
00692     // If this tail call is marked 'tail' and if there are any allocas in the
00693     // entry block, move them up to the new entry block.
00694     TailCallsAreMarkedTail = CI->isTailCall();
00695     if (TailCallsAreMarkedTail)
00696       // Move all fixed sized allocas from OldEntry to NewEntry.
00697       for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
00698              NEBI = NewEntry->begin(); OEBI != E; )
00699         if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
00700           if (isa<ConstantInt>(AI->getArraySize()))
00701             AI->moveBefore(NEBI);
00702 
00703     // Now that we have created a new block, which jumps to the entry
00704     // block, insert a PHI node for each argument of the function.
00705     // For now, we initialize each PHI to only have the real arguments
00706     // which are passed in.
00707     Instruction *InsertPos = OldEntry->begin();
00708     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
00709          I != E; ++I) {
00710       PHINode *PN = PHINode::Create(I->getType(), 2,
00711                                     I->getName() + ".tr", InsertPos);
00712       I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
00713       PN->addIncoming(I, NewEntry);
00714       ArgumentPHIs.push_back(PN);
00715     }
00716   }
00717 
00718   // If this function has self recursive calls in the tail position where some
00719   // are marked tail and some are not, only transform one flavor or another.  We
00720   // have to choose whether we move allocas in the entry block to the new entry
00721   // block or not, so we can't make a good choice for both.  NOTE: We could do
00722   // slightly better here in the case that the function has no entry block
00723   // allocas.
00724   if (TailCallsAreMarkedTail && !CI->isTailCall())
00725     return false;
00726 
00727   // Ok, now that we know we have a pseudo-entry block WITH all of the
00728   // required PHI nodes, add entries into the PHI node for the actual
00729   // parameters passed into the tail-recursive call.
00730   for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
00731     ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB);
00732 
00733   // If we are introducing an accumulator variable to eliminate the recursion,
00734   // do so now.  Note that we _know_ that no subsequent tail recursion
00735   // eliminations will happen on this function because of the way the
00736   // accumulator recursion predicate is set up.
00737   //
00738   if (AccumulatorRecursionEliminationInitVal) {
00739     Instruction *AccRecInstr = AccumulatorRecursionInstr;
00740     // Start by inserting a new PHI node for the accumulator.
00741     pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry);
00742     PHINode *AccPN =
00743       PHINode::Create(AccumulatorRecursionEliminationInitVal->getType(),
00744                       std::distance(PB, PE) + 1,
00745                       "accumulator.tr", OldEntry->begin());
00746 
00747     // Loop over all of the predecessors of the tail recursion block.  For the
00748     // real entry into the function we seed the PHI with the initial value,
00749     // computed earlier.  For any other existing branches to this block (due to
00750     // other tail recursions eliminated) the accumulator is not modified.
00751     // Because we haven't added the branch in the current block to OldEntry yet,
00752     // it will not show up as a predecessor.
00753     for (pred_iterator PI = PB; PI != PE; ++PI) {
00754       BasicBlock *P = *PI;
00755       if (P == &F->getEntryBlock())
00756         AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P);
00757       else
00758         AccPN->addIncoming(AccPN, P);
00759     }
00760 
00761     if (AccRecInstr) {
00762       // Add an incoming argument for the current block, which is computed by
00763       // our associative and commutative accumulator instruction.
00764       AccPN->addIncoming(AccRecInstr, BB);
00765 
00766       // Next, rewrite the accumulator recursion instruction so that it does not
00767       // use the result of the call anymore, instead, use the PHI node we just
00768       // inserted.
00769       AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
00770     } else {
00771       // Add an incoming argument for the current block, which is just the
00772       // constant returned by the current return instruction.
00773       AccPN->addIncoming(Ret->getReturnValue(), BB);
00774     }
00775 
00776     // Finally, rewrite any return instructions in the program to return the PHI
00777     // node instead of the "initval" that they do currently.  This loop will
00778     // actually rewrite the return value we are destroying, but that's ok.
00779     for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
00780       if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
00781         RI->setOperand(0, AccPN);
00782     ++NumAccumAdded;
00783   }
00784 
00785   // Now that all of the PHI nodes are in place, remove the call and
00786   // ret instructions, replacing them with an unconditional branch.
00787   BranchInst *NewBI = BranchInst::Create(OldEntry, Ret);
00788   NewBI->setDebugLoc(CI->getDebugLoc());
00789 
00790   BB->getInstList().erase(Ret);  // Remove return.
00791   BB->getInstList().erase(CI);   // Remove call.
00792   ++NumEliminated;
00793   return true;
00794 }
00795 
00796 bool TailCallElim::FoldReturnAndProcessPred(BasicBlock *BB,
00797                                        ReturnInst *Ret, BasicBlock *&OldEntry,
00798                                        bool &TailCallsAreMarkedTail,
00799                                        SmallVectorImpl<PHINode *> &ArgumentPHIs,
00800                                        bool CannotTailCallElimCallsMarkedTail) {
00801   bool Change = false;
00802 
00803   // If the return block contains nothing but the return and PHI's,
00804   // there might be an opportunity to duplicate the return in its
00805   // predecessors and perform TRC there. Look for predecessors that end
00806   // in unconditional branch and recursive call(s).
00807   SmallVector<BranchInst*, 8> UncondBranchPreds;
00808   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
00809     BasicBlock *Pred = *PI;
00810     TerminatorInst *PTI = Pred->getTerminator();
00811     if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
00812       if (BI->isUnconditional())
00813         UncondBranchPreds.push_back(BI);
00814   }
00815 
00816   while (!UncondBranchPreds.empty()) {
00817     BranchInst *BI = UncondBranchPreds.pop_back_val();
00818     BasicBlock *Pred = BI->getParent();
00819     if (CallInst *CI = FindTRECandidate(BI, CannotTailCallElimCallsMarkedTail)){
00820       DEBUG(dbgs() << "FOLDING: " << *BB
00821             << "INTO UNCOND BRANCH PRED: " << *Pred);
00822       EliminateRecursiveTailCall(CI, FoldReturnIntoUncondBranch(Ret, BB, Pred),
00823                                  OldEntry, TailCallsAreMarkedTail, ArgumentPHIs,
00824                                  CannotTailCallElimCallsMarkedTail);
00825       ++NumRetDuped;
00826       Change = true;
00827     }
00828   }
00829 
00830   return Change;
00831 }
00832 
00833 bool
00834 TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry,
00835                                     bool &TailCallsAreMarkedTail,
00836                                     SmallVectorImpl<PHINode *> &ArgumentPHIs,
00837                                     bool CannotTailCallElimCallsMarkedTail) {
00838   CallInst *CI = FindTRECandidate(Ret, CannotTailCallElimCallsMarkedTail);
00839   if (!CI)
00840     return false;
00841 
00842   return EliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail,
00843                                     ArgumentPHIs,
00844                                     CannotTailCallElimCallsMarkedTail);
00845 }