LLVM API Documentation
00001 //===-- ThreadSanitizer.cpp - race detector -------------------------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file is a part of ThreadSanitizer, a race detector. 00011 // 00012 // The tool is under development, for the details about previous versions see 00013 // http://code.google.com/p/data-race-test 00014 // 00015 // The instrumentation phase is quite simple: 00016 // - Insert calls to run-time library before every memory access. 00017 // - Optimizations may apply to avoid instrumenting some of the accesses. 00018 // - Insert calls at function entry/exit. 00019 // The rest is handled by the run-time library. 00020 //===----------------------------------------------------------------------===// 00021 00022 #include "llvm/Transforms/Instrumentation.h" 00023 #include "llvm/ADT/SmallSet.h" 00024 #include "llvm/ADT/SmallString.h" 00025 #include "llvm/ADT/SmallVector.h" 00026 #include "llvm/ADT/Statistic.h" 00027 #include "llvm/ADT/StringExtras.h" 00028 #include "llvm/IR/DataLayout.h" 00029 #include "llvm/IR/Function.h" 00030 #include "llvm/IR/IRBuilder.h" 00031 #include "llvm/IR/IntrinsicInst.h" 00032 #include "llvm/IR/Intrinsics.h" 00033 #include "llvm/IR/LLVMContext.h" 00034 #include "llvm/IR/Metadata.h" 00035 #include "llvm/IR/Module.h" 00036 #include "llvm/IR/Type.h" 00037 #include "llvm/Support/CommandLine.h" 00038 #include "llvm/Support/Debug.h" 00039 #include "llvm/Support/MathExtras.h" 00040 #include "llvm/Support/raw_ostream.h" 00041 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 00042 #include "llvm/Transforms/Utils/ModuleUtils.h" 00043 00044 using namespace llvm; 00045 00046 #define DEBUG_TYPE "tsan" 00047 00048 static cl::opt<bool> ClInstrumentMemoryAccesses( 00049 "tsan-instrument-memory-accesses", cl::init(true), 00050 cl::desc("Instrument memory accesses"), cl::Hidden); 00051 static cl::opt<bool> ClInstrumentFuncEntryExit( 00052 "tsan-instrument-func-entry-exit", cl::init(true), 00053 cl::desc("Instrument function entry and exit"), cl::Hidden); 00054 static cl::opt<bool> ClInstrumentAtomics( 00055 "tsan-instrument-atomics", cl::init(true), 00056 cl::desc("Instrument atomics"), cl::Hidden); 00057 static cl::opt<bool> ClInstrumentMemIntrinsics( 00058 "tsan-instrument-memintrinsics", cl::init(true), 00059 cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden); 00060 00061 STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); 00062 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); 00063 STATISTIC(NumOmittedReadsBeforeWrite, 00064 "Number of reads ignored due to following writes"); 00065 STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size"); 00066 STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes"); 00067 STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads"); 00068 STATISTIC(NumOmittedReadsFromConstantGlobals, 00069 "Number of reads from constant globals"); 00070 STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads"); 00071 00072 namespace { 00073 00074 /// ThreadSanitizer: instrument the code in module to find races. 00075 struct ThreadSanitizer : public FunctionPass { 00076 ThreadSanitizer() : FunctionPass(ID), DL(nullptr) {} 00077 const char *getPassName() const override; 00078 bool runOnFunction(Function &F) override; 00079 bool doInitialization(Module &M) override; 00080 static char ID; // Pass identification, replacement for typeid. 00081 00082 private: 00083 void initializeCallbacks(Module &M); 00084 bool instrumentLoadOrStore(Instruction *I); 00085 bool instrumentAtomic(Instruction *I); 00086 bool instrumentMemIntrinsic(Instruction *I); 00087 void chooseInstructionsToInstrument(SmallVectorImpl<Instruction*> &Local, 00088 SmallVectorImpl<Instruction*> &All); 00089 bool addrPointsToConstantData(Value *Addr); 00090 int getMemoryAccessFuncIndex(Value *Addr); 00091 00092 const DataLayout *DL; 00093 Type *IntptrTy; 00094 IntegerType *OrdTy; 00095 // Callbacks to run-time library are computed in doInitialization. 00096 Function *TsanFuncEntry; 00097 Function *TsanFuncExit; 00098 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 00099 static const size_t kNumberOfAccessSizes = 5; 00100 Function *TsanRead[kNumberOfAccessSizes]; 00101 Function *TsanWrite[kNumberOfAccessSizes]; 00102 Function *TsanAtomicLoad[kNumberOfAccessSizes]; 00103 Function *TsanAtomicStore[kNumberOfAccessSizes]; 00104 Function *TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1][kNumberOfAccessSizes]; 00105 Function *TsanAtomicCAS[kNumberOfAccessSizes]; 00106 Function *TsanAtomicThreadFence; 00107 Function *TsanAtomicSignalFence; 00108 Function *TsanVptrUpdate; 00109 Function *TsanVptrLoad; 00110 Function *MemmoveFn, *MemcpyFn, *MemsetFn; 00111 }; 00112 } // namespace 00113 00114 char ThreadSanitizer::ID = 0; 00115 INITIALIZE_PASS(ThreadSanitizer, "tsan", 00116 "ThreadSanitizer: detects data races.", 00117 false, false) 00118 00119 const char *ThreadSanitizer::getPassName() const { 00120 return "ThreadSanitizer"; 00121 } 00122 00123 FunctionPass *llvm::createThreadSanitizerPass() { 00124 return new ThreadSanitizer(); 00125 } 00126 00127 static Function *checkInterfaceFunction(Constant *FuncOrBitcast) { 00128 if (Function *F = dyn_cast<Function>(FuncOrBitcast)) 00129 return F; 00130 FuncOrBitcast->dump(); 00131 report_fatal_error("ThreadSanitizer interface function redefined"); 00132 } 00133 00134 void ThreadSanitizer::initializeCallbacks(Module &M) { 00135 IRBuilder<> IRB(M.getContext()); 00136 // Initialize the callbacks. 00137 TsanFuncEntry = checkInterfaceFunction(M.getOrInsertFunction( 00138 "__tsan_func_entry", IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL)); 00139 TsanFuncExit = checkInterfaceFunction(M.getOrInsertFunction( 00140 "__tsan_func_exit", IRB.getVoidTy(), NULL)); 00141 OrdTy = IRB.getInt32Ty(); 00142 for (size_t i = 0; i < kNumberOfAccessSizes; ++i) { 00143 const size_t ByteSize = 1 << i; 00144 const size_t BitSize = ByteSize * 8; 00145 SmallString<32> ReadName("__tsan_read" + itostr(ByteSize)); 00146 TsanRead[i] = checkInterfaceFunction(M.getOrInsertFunction( 00147 ReadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL)); 00148 00149 SmallString<32> WriteName("__tsan_write" + itostr(ByteSize)); 00150 TsanWrite[i] = checkInterfaceFunction(M.getOrInsertFunction( 00151 WriteName, IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL)); 00152 00153 Type *Ty = Type::getIntNTy(M.getContext(), BitSize); 00154 Type *PtrTy = Ty->getPointerTo(); 00155 SmallString<32> AtomicLoadName("__tsan_atomic" + itostr(BitSize) + 00156 "_load"); 00157 TsanAtomicLoad[i] = checkInterfaceFunction(M.getOrInsertFunction( 00158 AtomicLoadName, Ty, PtrTy, OrdTy, NULL)); 00159 00160 SmallString<32> AtomicStoreName("__tsan_atomic" + itostr(BitSize) + 00161 "_store"); 00162 TsanAtomicStore[i] = checkInterfaceFunction(M.getOrInsertFunction( 00163 AtomicStoreName, IRB.getVoidTy(), PtrTy, Ty, OrdTy, 00164 NULL)); 00165 00166 for (int op = AtomicRMWInst::FIRST_BINOP; 00167 op <= AtomicRMWInst::LAST_BINOP; ++op) { 00168 TsanAtomicRMW[op][i] = nullptr; 00169 const char *NamePart = nullptr; 00170 if (op == AtomicRMWInst::Xchg) 00171 NamePart = "_exchange"; 00172 else if (op == AtomicRMWInst::Add) 00173 NamePart = "_fetch_add"; 00174 else if (op == AtomicRMWInst::Sub) 00175 NamePart = "_fetch_sub"; 00176 else if (op == AtomicRMWInst::And) 00177 NamePart = "_fetch_and"; 00178 else if (op == AtomicRMWInst::Or) 00179 NamePart = "_fetch_or"; 00180 else if (op == AtomicRMWInst::Xor) 00181 NamePart = "_fetch_xor"; 00182 else if (op == AtomicRMWInst::Nand) 00183 NamePart = "_fetch_nand"; 00184 else 00185 continue; 00186 SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart); 00187 TsanAtomicRMW[op][i] = checkInterfaceFunction(M.getOrInsertFunction( 00188 RMWName, Ty, PtrTy, Ty, OrdTy, NULL)); 00189 } 00190 00191 SmallString<32> AtomicCASName("__tsan_atomic" + itostr(BitSize) + 00192 "_compare_exchange_val"); 00193 TsanAtomicCAS[i] = checkInterfaceFunction(M.getOrInsertFunction( 00194 AtomicCASName, Ty, PtrTy, Ty, Ty, OrdTy, OrdTy, NULL)); 00195 } 00196 TsanVptrUpdate = checkInterfaceFunction(M.getOrInsertFunction( 00197 "__tsan_vptr_update", IRB.getVoidTy(), IRB.getInt8PtrTy(), 00198 IRB.getInt8PtrTy(), NULL)); 00199 TsanVptrLoad = checkInterfaceFunction(M.getOrInsertFunction( 00200 "__tsan_vptr_read", IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL)); 00201 TsanAtomicThreadFence = checkInterfaceFunction(M.getOrInsertFunction( 00202 "__tsan_atomic_thread_fence", IRB.getVoidTy(), OrdTy, NULL)); 00203 TsanAtomicSignalFence = checkInterfaceFunction(M.getOrInsertFunction( 00204 "__tsan_atomic_signal_fence", IRB.getVoidTy(), OrdTy, NULL)); 00205 00206 MemmoveFn = checkInterfaceFunction(M.getOrInsertFunction( 00207 "memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 00208 IRB.getInt8PtrTy(), IntptrTy, NULL)); 00209 MemcpyFn = checkInterfaceFunction(M.getOrInsertFunction( 00210 "memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), 00211 IntptrTy, NULL)); 00212 MemsetFn = checkInterfaceFunction(M.getOrInsertFunction( 00213 "memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), 00214 IntptrTy, NULL)); 00215 } 00216 00217 bool ThreadSanitizer::doInitialization(Module &M) { 00218 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 00219 if (!DLP) 00220 report_fatal_error("data layout missing"); 00221 DL = &DLP->getDataLayout(); 00222 00223 // Always insert a call to __tsan_init into the module's CTORs. 00224 IRBuilder<> IRB(M.getContext()); 00225 IntptrTy = IRB.getIntPtrTy(DL); 00226 Value *TsanInit = M.getOrInsertFunction("__tsan_init", 00227 IRB.getVoidTy(), NULL); 00228 appendToGlobalCtors(M, cast<Function>(TsanInit), 0); 00229 00230 return true; 00231 } 00232 00233 static bool isVtableAccess(Instruction *I) { 00234 if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa)) 00235 return Tag->isTBAAVtableAccess(); 00236 return false; 00237 } 00238 00239 bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) { 00240 // If this is a GEP, just analyze its pointer operand. 00241 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) 00242 Addr = GEP->getPointerOperand(); 00243 00244 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 00245 if (GV->isConstant()) { 00246 // Reads from constant globals can not race with any writes. 00247 NumOmittedReadsFromConstantGlobals++; 00248 return true; 00249 } 00250 } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) { 00251 if (isVtableAccess(L)) { 00252 // Reads from a vtable pointer can not race with any writes. 00253 NumOmittedReadsFromVtable++; 00254 return true; 00255 } 00256 } 00257 return false; 00258 } 00259 00260 // Instrumenting some of the accesses may be proven redundant. 00261 // Currently handled: 00262 // - read-before-write (within same BB, no calls between) 00263 // 00264 // We do not handle some of the patterns that should not survive 00265 // after the classic compiler optimizations. 00266 // E.g. two reads from the same temp should be eliminated by CSE, 00267 // two writes should be eliminated by DSE, etc. 00268 // 00269 // 'Local' is a vector of insns within the same BB (no calls between). 00270 // 'All' is a vector of insns that will be instrumented. 00271 void ThreadSanitizer::chooseInstructionsToInstrument( 00272 SmallVectorImpl<Instruction*> &Local, 00273 SmallVectorImpl<Instruction*> &All) { 00274 SmallSet<Value*, 8> WriteTargets; 00275 // Iterate from the end. 00276 for (SmallVectorImpl<Instruction*>::reverse_iterator It = Local.rbegin(), 00277 E = Local.rend(); It != E; ++It) { 00278 Instruction *I = *It; 00279 if (StoreInst *Store = dyn_cast<StoreInst>(I)) { 00280 WriteTargets.insert(Store->getPointerOperand()); 00281 } else { 00282 LoadInst *Load = cast<LoadInst>(I); 00283 Value *Addr = Load->getPointerOperand(); 00284 if (WriteTargets.count(Addr)) { 00285 // We will write to this temp, so no reason to analyze the read. 00286 NumOmittedReadsBeforeWrite++; 00287 continue; 00288 } 00289 if (addrPointsToConstantData(Addr)) { 00290 // Addr points to some constant data -- it can not race with any writes. 00291 continue; 00292 } 00293 } 00294 All.push_back(I); 00295 } 00296 Local.clear(); 00297 } 00298 00299 static bool isAtomic(Instruction *I) { 00300 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 00301 return LI->isAtomic() && LI->getSynchScope() == CrossThread; 00302 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 00303 return SI->isAtomic() && SI->getSynchScope() == CrossThread; 00304 if (isa<AtomicRMWInst>(I)) 00305 return true; 00306 if (isa<AtomicCmpXchgInst>(I)) 00307 return true; 00308 if (isa<FenceInst>(I)) 00309 return true; 00310 return false; 00311 } 00312 00313 bool ThreadSanitizer::runOnFunction(Function &F) { 00314 if (!DL) return false; 00315 initializeCallbacks(*F.getParent()); 00316 SmallVector<Instruction*, 8> RetVec; 00317 SmallVector<Instruction*, 8> AllLoadsAndStores; 00318 SmallVector<Instruction*, 8> LocalLoadsAndStores; 00319 SmallVector<Instruction*, 8> AtomicAccesses; 00320 SmallVector<Instruction*, 8> MemIntrinCalls; 00321 bool Res = false; 00322 bool HasCalls = false; 00323 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread); 00324 00325 // Traverse all instructions, collect loads/stores/returns, check for calls. 00326 for (auto &BB : F) { 00327 for (auto &Inst : BB) { 00328 if (isAtomic(&Inst)) 00329 AtomicAccesses.push_back(&Inst); 00330 else if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst)) 00331 LocalLoadsAndStores.push_back(&Inst); 00332 else if (isa<ReturnInst>(Inst)) 00333 RetVec.push_back(&Inst); 00334 else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) { 00335 if (isa<MemIntrinsic>(Inst)) 00336 MemIntrinCalls.push_back(&Inst); 00337 HasCalls = true; 00338 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores); 00339 } 00340 } 00341 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores); 00342 } 00343 00344 // We have collected all loads and stores. 00345 // FIXME: many of these accesses do not need to be checked for races 00346 // (e.g. variables that do not escape, etc). 00347 00348 // Instrument memory accesses only if we want to report bugs in the function. 00349 if (ClInstrumentMemoryAccesses && SanitizeFunction) 00350 for (auto Inst : AllLoadsAndStores) { 00351 Res |= instrumentLoadOrStore(Inst); 00352 } 00353 00354 // Instrument atomic memory accesses in any case (they can be used to 00355 // implement synchronization). 00356 if (ClInstrumentAtomics) 00357 for (auto Inst : AtomicAccesses) { 00358 Res |= instrumentAtomic(Inst); 00359 } 00360 00361 if (ClInstrumentMemIntrinsics && SanitizeFunction) 00362 for (auto Inst : MemIntrinCalls) { 00363 Res |= instrumentMemIntrinsic(Inst); 00364 } 00365 00366 // Instrument function entry/exit points if there were instrumented accesses. 00367 if ((Res || HasCalls) && ClInstrumentFuncEntryExit) { 00368 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); 00369 Value *ReturnAddress = IRB.CreateCall( 00370 Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress), 00371 IRB.getInt32(0)); 00372 IRB.CreateCall(TsanFuncEntry, ReturnAddress); 00373 for (auto RetInst : RetVec) { 00374 IRBuilder<> IRBRet(RetInst); 00375 IRBRet.CreateCall(TsanFuncExit); 00376 } 00377 Res = true; 00378 } 00379 return Res; 00380 } 00381 00382 bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I) { 00383 IRBuilder<> IRB(I); 00384 bool IsWrite = isa<StoreInst>(*I); 00385 Value *Addr = IsWrite 00386 ? cast<StoreInst>(I)->getPointerOperand() 00387 : cast<LoadInst>(I)->getPointerOperand(); 00388 int Idx = getMemoryAccessFuncIndex(Addr); 00389 if (Idx < 0) 00390 return false; 00391 if (IsWrite && isVtableAccess(I)) { 00392 DEBUG(dbgs() << " VPTR : " << *I << "\n"); 00393 Value *StoredValue = cast<StoreInst>(I)->getValueOperand(); 00394 // StoredValue may be a vector type if we are storing several vptrs at once. 00395 // In this case, just take the first element of the vector since this is 00396 // enough to find vptr races. 00397 if (isa<VectorType>(StoredValue->getType())) 00398 StoredValue = IRB.CreateExtractElement( 00399 StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0)); 00400 if (StoredValue->getType()->isIntegerTy()) 00401 StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy()); 00402 // Call TsanVptrUpdate. 00403 IRB.CreateCall2(TsanVptrUpdate, 00404 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 00405 IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy())); 00406 NumInstrumentedVtableWrites++; 00407 return true; 00408 } 00409 if (!IsWrite && isVtableAccess(I)) { 00410 IRB.CreateCall(TsanVptrLoad, 00411 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy())); 00412 NumInstrumentedVtableReads++; 00413 return true; 00414 } 00415 Value *OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx]; 00416 IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy())); 00417 if (IsWrite) NumInstrumentedWrites++; 00418 else NumInstrumentedReads++; 00419 return true; 00420 } 00421 00422 static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) { 00423 uint32_t v = 0; 00424 switch (ord) { 00425 case NotAtomic: assert(false); 00426 case Unordered: // Fall-through. 00427 case Monotonic: v = 0; break; 00428 // case Consume: v = 1; break; // Not specified yet. 00429 case Acquire: v = 2; break; 00430 case Release: v = 3; break; 00431 case AcquireRelease: v = 4; break; 00432 case SequentiallyConsistent: v = 5; break; 00433 } 00434 return IRB->getInt32(v); 00435 } 00436 00437 // If a memset intrinsic gets inlined by the code gen, we will miss races on it. 00438 // So, we either need to ensure the intrinsic is not inlined, or instrument it. 00439 // We do not instrument memset/memmove/memcpy intrinsics (too complicated), 00440 // instead we simply replace them with regular function calls, which are then 00441 // intercepted by the run-time. 00442 // Since tsan is running after everyone else, the calls should not be 00443 // replaced back with intrinsics. If that becomes wrong at some point, 00444 // we will need to call e.g. __tsan_memset to avoid the intrinsics. 00445 bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) { 00446 IRBuilder<> IRB(I); 00447 if (MemSetInst *M = dyn_cast<MemSetInst>(I)) { 00448 IRB.CreateCall3(MemsetFn, 00449 IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()), 00450 IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false), 00451 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)); 00452 I->eraseFromParent(); 00453 } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) { 00454 IRB.CreateCall3(isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn, 00455 IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()), 00456 IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()), 00457 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)); 00458 I->eraseFromParent(); 00459 } 00460 return false; 00461 } 00462 00463 // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x 00464 // standards. For background see C++11 standard. A slightly older, publicly 00465 // available draft of the standard (not entirely up-to-date, but close enough 00466 // for casual browsing) is available here: 00467 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf 00468 // The following page contains more background information: 00469 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/ 00470 00471 bool ThreadSanitizer::instrumentAtomic(Instruction *I) { 00472 IRBuilder<> IRB(I); 00473 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 00474 Value *Addr = LI->getPointerOperand(); 00475 int Idx = getMemoryAccessFuncIndex(Addr); 00476 if (Idx < 0) 00477 return false; 00478 const size_t ByteSize = 1 << Idx; 00479 const size_t BitSize = ByteSize * 8; 00480 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 00481 Type *PtrTy = Ty->getPointerTo(); 00482 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 00483 createOrdering(&IRB, LI->getOrdering())}; 00484 CallInst *C = CallInst::Create(TsanAtomicLoad[Idx], Args); 00485 ReplaceInstWithInst(I, C); 00486 00487 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 00488 Value *Addr = SI->getPointerOperand(); 00489 int Idx = getMemoryAccessFuncIndex(Addr); 00490 if (Idx < 0) 00491 return false; 00492 const size_t ByteSize = 1 << Idx; 00493 const size_t BitSize = ByteSize * 8; 00494 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 00495 Type *PtrTy = Ty->getPointerTo(); 00496 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 00497 IRB.CreateIntCast(SI->getValueOperand(), Ty, false), 00498 createOrdering(&IRB, SI->getOrdering())}; 00499 CallInst *C = CallInst::Create(TsanAtomicStore[Idx], Args); 00500 ReplaceInstWithInst(I, C); 00501 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) { 00502 Value *Addr = RMWI->getPointerOperand(); 00503 int Idx = getMemoryAccessFuncIndex(Addr); 00504 if (Idx < 0) 00505 return false; 00506 Function *F = TsanAtomicRMW[RMWI->getOperation()][Idx]; 00507 if (!F) 00508 return false; 00509 const size_t ByteSize = 1 << Idx; 00510 const size_t BitSize = ByteSize * 8; 00511 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 00512 Type *PtrTy = Ty->getPointerTo(); 00513 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 00514 IRB.CreateIntCast(RMWI->getValOperand(), Ty, false), 00515 createOrdering(&IRB, RMWI->getOrdering())}; 00516 CallInst *C = CallInst::Create(F, Args); 00517 ReplaceInstWithInst(I, C); 00518 } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) { 00519 Value *Addr = CASI->getPointerOperand(); 00520 int Idx = getMemoryAccessFuncIndex(Addr); 00521 if (Idx < 0) 00522 return false; 00523 const size_t ByteSize = 1 << Idx; 00524 const size_t BitSize = ByteSize * 8; 00525 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); 00526 Type *PtrTy = Ty->getPointerTo(); 00527 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), 00528 IRB.CreateIntCast(CASI->getCompareOperand(), Ty, false), 00529 IRB.CreateIntCast(CASI->getNewValOperand(), Ty, false), 00530 createOrdering(&IRB, CASI->getSuccessOrdering()), 00531 createOrdering(&IRB, CASI->getFailureOrdering())}; 00532 CallInst *C = IRB.CreateCall(TsanAtomicCAS[Idx], Args); 00533 Value *Success = IRB.CreateICmpEQ(C, CASI->getCompareOperand()); 00534 00535 Value *Res = IRB.CreateInsertValue(UndefValue::get(CASI->getType()), C, 0); 00536 Res = IRB.CreateInsertValue(Res, Success, 1); 00537 00538 I->replaceAllUsesWith(Res); 00539 I->eraseFromParent(); 00540 } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) { 00541 Value *Args[] = {createOrdering(&IRB, FI->getOrdering())}; 00542 Function *F = FI->getSynchScope() == SingleThread ? 00543 TsanAtomicSignalFence : TsanAtomicThreadFence; 00544 CallInst *C = CallInst::Create(F, Args); 00545 ReplaceInstWithInst(I, C); 00546 } 00547 return true; 00548 } 00549 00550 int ThreadSanitizer::getMemoryAccessFuncIndex(Value *Addr) { 00551 Type *OrigPtrTy = Addr->getType(); 00552 Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType(); 00553 assert(OrigTy->isSized()); 00554 uint32_t TypeSize = DL->getTypeStoreSizeInBits(OrigTy); 00555 if (TypeSize != 8 && TypeSize != 16 && 00556 TypeSize != 32 && TypeSize != 64 && TypeSize != 128) { 00557 NumAccessesWithBadSize++; 00558 // Ignore all unusual sizes. 00559 return -1; 00560 } 00561 size_t Idx = countTrailingZeros(TypeSize / 8); 00562 assert(Idx < kNumberOfAccessSizes); 00563 return Idx; 00564 }