LLVM API Documentation

TinyPtrVector.h
Go to the documentation of this file.
00001 //===- llvm/ADT/TinyPtrVector.h - 'Normally tiny' vectors -------*- C++ -*-===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 
00010 #ifndef LLVM_ADT_TINYPTRVECTOR_H
00011 #define LLVM_ADT_TINYPTRVECTOR_H
00012 
00013 #include "llvm/ADT/ArrayRef.h"
00014 #include "llvm/ADT/PointerUnion.h"
00015 #include "llvm/ADT/SmallVector.h"
00016 
00017 namespace llvm {
00018   
00019 /// TinyPtrVector - This class is specialized for cases where there are
00020 /// normally 0 or 1 element in a vector, but is general enough to go beyond that
00021 /// when required.
00022 ///
00023 /// NOTE: This container doesn't allow you to store a null pointer into it.
00024 ///
00025 template <typename EltTy>
00026 class TinyPtrVector {
00027 public:
00028   typedef llvm::SmallVector<EltTy, 4> VecTy;
00029   typedef typename VecTy::value_type value_type;
00030 
00031   llvm::PointerUnion<EltTy, VecTy*> Val;
00032 
00033   TinyPtrVector() {}
00034   ~TinyPtrVector() {
00035     if (VecTy *V = Val.template dyn_cast<VecTy*>())
00036       delete V;
00037   }
00038 
00039   TinyPtrVector(const TinyPtrVector &RHS) : Val(RHS.Val) {
00040     if (VecTy *V = Val.template dyn_cast<VecTy*>())
00041       Val = new VecTy(*V);
00042   }
00043   TinyPtrVector &operator=(const TinyPtrVector &RHS) {
00044     if (this == &RHS)
00045       return *this;
00046     if (RHS.empty()) {
00047       this->clear();
00048       return *this;
00049     }
00050 
00051     // Try to squeeze into the single slot. If it won't fit, allocate a copied
00052     // vector.
00053     if (Val.template is<EltTy>()) {
00054       if (RHS.size() == 1)
00055         Val = RHS.front();
00056       else
00057         Val = new VecTy(*RHS.Val.template get<VecTy*>());
00058       return *this;
00059     }
00060 
00061     // If we have a full vector allocated, try to re-use it.
00062     if (RHS.Val.template is<EltTy>()) {
00063       Val.template get<VecTy*>()->clear();
00064       Val.template get<VecTy*>()->push_back(RHS.front());
00065     } else {
00066       *Val.template get<VecTy*>() = *RHS.Val.template get<VecTy*>();
00067     }
00068     return *this;
00069   }
00070 
00071   TinyPtrVector(TinyPtrVector &&RHS) : Val(RHS.Val) {
00072     RHS.Val = (EltTy)nullptr;
00073   }
00074   TinyPtrVector &operator=(TinyPtrVector &&RHS) {
00075     if (this == &RHS)
00076       return *this;
00077     if (RHS.empty()) {
00078       this->clear();
00079       return *this;
00080     }
00081 
00082     // If this vector has been allocated on the heap, re-use it if cheap. If it
00083     // would require more copying, just delete it and we'll steal the other
00084     // side.
00085     if (VecTy *V = Val.template dyn_cast<VecTy*>()) {
00086       if (RHS.Val.template is<EltTy>()) {
00087         V->clear();
00088         V->push_back(RHS.front());
00089         return *this;
00090       }
00091       delete V;
00092     }
00093 
00094     Val = RHS.Val;
00095     RHS.Val = (EltTy)nullptr;
00096     return *this;
00097   }
00098 
00099   // implicit conversion operator to ArrayRef.
00100   operator ArrayRef<EltTy>() const {
00101     if (Val.isNull())
00102       return None;
00103     if (Val.template is<EltTy>())
00104       return *Val.getAddrOfPtr1();
00105     return *Val.template get<VecTy*>();
00106   }
00107 
00108   bool empty() const {
00109     // This vector can be empty if it contains no element, or if it
00110     // contains a pointer to an empty vector.
00111     if (Val.isNull()) return true;
00112     if (VecTy *Vec = Val.template dyn_cast<VecTy*>())
00113       return Vec->empty();
00114     return false;
00115   }
00116 
00117   unsigned size() const {
00118     if (empty())
00119       return 0;
00120     if (Val.template is<EltTy>())
00121       return 1;
00122     return Val.template get<VecTy*>()->size();
00123   }
00124 
00125   typedef const EltTy *const_iterator;
00126   typedef EltTy *iterator;
00127 
00128   iterator begin() {
00129     if (Val.template is<EltTy>())
00130       return Val.getAddrOfPtr1();
00131 
00132     return Val.template get<VecTy *>()->begin();
00133 
00134   }
00135   iterator end() {
00136     if (Val.template is<EltTy>())
00137       return begin() + (Val.isNull() ? 0 : 1);
00138 
00139     return Val.template get<VecTy *>()->end();
00140   }
00141 
00142   const_iterator begin() const {
00143     return (const_iterator)const_cast<TinyPtrVector*>(this)->begin();
00144   }
00145 
00146   const_iterator end() const {
00147     return (const_iterator)const_cast<TinyPtrVector*>(this)->end();
00148   }
00149 
00150   EltTy operator[](unsigned i) const {
00151     assert(!Val.isNull() && "can't index into an empty vector");
00152     if (EltTy V = Val.template dyn_cast<EltTy>()) {
00153       assert(i == 0 && "tinyvector index out of range");
00154       return V;
00155     }
00156 
00157     assert(i < Val.template get<VecTy*>()->size() &&
00158            "tinyvector index out of range");
00159     return (*Val.template get<VecTy*>())[i];
00160   }
00161 
00162   EltTy front() const {
00163     assert(!empty() && "vector empty");
00164     if (EltTy V = Val.template dyn_cast<EltTy>())
00165       return V;
00166     return Val.template get<VecTy*>()->front();
00167   }
00168 
00169   EltTy back() const {
00170     assert(!empty() && "vector empty");
00171     if (EltTy V = Val.template dyn_cast<EltTy>())
00172       return V;
00173     return Val.template get<VecTy*>()->back();
00174   }
00175 
00176   void push_back(EltTy NewVal) {
00177     assert(NewVal && "Can't add a null value");
00178 
00179     // If we have nothing, add something.
00180     if (Val.isNull()) {
00181       Val = NewVal;
00182       return;
00183     }
00184 
00185     // If we have a single value, convert to a vector.
00186     if (EltTy V = Val.template dyn_cast<EltTy>()) {
00187       Val = new VecTy();
00188       Val.template get<VecTy*>()->push_back(V);
00189     }
00190 
00191     // Add the new value, we know we have a vector.
00192     Val.template get<VecTy*>()->push_back(NewVal);
00193   }
00194 
00195   void pop_back() {
00196     // If we have a single value, convert to empty.
00197     if (Val.template is<EltTy>())
00198       Val = (EltTy)nullptr;
00199     else if (VecTy *Vec = Val.template get<VecTy*>())
00200       Vec->pop_back();
00201   }
00202 
00203   void clear() {
00204     // If we have a single value, convert to empty.
00205     if (Val.template is<EltTy>()) {
00206       Val = (EltTy)nullptr;
00207     } else if (VecTy *Vec = Val.template dyn_cast<VecTy*>()) {
00208       // If we have a vector form, just clear it.
00209       Vec->clear();
00210     }
00211     // Otherwise, we're already empty.
00212   }
00213 
00214   iterator erase(iterator I) {
00215     assert(I >= begin() && "Iterator to erase is out of bounds.");
00216     assert(I < end() && "Erasing at past-the-end iterator.");
00217 
00218     // If we have a single value, convert to empty.
00219     if (Val.template is<EltTy>()) {
00220       if (I == begin())
00221         Val = (EltTy)nullptr;
00222     } else if (VecTy *Vec = Val.template dyn_cast<VecTy*>()) {
00223       // multiple items in a vector; just do the erase, there is no
00224       // benefit to collapsing back to a pointer
00225       return Vec->erase(I);
00226     }
00227     return end();
00228   }
00229 
00230   iterator erase(iterator S, iterator E) {
00231     assert(S >= begin() && "Range to erase is out of bounds.");
00232     assert(S <= E && "Trying to erase invalid range.");
00233     assert(E <= end() && "Trying to erase past the end.");
00234 
00235     if (Val.template is<EltTy>()) {
00236       if (S == begin() && S != E)
00237         Val = (EltTy)nullptr;
00238     } else if (VecTy *Vec = Val.template dyn_cast<VecTy*>()) {
00239       return Vec->erase(S, E);
00240     }
00241     return end();
00242   }
00243 
00244   iterator insert(iterator I, const EltTy &Elt) {
00245     assert(I >= this->begin() && "Insertion iterator is out of bounds.");
00246     assert(I <= this->end() && "Inserting past the end of the vector.");
00247     if (I == end()) {
00248       push_back(Elt);
00249       return std::prev(end());
00250     }
00251     assert(!Val.isNull() && "Null value with non-end insert iterator.");
00252     if (EltTy V = Val.template dyn_cast<EltTy>()) {
00253       assert(I == begin());
00254       Val = Elt;
00255       push_back(V);
00256       return begin();
00257     }
00258 
00259     return Val.template get<VecTy*>()->insert(I, Elt);
00260   }
00261 
00262   template<typename ItTy>
00263   iterator insert(iterator I, ItTy From, ItTy To) {
00264     assert(I >= this->begin() && "Insertion iterator is out of bounds.");
00265     assert(I <= this->end() && "Inserting past the end of the vector.");
00266     if (From == To)
00267       return I;
00268 
00269     // If we have a single value, convert to a vector.
00270     ptrdiff_t Offset = I - begin();
00271     if (Val.isNull()) {
00272       if (std::next(From) == To) {
00273         Val = *From;
00274         return begin();
00275       }
00276 
00277       Val = new VecTy();
00278     } else if (EltTy V = Val.template dyn_cast<EltTy>()) {
00279       Val = new VecTy();
00280       Val.template get<VecTy*>()->push_back(V);
00281     }
00282     return Val.template get<VecTy*>()->insert(begin() + Offset, From, To);
00283   }
00284 };
00285 } // end namespace llvm
00286 
00287 #endif