LLVM API Documentation

X86IntelInstPrinter.cpp
Go to the documentation of this file.
00001 //===-- X86IntelInstPrinter.cpp - Intel assembly instruction printing -----===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This file includes code for rendering MCInst instances as Intel-style
00011 // assembly.
00012 //
00013 //===----------------------------------------------------------------------===//
00014 
00015 #include "X86IntelInstPrinter.h"
00016 #include "MCTargetDesc/X86BaseInfo.h"
00017 #include "MCTargetDesc/X86MCTargetDesc.h"
00018 #include "X86InstComments.h"
00019 #include "llvm/MC/MCExpr.h"
00020 #include "llvm/MC/MCInst.h"
00021 #include "llvm/MC/MCInstrInfo.h"
00022 #include "llvm/Support/ErrorHandling.h"
00023 #include "llvm/Support/FormattedStream.h"
00024 #include <cctype>
00025 using namespace llvm;
00026 
00027 #define DEBUG_TYPE "asm-printer"
00028 
00029 #include "X86GenAsmWriter1.inc"
00030 
00031 void X86IntelInstPrinter::printRegName(raw_ostream &OS, unsigned RegNo) const {
00032   OS << getRegisterName(RegNo);
00033 }
00034 
00035 void X86IntelInstPrinter::printInst(const MCInst *MI, raw_ostream &OS,
00036                                     StringRef Annot) {
00037   const MCInstrDesc &Desc = MII.get(MI->getOpcode());
00038   uint64_t TSFlags = Desc.TSFlags;
00039 
00040   if (TSFlags & X86II::LOCK)
00041     OS << "\tlock\n";
00042 
00043   printInstruction(MI, OS);
00044 
00045   // Next always print the annotation.
00046   printAnnotation(OS, Annot);
00047 
00048   // If verbose assembly is enabled, we can print some informative comments.
00049   if (CommentStream)
00050     EmitAnyX86InstComments(MI, *CommentStream, getRegisterName);
00051 }
00052 
00053 void X86IntelInstPrinter::printSSECC(const MCInst *MI, unsigned Op,
00054                                      raw_ostream &O) {
00055   int64_t Imm = MI->getOperand(Op).getImm() & 0xf;
00056   switch (Imm) {
00057   default: llvm_unreachable("Invalid ssecc argument!");
00058   case    0: O << "eq"; break;
00059   case    1: O << "lt"; break;
00060   case    2: O << "le"; break;
00061   case    3: O << "unord"; break;
00062   case    4: O << "neq"; break;
00063   case    5: O << "nlt"; break;
00064   case    6: O << "nle"; break;
00065   case    7: O << "ord"; break;
00066   case    8: O << "eq_uq"; break;
00067   case    9: O << "nge"; break;
00068   case  0xa: O << "ngt"; break;
00069   case  0xb: O << "false"; break;
00070   case  0xc: O << "neq_oq"; break;
00071   case  0xd: O << "ge"; break;
00072   case  0xe: O << "gt"; break;
00073   case  0xf: O << "true"; break;
00074   }
00075 }
00076 
00077 void X86IntelInstPrinter::printAVXCC(const MCInst *MI, unsigned Op,
00078                                      raw_ostream &O) {
00079   int64_t Imm = MI->getOperand(Op).getImm() & 0x1f;
00080   switch (Imm) {
00081   default: llvm_unreachable("Invalid avxcc argument!");
00082   case    0: O << "eq"; break;
00083   case    1: O << "lt"; break;
00084   case    2: O << "le"; break;
00085   case    3: O << "unord"; break;
00086   case    4: O << "neq"; break;
00087   case    5: O << "nlt"; break;
00088   case    6: O << "nle"; break;
00089   case    7: O << "ord"; break;
00090   case    8: O << "eq_uq"; break;
00091   case    9: O << "nge"; break;
00092   case  0xa: O << "ngt"; break;
00093   case  0xb: O << "false"; break;
00094   case  0xc: O << "neq_oq"; break;
00095   case  0xd: O << "ge"; break;
00096   case  0xe: O << "gt"; break;
00097   case  0xf: O << "true"; break;
00098   case 0x10: O << "eq_os"; break;
00099   case 0x11: O << "lt_oq"; break;
00100   case 0x12: O << "le_oq"; break;
00101   case 0x13: O << "unord_s"; break;
00102   case 0x14: O << "neq_us"; break;
00103   case 0x15: O << "nlt_uq"; break;
00104   case 0x16: O << "nle_uq"; break;
00105   case 0x17: O << "ord_s"; break;
00106   case 0x18: O << "eq_us"; break;
00107   case 0x19: O << "nge_uq"; break;
00108   case 0x1a: O << "ngt_uq"; break;
00109   case 0x1b: O << "false_os"; break;
00110   case 0x1c: O << "neq_os"; break;
00111   case 0x1d: O << "ge_oq"; break;
00112   case 0x1e: O << "gt_oq"; break;
00113   case 0x1f: O << "true_us"; break;
00114   }
00115 }
00116 
00117 void X86IntelInstPrinter::printRoundingControl(const MCInst *MI, unsigned Op,
00118                                    raw_ostream &O) {
00119   int64_t Imm = MI->getOperand(Op).getImm() & 0x3;
00120   switch (Imm) {
00121   case 0: O << "{rn-sae}"; break;
00122   case 1: O << "{rd-sae}"; break;
00123   case 2: O << "{ru-sae}"; break;
00124   case 3: O << "{rz-sae}"; break;
00125   }
00126 }
00127 
00128 /// printPCRelImm - This is used to print an immediate value that ends up
00129 /// being encoded as a pc-relative value.
00130 void X86IntelInstPrinter::printPCRelImm(const MCInst *MI, unsigned OpNo,
00131                                         raw_ostream &O) {
00132   const MCOperand &Op = MI->getOperand(OpNo);
00133   if (Op.isImm())
00134     O << formatImm(Op.getImm());
00135   else {
00136     assert(Op.isExpr() && "unknown pcrel immediate operand");
00137     // If a symbolic branch target was added as a constant expression then print
00138     // that address in hex.
00139     const MCConstantExpr *BranchTarget = dyn_cast<MCConstantExpr>(Op.getExpr());
00140     int64_t Address;
00141     if (BranchTarget && BranchTarget->EvaluateAsAbsolute(Address)) {
00142       O << formatHex((uint64_t)Address);
00143     }
00144     else {
00145       // Otherwise, just print the expression.
00146       O << *Op.getExpr();
00147     }
00148   }
00149 }
00150 
00151 void X86IntelInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
00152                                        raw_ostream &O) {
00153   const MCOperand &Op = MI->getOperand(OpNo);
00154   if (Op.isReg()) {
00155     printRegName(O, Op.getReg());
00156   } else if (Op.isImm()) {
00157     O << formatImm((int64_t)Op.getImm());
00158   } else {
00159     assert(Op.isExpr() && "unknown operand kind in printOperand");
00160     O << *Op.getExpr();
00161   }
00162 }
00163 
00164 void X86IntelInstPrinter::printMemReference(const MCInst *MI, unsigned Op,
00165                                             raw_ostream &O) {
00166   const MCOperand &BaseReg  = MI->getOperand(Op+X86::AddrBaseReg);
00167   unsigned ScaleVal         = MI->getOperand(Op+X86::AddrScaleAmt).getImm();
00168   const MCOperand &IndexReg = MI->getOperand(Op+X86::AddrIndexReg);
00169   const MCOperand &DispSpec = MI->getOperand(Op+X86::AddrDisp);
00170   const MCOperand &SegReg   = MI->getOperand(Op+X86::AddrSegmentReg);
00171   
00172   // If this has a segment register, print it.
00173   if (SegReg.getReg()) {
00174     printOperand(MI, Op+X86::AddrSegmentReg, O);
00175     O << ':';
00176   }
00177   
00178   O << '[';
00179   
00180   bool NeedPlus = false;
00181   if (BaseReg.getReg()) {
00182     printOperand(MI, Op+X86::AddrBaseReg, O);
00183     NeedPlus = true;
00184   }
00185   
00186   if (IndexReg.getReg()) {
00187     if (NeedPlus) O << " + ";
00188     if (ScaleVal != 1)
00189       O << ScaleVal << '*';
00190     printOperand(MI, Op+X86::AddrIndexReg, O);
00191     NeedPlus = true;
00192   }
00193 
00194   if (!DispSpec.isImm()) {
00195     if (NeedPlus) O << " + ";
00196     assert(DispSpec.isExpr() && "non-immediate displacement for LEA?");
00197     O << *DispSpec.getExpr();
00198   } else {
00199     int64_t DispVal = DispSpec.getImm();
00200     if (DispVal || (!IndexReg.getReg() && !BaseReg.getReg())) {
00201       if (NeedPlus) {
00202         if (DispVal > 0)
00203           O << " + ";
00204         else {
00205           O << " - ";
00206           DispVal = -DispVal;
00207         }
00208       }
00209       O << formatImm(DispVal);
00210     }
00211   }
00212   
00213   O << ']';
00214 }
00215 
00216 void X86IntelInstPrinter::printSrcIdx(const MCInst *MI, unsigned Op,
00217                                       raw_ostream &O) {
00218   const MCOperand &SegReg   = MI->getOperand(Op+1);
00219 
00220   // If this has a segment register, print it.
00221   if (SegReg.getReg()) {
00222     printOperand(MI, Op+1, O);
00223     O << ':';
00224   }
00225   O << '[';
00226   printOperand(MI, Op, O);
00227   O << ']';
00228 }
00229 
00230 void X86IntelInstPrinter::printDstIdx(const MCInst *MI, unsigned Op,
00231                                       raw_ostream &O) {
00232   // DI accesses are always ES-based.
00233   O << "es:[";
00234   printOperand(MI, Op, O);
00235   O << ']';
00236 }
00237 
00238 void X86IntelInstPrinter::printMemOffset(const MCInst *MI, unsigned Op,
00239                                          raw_ostream &O) {
00240   const MCOperand &DispSpec = MI->getOperand(Op);
00241   const MCOperand &SegReg   = MI->getOperand(Op+1);
00242 
00243   // If this has a segment register, print it.
00244   if (SegReg.getReg()) {
00245     printOperand(MI, Op+1, O);
00246     O << ':';
00247   }
00248 
00249   O << '[';
00250 
00251   if (DispSpec.isImm()) {
00252     O << formatImm(DispSpec.getImm());
00253   } else {
00254     assert(DispSpec.isExpr() && "non-immediate displacement?");
00255     O << *DispSpec.getExpr();
00256   }
00257 
00258   O << ']';
00259 }