LLVM API Documentation
00001 //===- ObjCARC.h - ObjC ARC Optimization --------------*- C++ -*-----------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 /// \file 00010 /// This file defines common definitions/declarations used by the ObjC ARC 00011 /// Optimizer. ARC stands for Automatic Reference Counting and is a system for 00012 /// managing reference counts for objects in Objective C. 00013 /// 00014 /// WARNING: This file knows about certain library functions. It recognizes them 00015 /// by name, and hardwires knowledge of their semantics. 00016 /// 00017 /// WARNING: This file knows about how certain Objective-C library functions are 00018 /// used. Naive LLVM IR transformations which would otherwise be 00019 /// behavior-preserving may break these assumptions. 00020 /// 00021 //===----------------------------------------------------------------------===// 00022 00023 #ifndef LLVM_LIB_TRANSFORMS_OBJCARC_OBJCARC_H 00024 #define LLVM_LIB_TRANSFORMS_OBJCARC_OBJCARC_H 00025 00026 #include "llvm/ADT/StringSwitch.h" 00027 #include "llvm/Analysis/AliasAnalysis.h" 00028 #include "llvm/Analysis/Passes.h" 00029 #include "llvm/Analysis/ValueTracking.h" 00030 #include "llvm/IR/CallSite.h" 00031 #include "llvm/IR/InstIterator.h" 00032 #include "llvm/IR/Module.h" 00033 #include "llvm/Pass.h" 00034 #include "llvm/Transforms/ObjCARC.h" 00035 #include "llvm/Transforms/Utils/Local.h" 00036 00037 namespace llvm { 00038 class raw_ostream; 00039 } 00040 00041 namespace llvm { 00042 namespace objcarc { 00043 00044 /// \brief A handy option to enable/disable all ARC Optimizations. 00045 extern bool EnableARCOpts; 00046 00047 /// \brief Test if the given module looks interesting to run ARC optimization 00048 /// on. 00049 static inline bool ModuleHasARC(const Module &M) { 00050 return 00051 M.getNamedValue("objc_retain") || 00052 M.getNamedValue("objc_release") || 00053 M.getNamedValue("objc_autorelease") || 00054 M.getNamedValue("objc_retainAutoreleasedReturnValue") || 00055 M.getNamedValue("objc_retainBlock") || 00056 M.getNamedValue("objc_autoreleaseReturnValue") || 00057 M.getNamedValue("objc_autoreleasePoolPush") || 00058 M.getNamedValue("objc_loadWeakRetained") || 00059 M.getNamedValue("objc_loadWeak") || 00060 M.getNamedValue("objc_destroyWeak") || 00061 M.getNamedValue("objc_storeWeak") || 00062 M.getNamedValue("objc_initWeak") || 00063 M.getNamedValue("objc_moveWeak") || 00064 M.getNamedValue("objc_copyWeak") || 00065 M.getNamedValue("objc_retainedObject") || 00066 M.getNamedValue("objc_unretainedObject") || 00067 M.getNamedValue("objc_unretainedPointer") || 00068 M.getNamedValue("clang.arc.use"); 00069 } 00070 00071 /// \enum InstructionClass 00072 /// \brief A simple classification for instructions. 00073 enum InstructionClass { 00074 IC_Retain, ///< objc_retain 00075 IC_RetainRV, ///< objc_retainAutoreleasedReturnValue 00076 IC_RetainBlock, ///< objc_retainBlock 00077 IC_Release, ///< objc_release 00078 IC_Autorelease, ///< objc_autorelease 00079 IC_AutoreleaseRV, ///< objc_autoreleaseReturnValue 00080 IC_AutoreleasepoolPush, ///< objc_autoreleasePoolPush 00081 IC_AutoreleasepoolPop, ///< objc_autoreleasePoolPop 00082 IC_NoopCast, ///< objc_retainedObject, etc. 00083 IC_FusedRetainAutorelease, ///< objc_retainAutorelease 00084 IC_FusedRetainAutoreleaseRV, ///< objc_retainAutoreleaseReturnValue 00085 IC_LoadWeakRetained, ///< objc_loadWeakRetained (primitive) 00086 IC_StoreWeak, ///< objc_storeWeak (primitive) 00087 IC_InitWeak, ///< objc_initWeak (derived) 00088 IC_LoadWeak, ///< objc_loadWeak (derived) 00089 IC_MoveWeak, ///< objc_moveWeak (derived) 00090 IC_CopyWeak, ///< objc_copyWeak (derived) 00091 IC_DestroyWeak, ///< objc_destroyWeak (derived) 00092 IC_StoreStrong, ///< objc_storeStrong (derived) 00093 IC_IntrinsicUser, ///< clang.arc.use 00094 IC_CallOrUser, ///< could call objc_release and/or "use" pointers 00095 IC_Call, ///< could call objc_release 00096 IC_User, ///< could "use" a pointer 00097 IC_None ///< anything else 00098 }; 00099 00100 raw_ostream &operator<<(raw_ostream &OS, const InstructionClass Class); 00101 00102 /// \brief Test if the given class is a kind of user. 00103 inline static bool IsUser(InstructionClass Class) { 00104 return Class == IC_User || 00105 Class == IC_CallOrUser || 00106 Class == IC_IntrinsicUser; 00107 } 00108 00109 /// \brief Test if the given class is objc_retain or equivalent. 00110 static inline bool IsRetain(InstructionClass Class) { 00111 return Class == IC_Retain || 00112 Class == IC_RetainRV; 00113 } 00114 00115 /// \brief Test if the given class is objc_autorelease or equivalent. 00116 static inline bool IsAutorelease(InstructionClass Class) { 00117 return Class == IC_Autorelease || 00118 Class == IC_AutoreleaseRV; 00119 } 00120 00121 /// \brief Test if the given class represents instructions which return their 00122 /// argument verbatim. 00123 static inline bool IsForwarding(InstructionClass Class) { 00124 return Class == IC_Retain || 00125 Class == IC_RetainRV || 00126 Class == IC_Autorelease || 00127 Class == IC_AutoreleaseRV || 00128 Class == IC_NoopCast; 00129 } 00130 00131 /// \brief Test if the given class represents instructions which do nothing if 00132 /// passed a null pointer. 00133 static inline bool IsNoopOnNull(InstructionClass Class) { 00134 return Class == IC_Retain || 00135 Class == IC_RetainRV || 00136 Class == IC_Release || 00137 Class == IC_Autorelease || 00138 Class == IC_AutoreleaseRV || 00139 Class == IC_RetainBlock; 00140 } 00141 00142 /// \brief Test if the given class represents instructions which are always safe 00143 /// to mark with the "tail" keyword. 00144 static inline bool IsAlwaysTail(InstructionClass Class) { 00145 // IC_RetainBlock may be given a stack argument. 00146 return Class == IC_Retain || 00147 Class == IC_RetainRV || 00148 Class == IC_AutoreleaseRV; 00149 } 00150 00151 /// \brief Test if the given class represents instructions which are never safe 00152 /// to mark with the "tail" keyword. 00153 static inline bool IsNeverTail(InstructionClass Class) { 00154 /// It is never safe to tail call objc_autorelease since by tail calling 00155 /// objc_autorelease, we also tail call -[NSObject autorelease] which supports 00156 /// fast autoreleasing causing our object to be potentially reclaimed from the 00157 /// autorelease pool which violates the semantics of __autoreleasing types in 00158 /// ARC. 00159 return Class == IC_Autorelease; 00160 } 00161 00162 /// \brief Test if the given class represents instructions which are always safe 00163 /// to mark with the nounwind attribute. 00164 static inline bool IsNoThrow(InstructionClass Class) { 00165 // objc_retainBlock is not nounwind because it calls user copy constructors 00166 // which could theoretically throw. 00167 return Class == IC_Retain || 00168 Class == IC_RetainRV || 00169 Class == IC_Release || 00170 Class == IC_Autorelease || 00171 Class == IC_AutoreleaseRV || 00172 Class == IC_AutoreleasepoolPush || 00173 Class == IC_AutoreleasepoolPop; 00174 } 00175 00176 /// Test whether the given instruction can autorelease any pointer or cause an 00177 /// autoreleasepool pop. 00178 static inline bool 00179 CanInterruptRV(InstructionClass Class) { 00180 switch (Class) { 00181 case IC_AutoreleasepoolPop: 00182 case IC_CallOrUser: 00183 case IC_Call: 00184 case IC_Autorelease: 00185 case IC_AutoreleaseRV: 00186 case IC_FusedRetainAutorelease: 00187 case IC_FusedRetainAutoreleaseRV: 00188 return true; 00189 default: 00190 return false; 00191 } 00192 } 00193 00194 /// \brief Determine if F is one of the special known Functions. If it isn't, 00195 /// return IC_CallOrUser. 00196 InstructionClass GetFunctionClass(const Function *F); 00197 00198 /// \brief Determine which objc runtime call instruction class V belongs to. 00199 /// 00200 /// This is similar to GetInstructionClass except that it only detects objc 00201 /// runtime calls. This allows it to be faster. 00202 /// 00203 static inline InstructionClass GetBasicInstructionClass(const Value *V) { 00204 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 00205 if (const Function *F = CI->getCalledFunction()) 00206 return GetFunctionClass(F); 00207 // Otherwise, be conservative. 00208 return IC_CallOrUser; 00209 } 00210 00211 // Otherwise, be conservative. 00212 return isa<InvokeInst>(V) ? IC_CallOrUser : IC_User; 00213 } 00214 00215 /// \brief Determine what kind of construct V is. 00216 InstructionClass GetInstructionClass(const Value *V); 00217 00218 /// \brief This is a wrapper around getUnderlyingObject which also knows how to 00219 /// look through objc_retain and objc_autorelease calls, which we know to return 00220 /// their argument verbatim. 00221 static inline const Value *GetUnderlyingObjCPtr(const Value *V) { 00222 for (;;) { 00223 V = GetUnderlyingObject(V); 00224 if (!IsForwarding(GetBasicInstructionClass(V))) 00225 break; 00226 V = cast<CallInst>(V)->getArgOperand(0); 00227 } 00228 00229 return V; 00230 } 00231 00232 /// \brief This is a wrapper around Value::stripPointerCasts which also knows 00233 /// how to look through objc_retain and objc_autorelease calls, which we know to 00234 /// return their argument verbatim. 00235 static inline const Value *StripPointerCastsAndObjCCalls(const Value *V) { 00236 for (;;) { 00237 V = V->stripPointerCasts(); 00238 if (!IsForwarding(GetBasicInstructionClass(V))) 00239 break; 00240 V = cast<CallInst>(V)->getArgOperand(0); 00241 } 00242 return V; 00243 } 00244 00245 /// \brief This is a wrapper around Value::stripPointerCasts which also knows 00246 /// how to look through objc_retain and objc_autorelease calls, which we know to 00247 /// return their argument verbatim. 00248 static inline Value *StripPointerCastsAndObjCCalls(Value *V) { 00249 for (;;) { 00250 V = V->stripPointerCasts(); 00251 if (!IsForwarding(GetBasicInstructionClass(V))) 00252 break; 00253 V = cast<CallInst>(V)->getArgOperand(0); 00254 } 00255 return V; 00256 } 00257 00258 /// \brief Assuming the given instruction is one of the special calls such as 00259 /// objc_retain or objc_release, return the argument value, stripped of no-op 00260 /// casts and forwarding calls. 00261 static inline Value *GetObjCArg(Value *Inst) { 00262 return StripPointerCastsAndObjCCalls(cast<CallInst>(Inst)->getArgOperand(0)); 00263 } 00264 00265 static inline bool IsNullOrUndef(const Value *V) { 00266 return isa<ConstantPointerNull>(V) || isa<UndefValue>(V); 00267 } 00268 00269 static inline bool IsNoopInstruction(const Instruction *I) { 00270 return isa<BitCastInst>(I) || 00271 (isa<GetElementPtrInst>(I) && 00272 cast<GetElementPtrInst>(I)->hasAllZeroIndices()); 00273 } 00274 00275 00276 /// \brief Erase the given instruction. 00277 /// 00278 /// Many ObjC calls return their argument verbatim, 00279 /// so if it's such a call and the return value has users, replace them with the 00280 /// argument value. 00281 /// 00282 static inline void EraseInstruction(Instruction *CI) { 00283 Value *OldArg = cast<CallInst>(CI)->getArgOperand(0); 00284 00285 bool Unused = CI->use_empty(); 00286 00287 if (!Unused) { 00288 // Replace the return value with the argument. 00289 assert((IsForwarding(GetBasicInstructionClass(CI)) || 00290 (IsNoopOnNull(GetBasicInstructionClass(CI)) && 00291 isa<ConstantPointerNull>(OldArg))) && 00292 "Can't delete non-forwarding instruction with users!"); 00293 CI->replaceAllUsesWith(OldArg); 00294 } 00295 00296 CI->eraseFromParent(); 00297 00298 if (Unused) 00299 RecursivelyDeleteTriviallyDeadInstructions(OldArg); 00300 } 00301 00302 /// \brief Test whether the given value is possible a retainable object pointer. 00303 static inline bool IsPotentialRetainableObjPtr(const Value *Op) { 00304 // Pointers to static or stack storage are not valid retainable object 00305 // pointers. 00306 if (isa<Constant>(Op) || isa<AllocaInst>(Op)) 00307 return false; 00308 // Special arguments can not be a valid retainable object pointer. 00309 if (const Argument *Arg = dyn_cast<Argument>(Op)) 00310 if (Arg->hasByValAttr() || 00311 Arg->hasInAllocaAttr() || 00312 Arg->hasNestAttr() || 00313 Arg->hasStructRetAttr()) 00314 return false; 00315 // Only consider values with pointer types. 00316 // 00317 // It seemes intuitive to exclude function pointer types as well, since 00318 // functions are never retainable object pointers, however clang occasionally 00319 // bitcasts retainable object pointers to function-pointer type temporarily. 00320 PointerType *Ty = dyn_cast<PointerType>(Op->getType()); 00321 if (!Ty) 00322 return false; 00323 // Conservatively assume anything else is a potential retainable object 00324 // pointer. 00325 return true; 00326 } 00327 00328 static inline bool IsPotentialRetainableObjPtr(const Value *Op, 00329 AliasAnalysis &AA) { 00330 // First make the rudimentary check. 00331 if (!IsPotentialRetainableObjPtr(Op)) 00332 return false; 00333 00334 // Objects in constant memory are not reference-counted. 00335 if (AA.pointsToConstantMemory(Op)) 00336 return false; 00337 00338 // Pointers in constant memory are not pointing to reference-counted objects. 00339 if (const LoadInst *LI = dyn_cast<LoadInst>(Op)) 00340 if (AA.pointsToConstantMemory(LI->getPointerOperand())) 00341 return false; 00342 00343 // Otherwise assume the worst. 00344 return true; 00345 } 00346 00347 /// \brief Helper for GetInstructionClass. Determines what kind of construct CS 00348 /// is. 00349 static inline InstructionClass GetCallSiteClass(ImmutableCallSite CS) { 00350 for (ImmutableCallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); 00351 I != E; ++I) 00352 if (IsPotentialRetainableObjPtr(*I)) 00353 return CS.onlyReadsMemory() ? IC_User : IC_CallOrUser; 00354 00355 return CS.onlyReadsMemory() ? IC_None : IC_Call; 00356 } 00357 00358 /// \brief Return true if this value refers to a distinct and identifiable 00359 /// object. 00360 /// 00361 /// This is similar to AliasAnalysis's isIdentifiedObject, except that it uses 00362 /// special knowledge of ObjC conventions. 00363 static inline bool IsObjCIdentifiedObject(const Value *V) { 00364 // Assume that call results and arguments have their own "provenance". 00365 // Constants (including GlobalVariables) and Allocas are never 00366 // reference-counted. 00367 if (isa<CallInst>(V) || isa<InvokeInst>(V) || 00368 isa<Argument>(V) || isa<Constant>(V) || 00369 isa<AllocaInst>(V)) 00370 return true; 00371 00372 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) { 00373 const Value *Pointer = 00374 StripPointerCastsAndObjCCalls(LI->getPointerOperand()); 00375 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Pointer)) { 00376 // A constant pointer can't be pointing to an object on the heap. It may 00377 // be reference-counted, but it won't be deleted. 00378 if (GV->isConstant()) 00379 return true; 00380 StringRef Name = GV->getName(); 00381 // These special variables are known to hold values which are not 00382 // reference-counted pointers. 00383 if (Name.startswith("\01L_OBJC_SELECTOR_REFERENCES_") || 00384 Name.startswith("\01L_OBJC_CLASSLIST_REFERENCES_") || 00385 Name.startswith("\01L_OBJC_CLASSLIST_SUP_REFS_$_") || 00386 Name.startswith("\01L_OBJC_METH_VAR_NAME_") || 00387 Name.startswith("\01l_objc_msgSend_fixup_")) 00388 return true; 00389 } 00390 } 00391 00392 return false; 00393 } 00394 00395 } // end namespace objcarc 00396 } // end namespace llvm 00397 00398 #endif