Header And Logo

PostgreSQL
| The world's most advanced open source database.

barrier.h

Go to the documentation of this file.
00001 /*-------------------------------------------------------------------------
00002  *
00003  * barrier.h
00004  *    Memory barrier operations.
00005  *
00006  * Portions Copyright (c) 1996-2013, PostgreSQL Global Development Group
00007  * Portions Copyright (c) 1994, Regents of the University of California
00008  *
00009  * src/include/storage/barrier.h
00010  *
00011  *-------------------------------------------------------------------------
00012  */
00013 #ifndef BARRIER_H
00014 #define BARRIER_H
00015 
00016 #include "storage/s_lock.h"
00017 
00018 extern slock_t dummy_spinlock;
00019 
00020 /*
00021  * A compiler barrier need not (and preferably should not) emit any actual
00022  * machine code, but must act as an optimization fence: the compiler must not
00023  * reorder loads or stores to main memory around the barrier.  However, the
00024  * CPU may still reorder loads or stores at runtime, if the architecture's
00025  * memory model permits this.
00026  *
00027  * A memory barrier must act as a compiler barrier, and in addition must
00028  * guarantee that all loads and stores issued prior to the barrier are
00029  * completed before any loads or stores issued after the barrier.  Unless
00030  * loads and stores are totally ordered (which is not the case on most
00031  * architectures) this requires issuing some sort of memory fencing
00032  * instruction.
00033  *
00034  * A read barrier must act as a compiler barrier, and in addition must
00035  * guarantee that any loads issued prior to the barrier are completed before
00036  * any loads issued after the barrier.  Similarly, a write barrier acts
00037  * as a compiler barrier, and also orders stores.  Read and write barriers
00038  * are thus weaker than a full memory barrier, but stronger than a compiler
00039  * barrier.  In practice, on machines with strong memory ordering, read and
00040  * write barriers may require nothing more than a compiler barrier.
00041  *
00042  * For an introduction to using memory barriers within the PostgreSQL backend,
00043  * see src/backend/storage/lmgr/README.barrier
00044  */
00045 
00046 #if defined(DISABLE_BARRIERS)
00047 
00048 /*
00049  * Fall through to the spinlock-based implementation.
00050  */
00051 #elif defined(__INTEL_COMPILER)
00052 
00053 /*
00054  * icc defines __GNUC__, but doesn't support gcc's inline asm syntax
00055  */
00056 #define pg_memory_barrier()     _mm_mfence()
00057 #define pg_compiler_barrier()   __memory_barrier()
00058 #elif defined(__GNUC__)
00059 
00060 /* This works on any architecture, since it's only talking to GCC itself. */
00061 #define pg_compiler_barrier()   __asm__ __volatile__("" : : : "memory")
00062 
00063 #if defined(__i386__)
00064 
00065 /*
00066  * i386 does not allow loads to be reordered with other loads, or stores to be
00067  * reordered with other stores, but a load can be performed before a subsequent
00068  * store.
00069  *
00070  * "lock; addl" has worked for longer than "mfence".
00071  */
00072 #define pg_memory_barrier()     \
00073     __asm__ __volatile__ ("lock; addl $0,0(%%esp)" : : : "memory")
00074 #define pg_read_barrier()       pg_compiler_barrier()
00075 #define pg_write_barrier()      pg_compiler_barrier()
00076 #elif defined(__x86_64__)       /* 64 bit x86 */
00077 
00078 /*
00079  * x86_64 has similar ordering characteristics to i386.
00080  *
00081  * Technically, some x86-ish chips support uncached memory access and/or
00082  * special instructions that are weakly ordered.  In those cases we'd need
00083  * the read and write barriers to be lfence and sfence.  But since we don't
00084  * do those things, a compiler barrier should be enough.
00085  */
00086 #define pg_memory_barrier()     \
00087     __asm__ __volatile__ ("lock; addl $0,0(%%rsp)" : : : "memory")
00088 #define pg_read_barrier()       pg_compiler_barrier()
00089 #define pg_write_barrier()      pg_compiler_barrier()
00090 #elif defined(__ia64__) || defined(__ia64)
00091 
00092 /*
00093  * Itanium is weakly ordered, so read and write barriers require a full
00094  * fence.
00095  */
00096 #define pg_memory_barrier()     __asm__ __volatile__ ("mf" : : : "memory")
00097 #elif defined(__ppc__) || defined(__powerpc__) || defined(__ppc64__) || defined(__powerpc64__)
00098 
00099 /*
00100  * lwsync orders loads with respect to each other, and similarly with stores.
00101  * But a load can be performed before a subsequent store, so sync must be used
00102  * for a full memory barrier.
00103  */
00104 #define pg_memory_barrier()     __asm__ __volatile__ ("sync" : : : "memory")
00105 #define pg_read_barrier()       __asm__ __volatile__ ("lwsync" : : : "memory")
00106 #define pg_write_barrier()      __asm__ __volatile__ ("lwsync" : : : "memory")
00107 #elif defined(__alpha) || defined(__alpha__)    /* Alpha */
00108 
00109 /*
00110  * Unlike all other known architectures, Alpha allows dependent reads to be
00111  * reordered, but we don't currently find it necessary to provide a conditional
00112  * read barrier to cover that case.  We might need to add that later.
00113  */
00114 #define pg_memory_barrier()     __asm__ __volatile__ ("mb" : : : "memory")
00115 #define pg_read_barrier()       __asm__ __volatile__ ("rmb" : : : "memory")
00116 #define pg_write_barrier()      __asm__ __volatile__ ("wmb" : : : "memory")
00117 #elif __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 1)
00118 
00119 /*
00120  * If we're on GCC 4.1.0 or higher, we should be able to get a memory
00121  * barrier out of this compiler built-in.  But we prefer to rely on our
00122  * own definitions where possible, and use this only as a fallback.
00123  */
00124 #define pg_memory_barrier()     __sync_synchronize()
00125 #endif
00126 #elif defined(__ia64__) || defined(__ia64)
00127 
00128 #define pg_compiler_barrier()   _Asm_sched_fence()
00129 #define pg_memory_barrier()     _Asm_mf()
00130 #elif defined(WIN32_ONLY_COMPILER)
00131 
00132 /* Should work on both MSVC and Borland. */
00133 #include <intrin.h>
00134 #pragma intrinsic(_ReadWriteBarrier)
00135 #define pg_compiler_barrier()   _ReadWriteBarrier()
00136 #define pg_memory_barrier()     MemoryBarrier()
00137 #endif
00138 
00139 /*
00140  * If we have no memory barrier implementation for this architecture, we
00141  * fall back to acquiring and releasing a spinlock.  This might, in turn,
00142  * fall back to the semaphore-based spinlock implementation, which will be
00143  * amazingly slow.
00144  *
00145  * It's not self-evident that every possible legal implementation of a
00146  * spinlock acquire-and-release would be equivalent to a full memory barrier.
00147  * For example, I'm not sure that Itanium's acq and rel add up to a full
00148  * fence.  But all of our actual implementations seem OK in this regard.
00149  */
00150 #if !defined(pg_memory_barrier)
00151 #define pg_memory_barrier(x) \
00152     do { S_LOCK(&dummy_spinlock); S_UNLOCK(&dummy_spinlock); } while (0)
00153 #endif
00154 
00155 /*
00156  * If read or write barriers are undefined, we upgrade them to full memory
00157  * barriers.
00158  *
00159  * If a compiler barrier is unavailable, you probably don't want a full
00160  * memory barrier instead, so if you have a use case for a compiler barrier,
00161  * you'd better use #ifdef.
00162  */
00163 #if !defined(pg_read_barrier)
00164 #define pg_read_barrier()           pg_memory_barrier()
00165 #endif
00166 #if !defined(pg_write_barrier)
00167 #define pg_write_barrier()          pg_memory_barrier()
00168 #endif
00169 
00170 #endif   /* BARRIER_H */