#include "postgres.h"#include "access/skey.h"#include "catalog/pg_type.h"#include "nodes/makefuncs.h"#include "nodes/nodeFuncs.h"#include "optimizer/clauses.h"#include "optimizer/pathnode.h"#include "optimizer/paths.h"#include "optimizer/planmain.h"#include "optimizer/prep.h"#include "optimizer/var.h"#include "utils/lsyscache.h"
Go to the source code of this file.
| void add_child_rel_equivalences | ( | PlannerInfo * | root, | |
| AppendRelInfo * | appinfo, | |||
| RelOptInfo * | parent_rel, | |||
| RelOptInfo * | child_rel | |||
| ) |
Definition at line 1905 of file equivclass.c.
References add_eq_member(), adjust_appendrel_attrs(), bms_add_members(), bms_difference(), bms_is_subset(), bms_overlap(), EquivalenceClass::ec_has_volatile, EquivalenceClass::ec_members, EquivalenceClass::ec_relids, EquivalenceMember::em_datatype, EquivalenceMember::em_expr, EquivalenceMember::em_is_child, EquivalenceMember::em_is_const, EquivalenceMember::em_nullable_relids, EquivalenceMember::em_relids, PlannerInfo::eq_classes, lfirst, and RelOptInfo::relids.
Referenced by set_append_rel_size().
{
ListCell *lc1;
foreach(lc1, root->eq_classes)
{
EquivalenceClass *cur_ec = (EquivalenceClass *) lfirst(lc1);
ListCell *lc2;
/*
* If this EC contains a volatile expression, then generating child
* EMs would be downright dangerous, so skip it. We rely on a
* volatile EC having only one EM.
*/
if (cur_ec->ec_has_volatile)
continue;
/* No point in searching if parent rel not mentioned in eclass */
if (!bms_is_subset(parent_rel->relids, cur_ec->ec_relids))
continue;
foreach(lc2, cur_ec->ec_members)
{
EquivalenceMember *cur_em = (EquivalenceMember *) lfirst(lc2);
if (cur_em->em_is_const || cur_em->em_is_child)
continue; /* ignore consts and children here */
/* Does it reference parent_rel? */
if (bms_overlap(cur_em->em_relids, parent_rel->relids))
{
/* Yes, generate transformed child version */
Expr *child_expr;
Relids new_relids;
Relids new_nullable_relids;
child_expr = (Expr *)
adjust_appendrel_attrs(root,
(Node *) cur_em->em_expr,
appinfo);
/*
* Transform em_relids to match. Note we do *not* do
* pull_varnos(child_expr) here, as for example the
* transformation might have substituted a constant, but we
* don't want the child member to be marked as constant.
*/
new_relids = bms_difference(cur_em->em_relids,
parent_rel->relids);
new_relids = bms_add_members(new_relids, child_rel->relids);
/*
* And likewise for nullable_relids. Note this code assumes
* parent and child relids are singletons.
*/
new_nullable_relids = cur_em->em_nullable_relids;
if (bms_overlap(new_nullable_relids, parent_rel->relids))
{
new_nullable_relids = bms_difference(new_nullable_relids,
parent_rel->relids);
new_nullable_relids = bms_add_members(new_nullable_relids,
child_rel->relids);
}
(void) add_eq_member(cur_ec, child_expr,
new_relids, new_nullable_relids,
true, cur_em->em_datatype);
}
}
}
}
| static EquivalenceMember * add_eq_member | ( | EquivalenceClass * | ec, | |
| Expr * | expr, | |||
| Relids | relids, | |||
| Relids | nullable_relids, | |||
| bool | is_child, | |||
| Oid | datatype | |||
| ) | [static] |
Definition at line 470 of file equivclass.c.
References Assert, bms_add_members(), bms_is_empty(), EquivalenceClass::ec_has_const, EquivalenceClass::ec_members, EquivalenceClass::ec_relids, EquivalenceMember::em_datatype, EquivalenceMember::em_expr, EquivalenceMember::em_is_child, EquivalenceMember::em_is_const, EquivalenceMember::em_nullable_relids, EquivalenceMember::em_relids, lappend(), and makeNode.
Referenced by add_child_rel_equivalences(), get_eclass_for_sort_expr(), and process_equivalence().
{
EquivalenceMember *em = makeNode(EquivalenceMember);
em->em_expr = expr;
em->em_relids = relids;
em->em_nullable_relids = nullable_relids;
em->em_is_const = false;
em->em_is_child = is_child;
em->em_datatype = datatype;
if (bms_is_empty(relids))
{
/*
* No Vars, assume it's a pseudoconstant. This is correct for entries
* generated from process_equivalence(), because a WHERE clause can't
* contain aggregates or SRFs, and non-volatility was checked before
* process_equivalence() ever got called. But
* get_eclass_for_sort_expr() has to work harder. We put the tests
* there not here to save cycles in the equivalence case.
*/
Assert(!is_child);
em->em_is_const = true;
ec->ec_has_const = true;
/* it can't affect ec_relids */
}
else if (!is_child) /* child members don't add to ec_relids */
{
ec->ec_relids = bms_add_members(ec->ec_relids, relids);
}
ec->ec_members = lappend(ec->ec_members, em);
return em;
}
Definition at line 421 of file equivclass.c.
References arg, COERCE_IMPLICIT_CAST, exprCollation(), exprType(), exprTypmod(), IsA, IsPolymorphicType, and makeRelabelType().
Referenced by convert_subquery_pathkeys(), get_eclass_for_sort_expr(), and process_equivalence().
{
Oid expr_type = exprType((Node *) expr);
/*
* For a polymorphic-input-type opclass, just keep the same exposed type.
*/
if (IsPolymorphicType(req_type))
req_type = expr_type;
/*
* No work if the expression exposes the right type/collation already.
*/
if (expr_type != req_type ||
exprCollation((Node *) expr) != req_collation)
{
/*
* Strip any existing RelabelType, then add a new one if needed. This
* is to preserve the invariant of no redundant RelabelTypes.
*
* If we have to change the exposed type of the stripped expression,
* set typmod to -1 (since the new type may not have the same typmod
* interpretation). If we only have to change collation, preserve the
* exposed typmod.
*/
while (expr && IsA(expr, RelabelType))
expr = (Expr *) ((RelabelType *) expr)->arg;
if (exprType((Node *) expr) != req_type)
expr = (Expr *) makeRelabelType(expr,
req_type,
-1,
req_collation,
COERCE_IMPLICIT_CAST);
else if (exprCollation((Node *) expr) != req_collation)
expr = (Expr *) makeRelabelType(expr,
req_type,
exprTypmod((Node *) expr),
req_collation,
COERCE_IMPLICIT_CAST);
}
return expr;
}
| static RestrictInfo * create_join_clause | ( | PlannerInfo * | root, | |
| EquivalenceClass * | ec, | |||
| Oid | opno, | |||
| EquivalenceMember * | leftem, | |||
| EquivalenceMember * | rightem, | |||
| EquivalenceClass * | parent_ec | |||
| ) | [static] |
Definition at line 1299 of file equivclass.c.
References bms_union(), build_implied_join_equality(), RestrictInfo::clause, EquivalenceClass::ec_collation, EquivalenceClass::ec_derives, EquivalenceClass::ec_sources, EquivalenceMember::em_expr, EquivalenceMember::em_nullable_relids, EquivalenceMember::em_relids, lappend(), RestrictInfo::left_ec, RestrictInfo::left_em, lfirst, MemoryContextSwitchTo(), RestrictInfo::parent_ec, PlannerInfo::planner_cxt, RestrictInfo::right_ec, and RestrictInfo::right_em.
Referenced by generate_implied_equalities_for_column(), and generate_join_implied_equalities_normal().
{
RestrictInfo *rinfo;
ListCell *lc;
MemoryContext oldcontext;
/*
* Search to see if we already built a RestrictInfo for this pair of
* EquivalenceMembers. We can use either original source clauses or
* previously-derived clauses. The check on opno is probably redundant,
* but be safe ...
*/
foreach(lc, ec->ec_sources)
{
rinfo = (RestrictInfo *) lfirst(lc);
if (rinfo->left_em == leftem &&
rinfo->right_em == rightem &&
rinfo->parent_ec == parent_ec &&
opno == ((OpExpr *) rinfo->clause)->opno)
return rinfo;
}
foreach(lc, ec->ec_derives)
{
rinfo = (RestrictInfo *) lfirst(lc);
if (rinfo->left_em == leftem &&
rinfo->right_em == rightem &&
rinfo->parent_ec == parent_ec &&
opno == ((OpExpr *) rinfo->clause)->opno)
return rinfo;
}
/*
* Not there, so build it, in planner context so we can re-use it. (Not
* important in normal planning, but definitely so in GEQO.)
*/
oldcontext = MemoryContextSwitchTo(root->planner_cxt);
rinfo = build_implied_join_equality(opno,
ec->ec_collation,
leftem->em_expr,
rightem->em_expr,
bms_union(leftem->em_relids,
rightem->em_relids),
bms_union(leftem->em_nullable_relids,
rightem->em_nullable_relids));
/* Mark the clause as redundant, or not */
rinfo->parent_ec = parent_ec;
/*
* We know the correct values for left_ec/right_ec, ie this particular EC,
* so we can just set them directly instead of forcing another lookup.
*/
rinfo->left_ec = ec;
rinfo->right_ec = ec;
/* Mark it as usable with these EMs */
rinfo->left_em = leftem;
rinfo->right_em = rightem;
/* and save it for possible re-use */
ec->ec_derives = lappend(ec->ec_derives, rinfo);
MemoryContextSwitchTo(oldcontext);
return rinfo;
}
| bool eclass_useful_for_merging | ( | EquivalenceClass * | eclass, | |
| RelOptInfo * | rel | |||
| ) |
Definition at line 2268 of file equivclass.c.
References Assert, bms_is_subset(), bms_overlap(), EquivalenceClass::ec_has_const, EquivalenceClass::ec_members, EquivalenceClass::ec_merged, EquivalenceClass::ec_relids, EquivalenceMember::em_is_child, EquivalenceMember::em_relids, lfirst, list_length(), and RelOptInfo::relids.
Referenced by pathkeys_useful_for_merging().
{
ListCell *lc;
Assert(!eclass->ec_merged);
/*
* Won't generate joinclauses if const or single-member (the latter test
* covers the volatile case too)
*/
if (eclass->ec_has_const || list_length(eclass->ec_members) <= 1)
return false;
/*
* Note we don't test ec_broken; if we did, we'd need a separate code path
* to look through ec_sources. Checking the members anyway is OK as a
* possibly-overoptimistic heuristic.
*/
/* If rel already includes all members of eclass, no point in searching */
if (bms_is_subset(eclass->ec_relids, rel->relids))
return false;
/* To join, we need a member not in the given rel */
foreach(lc, eclass->ec_members)
{
EquivalenceMember *cur_em = (EquivalenceMember *) lfirst(lc);
if (cur_em->em_is_child)
continue; /* ignore children here */
if (!bms_overlap(cur_em->em_relids, rel->relids))
return true;
}
return false;
}
| bool exprs_known_equal | ( | PlannerInfo * | root, | |
| Node * | item1, | |||
| Node * | item2 | |||
| ) |
Definition at line 1859 of file equivclass.c.
References EquivalenceClass::ec_has_volatile, EquivalenceClass::ec_members, EquivalenceMember::em_expr, EquivalenceMember::em_is_child, PlannerInfo::eq_classes, equal(), and lfirst.
Referenced by add_unique_group_var().
{
ListCell *lc1;
foreach(lc1, root->eq_classes)
{
EquivalenceClass *ec = (EquivalenceClass *) lfirst(lc1);
bool item1member = false;
bool item2member = false;
ListCell *lc2;
/* Never match to a volatile EC */
if (ec->ec_has_volatile)
continue;
foreach(lc2, ec->ec_members)
{
EquivalenceMember *em = (EquivalenceMember *) lfirst(lc2);
if (em->em_is_child)
continue; /* ignore children here */
if (equal(item1, em->em_expr))
item1member = true;
else if (equal(item2, em->em_expr))
item2member = true;
/* Exit as soon as equality is proven */
if (item1member && item2member)
return true;
}
}
return false;
}
| void generate_base_implied_equalities | ( | PlannerInfo * | root | ) |
Definition at line 710 of file equivclass.c.
References Assert, EquivalenceClass::ec_broken, EquivalenceClass::ec_has_const, EquivalenceClass::ec_members, EquivalenceClass::ec_merged, PlannerInfo::eq_classes, generate_base_implied_equalities_broken(), generate_base_implied_equalities_const(), generate_base_implied_equalities_no_const(), RelOptInfo::has_eclass_joins, has_relevant_eclass_joinclause(), lfirst, list_length(), NULL, PlannerInfo::simple_rel_array, and PlannerInfo::simple_rel_array_size.
Referenced by query_planner().
{
ListCell *lc;
Index rti;
foreach(lc, root->eq_classes)
{
EquivalenceClass *ec = (EquivalenceClass *) lfirst(lc);
Assert(ec->ec_merged == NULL); /* else shouldn't be in list */
Assert(!ec->ec_broken); /* not yet anyway... */
/* Single-member ECs won't generate any deductions */
if (list_length(ec->ec_members) <= 1)
continue;
if (ec->ec_has_const)
generate_base_implied_equalities_const(root, ec);
else
generate_base_implied_equalities_no_const(root, ec);
/* Recover if we failed to generate required derived clauses */
if (ec->ec_broken)
generate_base_implied_equalities_broken(root, ec);
}
/*
* This is also a handy place to mark base rels (which should all exist by
* now) with flags showing whether they have pending eclass joins.
*/
for (rti = 1; rti < root->simple_rel_array_size; rti++)
{
RelOptInfo *brel = root->simple_rel_array[rti];
if (brel == NULL)
continue;
brel->has_eclass_joins = has_relevant_eclass_joinclause(root, brel);
}
}
| static void generate_base_implied_equalities_broken | ( | PlannerInfo * | root, | |
| EquivalenceClass * | ec | |||
| ) | [static] |
Definition at line 922 of file equivclass.c.
References bms_membership(), distribute_restrictinfo_to_rels(), EquivalenceClass::ec_has_const, EquivalenceClass::ec_sources, lfirst, and RestrictInfo::required_relids.
Referenced by generate_base_implied_equalities().
{
ListCell *lc;
foreach(lc, ec->ec_sources)
{
RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(lc);
if (ec->ec_has_const ||
bms_membership(restrictinfo->required_relids) != BMS_MULTIPLE)
distribute_restrictinfo_to_rels(root, restrictinfo);
}
}
| static void generate_base_implied_equalities_const | ( | PlannerInfo * | root, | |
| EquivalenceClass * | ec | |||
| ) | [static] |
Definition at line 755 of file equivclass.c.
References Assert, bms_copy(), bms_membership(), bms_union(), distribute_restrictinfo_to_rels(), EquivalenceClass::ec_below_outer_join, EquivalenceClass::ec_broken, EquivalenceClass::ec_collation, EquivalenceClass::ec_members, EquivalenceClass::ec_relids, EquivalenceClass::ec_sources, EquivalenceMember::em_datatype, EquivalenceMember::em_expr, EquivalenceMember::em_is_child, EquivalenceMember::em_is_const, EquivalenceMember::em_nullable_relids, IsA, lfirst, linitial, list_length(), NULL, OidIsValid, process_implied_equality(), RestrictInfo::required_relids, and select_equality_operator().
Referenced by generate_base_implied_equalities().
{
EquivalenceMember *const_em = NULL;
ListCell *lc;
/*
* In the trivial case where we just had one "var = const" clause, push
* the original clause back into the main planner machinery. There is
* nothing to be gained by doing it differently, and we save the effort to
* re-build and re-analyze an equality clause that will be exactly
* equivalent to the old one.
*/
if (list_length(ec->ec_members) == 2 &&
list_length(ec->ec_sources) == 1)
{
RestrictInfo *restrictinfo = (RestrictInfo *) linitial(ec->ec_sources);
if (bms_membership(restrictinfo->required_relids) != BMS_MULTIPLE)
{
distribute_restrictinfo_to_rels(root, restrictinfo);
return;
}
}
/*
* Find the constant member to use. We prefer an actual constant to
* pseudo-constants (such as Params), because the constraint exclusion
* machinery might be able to exclude relations on the basis of generated
* "var = const" equalities, but "var = param" won't work for that.
*/
foreach(lc, ec->ec_members)
{
EquivalenceMember *cur_em = (EquivalenceMember *) lfirst(lc);
if (cur_em->em_is_const)
{
const_em = cur_em;
if (IsA(cur_em->em_expr, Const))
break;
}
}
Assert(const_em != NULL);
/* Generate a derived equality against each other member */
foreach(lc, ec->ec_members)
{
EquivalenceMember *cur_em = (EquivalenceMember *) lfirst(lc);
Oid eq_op;
Assert(!cur_em->em_is_child); /* no children yet */
if (cur_em == const_em)
continue;
eq_op = select_equality_operator(ec,
cur_em->em_datatype,
const_em->em_datatype);
if (!OidIsValid(eq_op))
{
/* failed... */
ec->ec_broken = true;
break;
}
process_implied_equality(root, eq_op, ec->ec_collation,
cur_em->em_expr, const_em->em_expr,
bms_copy(ec->ec_relids),
bms_union(cur_em->em_nullable_relids,
const_em->em_nullable_relids),
ec->ec_below_outer_join,
cur_em->em_is_const);
}
}
| static void generate_base_implied_equalities_no_const | ( | PlannerInfo * | root, | |
| EquivalenceClass * | ec | |||
| ) | [static] |
Definition at line 831 of file equivclass.c.
References add_vars_to_targetlist(), Assert, bms_copy(), bms_membership(), BMS_SINGLETON, bms_singleton_member(), bms_union(), EquivalenceClass::ec_below_outer_join, EquivalenceClass::ec_broken, EquivalenceClass::ec_collation, EquivalenceClass::ec_members, EquivalenceClass::ec_relids, EquivalenceMember::em_datatype, EquivalenceMember::em_expr, EquivalenceMember::em_is_child, EquivalenceMember::em_nullable_relids, EquivalenceMember::em_relids, lfirst, list_free(), NULL, OidIsValid, palloc0(), pfree(), process_implied_equality(), pull_var_clause(), PVC_INCLUDE_PLACEHOLDERS, PVC_RECURSE_AGGREGATES, select_equality_operator(), and PlannerInfo::simple_rel_array_size.
Referenced by generate_base_implied_equalities().
{
EquivalenceMember **prev_ems;
ListCell *lc;
/*
* We scan the EC members once and track the last-seen member for each
* base relation. When we see another member of the same base relation,
* we generate "prev_mem = cur_mem". This results in the minimum number
* of derived clauses, but it's possible that it will fail when a
* different ordering would succeed. XXX FIXME: use a UNION-FIND
* algorithm similar to the way we build merged ECs. (Use a list-of-lists
* for each rel.)
*/
prev_ems = (EquivalenceMember **)
palloc0(root->simple_rel_array_size * sizeof(EquivalenceMember *));
foreach(lc, ec->ec_members)
{
EquivalenceMember *cur_em = (EquivalenceMember *) lfirst(lc);
int relid;
Assert(!cur_em->em_is_child); /* no children yet */
if (bms_membership(cur_em->em_relids) != BMS_SINGLETON)
continue;
relid = bms_singleton_member(cur_em->em_relids);
Assert(relid < root->simple_rel_array_size);
if (prev_ems[relid] != NULL)
{
EquivalenceMember *prev_em = prev_ems[relid];
Oid eq_op;
eq_op = select_equality_operator(ec,
prev_em->em_datatype,
cur_em->em_datatype);
if (!OidIsValid(eq_op))
{
/* failed... */
ec->ec_broken = true;
break;
}
process_implied_equality(root, eq_op, ec->ec_collation,
prev_em->em_expr, cur_em->em_expr,
bms_copy(ec->ec_relids),
bms_union(prev_em->em_nullable_relids,
cur_em->em_nullable_relids),
ec->ec_below_outer_join,
false);
}
prev_ems[relid] = cur_em;
}
pfree(prev_ems);
/*
* We also have to make sure that all the Vars used in the member clauses
* will be available at any join node we might try to reference them at.
* For the moment we force all the Vars to be available at all join nodes
* for this eclass. Perhaps this could be improved by doing some
* pre-analysis of which members we prefer to join, but it's no worse than
* what happened in the pre-8.3 code.
*/
foreach(lc, ec->ec_members)
{
EquivalenceMember *cur_em = (EquivalenceMember *) lfirst(lc);
List *vars = pull_var_clause((Node *) cur_em->em_expr,
PVC_RECURSE_AGGREGATES,
PVC_INCLUDE_PLACEHOLDERS);
add_vars_to_targetlist(root, vars, ec->ec_relids, false);
list_free(vars);
}
}
| List* generate_implied_equalities_for_column | ( | PlannerInfo * | root, | |
| RelOptInfo * | rel, | |||
| ec_matches_callback_type | callback, | |||
| void * | callback_arg, | |||
| Relids | prohibited_rels | |||
| ) |
Definition at line 2047 of file equivclass.c.
References bms_equal(), bms_is_member(), bms_is_subset(), bms_overlap(), callback(), create_join_clause(), EquivalenceClass::ec_has_const, EquivalenceClass::ec_members, EquivalenceClass::ec_relids, EquivalenceMember::em_datatype, EquivalenceMember::em_is_child, EquivalenceMember::em_relids, PlannerInfo::eq_classes, find_childrel_appendrelinfo(), lappend(), lfirst, list_length(), OidIsValid, AppendRelInfo::parent_relid, RelOptInfo::relids, RelOptInfo::reloptkind, and select_equality_operator().
Referenced by match_eclass_clauses_to_index(), and postgresGetForeignPaths().
{
List *result = NIL;
bool is_child_rel = (rel->reloptkind == RELOPT_OTHER_MEMBER_REL);
Index parent_relid;
ListCell *lc1;
/* If it's a child rel, we'll need to know what its parent is */
if (is_child_rel)
parent_relid = find_childrel_appendrelinfo(root, rel)->parent_relid;
else
parent_relid = 0; /* not used, but keep compiler quiet */
foreach(lc1, root->eq_classes)
{
EquivalenceClass *cur_ec = (EquivalenceClass *) lfirst(lc1);
EquivalenceMember *cur_em;
ListCell *lc2;
/*
* Won't generate joinclauses if const or single-member (the latter
* test covers the volatile case too)
*/
if (cur_ec->ec_has_const || list_length(cur_ec->ec_members) <= 1)
continue;
/*
* No point in searching if rel not mentioned in eclass (but we can't
* tell that for a child rel).
*/
if (!is_child_rel &&
!bms_is_subset(rel->relids, cur_ec->ec_relids))
continue;
/*
* Scan members, looking for a match to the target column. Note
* that child EC members are considered, but only when they belong to
* the target relation. (Unlike regular members, the same expression
* could be a child member of more than one EC. Therefore, it's
* potentially order-dependent which EC a child relation's target
* column gets matched to. This is annoying but it only happens in
* corner cases, so for now we live with just reporting the first
* match. See also get_eclass_for_sort_expr.)
*/
cur_em = NULL;
foreach(lc2, cur_ec->ec_members)
{
cur_em = (EquivalenceMember *) lfirst(lc2);
if (bms_equal(cur_em->em_relids, rel->relids) &&
callback(root, rel, cur_ec, cur_em, callback_arg))
break;
cur_em = NULL;
}
if (!cur_em)
continue;
/*
* Found our match. Scan the other EC members and attempt to generate
* joinclauses.
*/
foreach(lc2, cur_ec->ec_members)
{
EquivalenceMember *other_em = (EquivalenceMember *) lfirst(lc2);
Oid eq_op;
RestrictInfo *rinfo;
if (other_em->em_is_child)
continue; /* ignore children here */
/* Make sure it'll be a join to a different rel */
if (other_em == cur_em ||
bms_overlap(other_em->em_relids, rel->relids))
continue;
/* Forget it if caller doesn't want joins to this rel */
if (bms_overlap(other_em->em_relids, prohibited_rels))
continue;
/*
* Also, if this is a child rel, avoid generating a useless join
* to its parent rel.
*/
if (is_child_rel &&
bms_is_member(parent_relid, other_em->em_relids))
continue;
eq_op = select_equality_operator(cur_ec,
cur_em->em_datatype,
other_em->em_datatype);
if (!OidIsValid(eq_op))
continue;
/* set parent_ec to mark as redundant with other joinclauses */
rinfo = create_join_clause(root, cur_ec, eq_op,
cur_em, other_em,
cur_ec);
result = lappend(result, rinfo);
}
/*
* If somehow we failed to create any join clauses, we might as well
* keep scanning the ECs for another match. But if we did make any,
* we're done, because we don't want to return non-redundant clauses.
*/
if (result)
break;
}
return result;
}
| List* generate_join_implied_equalities | ( | PlannerInfo * | root, | |
| Relids | join_relids, | |||
| Relids | outer_relids, | |||
| RelOptInfo * | inner_rel | |||
| ) |
Definition at line 979 of file equivclass.c.
References bms_make_singleton(), bms_overlap(), bms_union(), EquivalenceClass::ec_broken, EquivalenceClass::ec_has_const, EquivalenceClass::ec_members, EquivalenceClass::ec_relids, PlannerInfo::eq_classes, find_childrel_appendrelinfo(), generate_join_implied_equalities_broken(), generate_join_implied_equalities_normal(), lfirst, list_concat(), list_length(), AppendRelInfo::parent_relid, RelOptInfo::relids, RELOPT_OTHER_MEMBER_REL, and RelOptInfo::reloptkind.
Referenced by build_joinrel_restrictlist(), check_partial_indexes(), get_baserel_parampathinfo(), and get_joinrel_parampathinfo().
{
List *result = NIL;
Relids inner_relids = inner_rel->relids;
Relids nominal_inner_relids;
Relids nominal_join_relids;
AppendRelInfo *inner_appinfo;
ListCell *lc;
/* If inner rel is a child, extra setup work is needed */
if (inner_rel->reloptkind == RELOPT_OTHER_MEMBER_REL)
{
/* Lookup parent->child translation data */
inner_appinfo = find_childrel_appendrelinfo(root, inner_rel);
/* Construct relids for the parent rel */
nominal_inner_relids = bms_make_singleton(inner_appinfo->parent_relid);
/* ECs will be marked with the parent's relid, not the child's */
nominal_join_relids = bms_union(outer_relids, nominal_inner_relids);
}
else
{
inner_appinfo = NULL;
nominal_inner_relids = inner_relids;
nominal_join_relids = join_relids;
}
foreach(lc, root->eq_classes)
{
EquivalenceClass *ec = (EquivalenceClass *) lfirst(lc);
List *sublist = NIL;
/* ECs containing consts do not need any further enforcement */
if (ec->ec_has_const)
continue;
/* Single-member ECs won't generate any deductions */
if (list_length(ec->ec_members) <= 1)
continue;
/* We can quickly ignore any that don't overlap the join, too */
if (!bms_overlap(ec->ec_relids, nominal_join_relids))
continue;
if (!ec->ec_broken)
sublist = generate_join_implied_equalities_normal(root,
ec,
join_relids,
outer_relids,
inner_relids);
/* Recover if we failed to generate required derived clauses */
if (ec->ec_broken)
sublist = generate_join_implied_equalities_broken(root,
ec,
nominal_join_relids,
outer_relids,
nominal_inner_relids,
inner_appinfo);
result = list_concat(result, sublist);
}
return result;
}
| static List * generate_join_implied_equalities_broken | ( | PlannerInfo * | root, | |
| EquivalenceClass * | ec, | |||
| Relids | nominal_join_relids, | |||
| Relids | outer_relids, | |||
| Relids | nominal_inner_relids, | |||
| AppendRelInfo * | inner_appinfo | |||
| ) | [static] |
Definition at line 1227 of file equivclass.c.
References adjust_appendrel_attrs(), bms_is_subset(), EquivalenceClass::ec_sources, lappend(), lfirst, and RestrictInfo::required_relids.
Referenced by generate_join_implied_equalities().
{
List *result = NIL;
ListCell *lc;
foreach(lc, ec->ec_sources)
{
RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(lc);
Relids clause_relids = restrictinfo->required_relids;
if (bms_is_subset(clause_relids, nominal_join_relids) &&
!bms_is_subset(clause_relids, outer_relids) &&
!bms_is_subset(clause_relids, nominal_inner_relids))
result = lappend(result, restrictinfo);
}
/*
* If we have to translate, just brute-force apply adjust_appendrel_attrs
* to all the RestrictInfos at once. This will result in returning
* RestrictInfos that are not listed in ec_derives, but there shouldn't be
* any duplication, and it's a sufficiently narrow corner case that we
* shouldn't sweat too much over it anyway.
*/
if (inner_appinfo)
result = (List *) adjust_appendrel_attrs(root, (Node *) result,
inner_appinfo);
return result;
}
| static List * generate_join_implied_equalities_normal | ( | PlannerInfo * | root, | |
| EquivalenceClass * | ec, | |||
| Relids | join_relids, | |||
| Relids | outer_relids, | |||
| Relids | inner_relids | |||
| ) | [static] |
Definition at line 1051 of file equivclass.c.
References bms_is_subset(), create_join_clause(), EquivalenceClass::ec_broken, EquivalenceClass::ec_members, EquivalenceMember::em_datatype, EquivalenceMember::em_expr, EquivalenceMember::em_relids, exprType(), IsA, lappend(), lfirst, linitial, list_concat(), NULL, OidIsValid, op_hashjoinable(), and select_equality_operator().
Referenced by generate_join_implied_equalities().
{
List *result = NIL;
List *new_members = NIL;
List *outer_members = NIL;
List *inner_members = NIL;
ListCell *lc1;
/*
* First, scan the EC to identify member values that are computable at the
* outer rel, at the inner rel, or at this relation but not in either
* input rel. The outer-rel members should already be enforced equal,
* likewise for the inner-rel members. We'll need to create clauses to
* enforce that any newly computable members are all equal to each other
* as well as to at least one input member, plus enforce at least one
* outer-rel member equal to at least one inner-rel member.
*/
foreach(lc1, ec->ec_members)
{
EquivalenceMember *cur_em = (EquivalenceMember *) lfirst(lc1);
/*
* We don't need to check explicitly for child EC members. This test
* against join_relids will cause them to be ignored except when
* considering a child inner rel, which is what we want.
*/
if (!bms_is_subset(cur_em->em_relids, join_relids))
continue; /* not computable yet, or wrong child */
if (bms_is_subset(cur_em->em_relids, outer_relids))
outer_members = lappend(outer_members, cur_em);
else if (bms_is_subset(cur_em->em_relids, inner_relids))
inner_members = lappend(inner_members, cur_em);
else
new_members = lappend(new_members, cur_em);
}
/*
* First, select the joinclause if needed. We can equate any one outer
* member to any one inner member, but we have to find a datatype
* combination for which an opfamily member operator exists. If we have
* choices, we prefer simple Var members (possibly with RelabelType) since
* these are (a) cheapest to compute at runtime and (b) most likely to
* have useful statistics. Also, prefer operators that are also
* hashjoinable.
*/
if (outer_members && inner_members)
{
EquivalenceMember *best_outer_em = NULL;
EquivalenceMember *best_inner_em = NULL;
Oid best_eq_op = InvalidOid;
int best_score = -1;
RestrictInfo *rinfo;
foreach(lc1, outer_members)
{
EquivalenceMember *outer_em = (EquivalenceMember *) lfirst(lc1);
ListCell *lc2;
foreach(lc2, inner_members)
{
EquivalenceMember *inner_em = (EquivalenceMember *) lfirst(lc2);
Oid eq_op;
int score;
eq_op = select_equality_operator(ec,
outer_em->em_datatype,
inner_em->em_datatype);
if (!OidIsValid(eq_op))
continue;
score = 0;
if (IsA(outer_em->em_expr, Var) ||
(IsA(outer_em->em_expr, RelabelType) &&
IsA(((RelabelType *) outer_em->em_expr)->arg, Var)))
score++;
if (IsA(inner_em->em_expr, Var) ||
(IsA(inner_em->em_expr, RelabelType) &&
IsA(((RelabelType *) inner_em->em_expr)->arg, Var)))
score++;
if (op_hashjoinable(eq_op,
exprType((Node *) outer_em->em_expr)))
score++;
if (score > best_score)
{
best_outer_em = outer_em;
best_inner_em = inner_em;
best_eq_op = eq_op;
best_score = score;
if (best_score == 3)
break; /* no need to look further */
}
}
if (best_score == 3)
break; /* no need to look further */
}
if (best_score < 0)
{
/* failed... */
ec->ec_broken = true;
return NIL;
}
/*
* Create clause, setting parent_ec to mark it as redundant with other
* joinclauses
*/
rinfo = create_join_clause(root, ec, best_eq_op,
best_outer_em, best_inner_em,
ec);
result = lappend(result, rinfo);
}
/*
* Now deal with building restrictions for any expressions that involve
* Vars from both sides of the join. We have to equate all of these to
* each other as well as to at least one old member (if any).
*
* XXX as in generate_base_implied_equalities_no_const, we could be a lot
* smarter here to avoid unnecessary failures in cross-type situations.
* For now, use the same left-to-right method used there.
*/
if (new_members)
{
List *old_members = list_concat(outer_members, inner_members);
EquivalenceMember *prev_em = NULL;
RestrictInfo *rinfo;
/* For now, arbitrarily take the first old_member as the one to use */
if (old_members)
new_members = lappend(new_members, linitial(old_members));
foreach(lc1, new_members)
{
EquivalenceMember *cur_em = (EquivalenceMember *) lfirst(lc1);
if (prev_em != NULL)
{
Oid eq_op;
eq_op = select_equality_operator(ec,
prev_em->em_datatype,
cur_em->em_datatype);
if (!OidIsValid(eq_op))
{
/* failed... */
ec->ec_broken = true;
return NIL;
}
/* do NOT set parent_ec, this qual is not redundant! */
rinfo = create_join_clause(root, ec, eq_op,
prev_em, cur_em,
NULL);
result = lappend(result, rinfo);
}
prev_em = cur_em;
}
}
return result;
}
| EquivalenceClass* get_eclass_for_sort_expr | ( | PlannerInfo * | root, | |
| Expr * | expr, | |||
| List * | opfamilies, | |||
| Oid | opcintype, | |||
| Oid | collation, | |||
| Index | sortref, | |||
| Relids | rel, | |||
| bool | create_it | |||
| ) |
Definition at line 539 of file equivclass.c.
References add_eq_member(), bms_equal(), canonicalize_ec_expression(), contain_agg_clause(), contain_volatile_functions(), contain_window_function(), copyObject(), EquivalenceClass::ec_below_outer_join, EquivalenceClass::ec_broken, EquivalenceClass::ec_collation, EquivalenceClass::ec_derives, EquivalenceClass::ec_has_const, EquivalenceClass::ec_has_volatile, EquivalenceClass::ec_members, EquivalenceClass::ec_merged, EquivalenceClass::ec_opfamilies, EquivalenceClass::ec_relids, EquivalenceClass::ec_sortref, EquivalenceClass::ec_sources, elog, EquivalenceMember::em_datatype, EquivalenceMember::em_expr, EquivalenceMember::em_is_child, EquivalenceMember::em_is_const, EquivalenceMember::em_relids, PlannerInfo::eq_classes, equal(), ERROR, expression_returns_set(), lappend(), lfirst, list_copy(), makeNode, MemoryContextSwitchTo(), NULL, PlannerInfo::planner_cxt, and pull_varnos().
Referenced by convert_subquery_pathkeys(), initialize_mergeclause_eclasses(), and make_pathkey_from_sortinfo().
{
EquivalenceClass *newec;
EquivalenceMember *newem;
ListCell *lc1;
MemoryContext oldcontext;
/*
* Ensure the expression exposes the correct type and collation.
*/
expr = canonicalize_ec_expression(expr, opcintype, collation);
/*
* Scan through the existing EquivalenceClasses for a match
*/
foreach(lc1, root->eq_classes)
{
EquivalenceClass *cur_ec = (EquivalenceClass *) lfirst(lc1);
ListCell *lc2;
/*
* Never match to a volatile EC, except when we are looking at another
* reference to the same volatile SortGroupClause.
*/
if (cur_ec->ec_has_volatile &&
(sortref == 0 || sortref != cur_ec->ec_sortref))
continue;
if (collation != cur_ec->ec_collation)
continue;
if (!equal(opfamilies, cur_ec->ec_opfamilies))
continue;
foreach(lc2, cur_ec->ec_members)
{
EquivalenceMember *cur_em = (EquivalenceMember *) lfirst(lc2);
/*
* Ignore child members unless they match the request.
*/
if (cur_em->em_is_child &&
!bms_equal(cur_em->em_relids, rel))
continue;
/*
* If below an outer join, don't match constants: they're not as
* constant as they look.
*/
if (cur_ec->ec_below_outer_join &&
cur_em->em_is_const)
continue;
if (opcintype == cur_em->em_datatype &&
equal(expr, cur_em->em_expr))
return cur_ec; /* Match! */
}
}
/* No match; does caller want a NULL result? */
if (!create_it)
return NULL;
/*
* OK, build a new single-member EC
*
* Here, we must be sure that we construct the EC in the right context.
*/
oldcontext = MemoryContextSwitchTo(root->planner_cxt);
newec = makeNode(EquivalenceClass);
newec->ec_opfamilies = list_copy(opfamilies);
newec->ec_collation = collation;
newec->ec_members = NIL;
newec->ec_sources = NIL;
newec->ec_derives = NIL;
newec->ec_relids = NULL;
newec->ec_has_const = false;
newec->ec_has_volatile = contain_volatile_functions((Node *) expr);
newec->ec_below_outer_join = false;
newec->ec_broken = false;
newec->ec_sortref = sortref;
newec->ec_merged = NULL;
if (newec->ec_has_volatile && sortref == 0) /* should not happen */
elog(ERROR, "volatile EquivalenceClass has no sortref");
newem = add_eq_member(newec, copyObject(expr), pull_varnos((Node *) expr),
NULL, false, opcintype);
/*
* add_eq_member doesn't check for volatile functions, set-returning
* functions, aggregates, or window functions, but such could appear in
* sort expressions; so we have to check whether its const-marking was
* correct.
*/
if (newec->ec_has_const)
{
if (newec->ec_has_volatile ||
expression_returns_set((Node *) expr) ||
contain_agg_clause((Node *) expr) ||
contain_window_function((Node *) expr))
{
newec->ec_has_const = false;
newem->em_is_const = false;
}
}
root->eq_classes = lappend(root->eq_classes, newec);
MemoryContextSwitchTo(oldcontext);
return newec;
}
| bool has_relevant_eclass_joinclause | ( | PlannerInfo * | root, | |
| RelOptInfo * | rel1 | |||
| ) |
Definition at line 2229 of file equivclass.c.
References bms_is_subset(), bms_overlap(), EquivalenceClass::ec_members, EquivalenceClass::ec_relids, PlannerInfo::eq_classes, lfirst, list_length(), and RelOptInfo::relids.
Referenced by build_join_rel(), and generate_base_implied_equalities().
{
ListCell *lc1;
foreach(lc1, root->eq_classes)
{
EquivalenceClass *ec = (EquivalenceClass *) lfirst(lc1);
/*
* Won't generate joinclauses if single-member (this test covers the
* volatile case too)
*/
if (list_length(ec->ec_members) <= 1)
continue;
/*
* Per the comment in have_relevant_eclass_joinclause, it's sufficient
* to find an EC that mentions both this rel and some other rel.
*/
if (bms_overlap(rel1->relids, ec->ec_relids) &&
!bms_is_subset(ec->ec_relids, rel1->relids))
return true;
}
return false;
}
| bool have_relevant_eclass_joinclause | ( | PlannerInfo * | root, | |
| RelOptInfo * | rel1, | |||
| RelOptInfo * | rel2 | |||
| ) |
Definition at line 2175 of file equivclass.c.
References bms_overlap(), EquivalenceClass::ec_members, EquivalenceClass::ec_relids, PlannerInfo::eq_classes, lfirst, list_length(), and RelOptInfo::relids.
Referenced by have_relevant_joinclause().
{
ListCell *lc1;
foreach(lc1, root->eq_classes)
{
EquivalenceClass *ec = (EquivalenceClass *) lfirst(lc1);
/*
* Won't generate joinclauses if single-member (this test covers the
* volatile case too)
*/
if (list_length(ec->ec_members) <= 1)
continue;
/*
* We do not need to examine the individual members of the EC, because
* all that we care about is whether each rel overlaps the relids of
* at least one member, and a test on ec_relids is sufficient to prove
* that. (As with have_relevant_joinclause(), it is not necessary
* that the EC be able to form a joinclause relating exactly the two
* given rels, only that it be able to form a joinclause mentioning
* both, and this will surely be true if both of them overlap
* ec_relids.)
*
* Note we don't test ec_broken; if we did, we'd need a separate code
* path to look through ec_sources. Checking the membership anyway is
* OK as a possibly-overoptimistic heuristic.
*
* We don't test ec_has_const either, even though a const eclass won't
* generate real join clauses. This is because if we had "WHERE a.x =
* b.y and a.x = 42", it is worth considering a join between a and b,
* since the join result is likely to be small even though it'll end
* up being an unqualified nestloop.
*/
if (bms_overlap(rel1->relids, ec->ec_relids) &&
bms_overlap(rel2->relids, ec->ec_relids))
return true;
}
return false;
}
| bool is_redundant_derived_clause | ( | RestrictInfo * | rinfo, | |
| List * | clauselist | |||
| ) |
Definition at line 2315 of file equivclass.c.
References lfirst, NULL, and RestrictInfo::parent_ec.
Referenced by create_indexscan_plan(), and has_indexed_join_quals().
{
EquivalenceClass *parent_ec = rinfo->parent_ec;
ListCell *lc;
/* Fail if it's not a potentially-redundant clause from some EC */
if (parent_ec == NULL)
return false;
foreach(lc, clauselist)
{
RestrictInfo *otherrinfo = (RestrictInfo *) lfirst(lc);
if (otherrinfo->parent_ec == parent_ec)
return true;
}
return false;
}
| void mutate_eclass_expressions | ( | PlannerInfo * | root, | |
| Node *(*)() | mutator, | |||
| void * | context, | |||
| bool | include_child_exprs | |||
| ) |
Definition at line 1997 of file equivclass.c.
References EquivalenceClass::ec_members, EquivalenceMember::em_expr, EquivalenceMember::em_is_child, PlannerInfo::eq_classes, and lfirst.
Referenced by optimize_minmax_aggregates().
{
ListCell *lc1;
foreach(lc1, root->eq_classes)
{
EquivalenceClass *cur_ec = (EquivalenceClass *) lfirst(lc1);
ListCell *lc2;
foreach(lc2, cur_ec->ec_members)
{
EquivalenceMember *cur_em = (EquivalenceMember *) lfirst(lc2);
if (cur_em->em_is_child && !include_child_exprs)
continue; /* ignore children unless requested */
cur_em->em_expr = (Expr *)
mutator((Node *) cur_em->em_expr, context);
}
}
}
| bool process_equivalence | ( | PlannerInfo * | root, | |
| RestrictInfo * | restrictinfo, | |||
| bool | below_outer_join | |||
| ) |
Definition at line 98 of file equivclass.c.
References add_eq_member(), Assert, bms_intersect(), bms_is_empty(), bms_join(), PlannerInfo::canon_pathkeys, canonicalize_ec_expression(), RestrictInfo::clause, contain_nonstrict_functions(), EquivalenceClass::ec_below_outer_join, EquivalenceClass::ec_broken, EquivalenceClass::ec_collation, EquivalenceClass::ec_derives, EquivalenceClass::ec_has_const, EquivalenceClass::ec_has_volatile, EquivalenceClass::ec_members, EquivalenceClass::ec_merged, EquivalenceClass::ec_opfamilies, EquivalenceClass::ec_relids, EquivalenceClass::ec_sortref, EquivalenceClass::ec_sources, elog, EquivalenceMember::em_datatype, EquivalenceMember::em_expr, EquivalenceMember::em_is_child, EquivalenceMember::em_is_const, PlannerInfo::eq_classes, equal(), ERROR, exprType(), get_leftop(), get_rightop(), is_opclause, lappend(), RestrictInfo::left_ec, RestrictInfo::left_em, RestrictInfo::left_relids, lfirst, list_concat(), list_delete_ptr(), list_make1, makeNode, RestrictInfo::mergeopfamilies, NIL, NULL, RestrictInfo::nullable_relids, op_input_types(), RestrictInfo::right_ec, RestrictInfo::right_em, and RestrictInfo::right_relids.
Referenced by distribute_qual_to_rels(), reconsider_full_join_clause(), and reconsider_outer_join_clause().
{
Expr *clause = restrictinfo->clause;
Oid opno,
collation,
item1_type,
item2_type;
Expr *item1;
Expr *item2;
Relids item1_relids,
item2_relids,
item1_nullable_relids,
item2_nullable_relids;
List *opfamilies;
EquivalenceClass *ec1,
*ec2;
EquivalenceMember *em1,
*em2;
ListCell *lc1;
/* Should not already be marked as having generated an eclass */
Assert(restrictinfo->left_ec == NULL);
Assert(restrictinfo->right_ec == NULL);
/* Extract info from given clause */
Assert(is_opclause(clause));
opno = ((OpExpr *) clause)->opno;
collation = ((OpExpr *) clause)->inputcollid;
item1 = (Expr *) get_leftop(clause);
item2 = (Expr *) get_rightop(clause);
item1_relids = restrictinfo->left_relids;
item2_relids = restrictinfo->right_relids;
/*
* Ensure both input expressions expose the desired collation (their types
* should be OK already); see comments for canonicalize_ec_expression.
*/
item1 = canonicalize_ec_expression(item1,
exprType((Node *) item1),
collation);
item2 = canonicalize_ec_expression(item2,
exprType((Node *) item2),
collation);
/*
* Reject clauses of the form X=X. These are not as redundant as they
* might seem at first glance: assuming the operator is strict, this is
* really an expensive way to write X IS NOT NULL. So we must not risk
* just losing the clause, which would be possible if there is already a
* single-element EquivalenceClass containing X. The case is not common
* enough to be worth contorting the EC machinery for, so just reject the
* clause and let it be processed as a normal restriction clause.
*/
if (equal(item1, item2))
return false; /* X=X is not a useful equivalence */
/*
* If below outer join, check for strictness, else reject.
*/
if (below_outer_join)
{
if (!bms_is_empty(item1_relids) &&
contain_nonstrict_functions((Node *) item1))
return false; /* LHS is non-strict but not constant */
if (!bms_is_empty(item2_relids) &&
contain_nonstrict_functions((Node *) item2))
return false; /* RHS is non-strict but not constant */
}
/* Calculate nullable-relid sets for each side of the clause */
item1_nullable_relids = bms_intersect(item1_relids,
restrictinfo->nullable_relids);
item2_nullable_relids = bms_intersect(item2_relids,
restrictinfo->nullable_relids);
/*
* We use the declared input types of the operator, not exprType() of the
* inputs, as the nominal datatypes for opfamily lookup. This presumes
* that btree operators are always registered with amoplefttype and
* amoprighttype equal to their declared input types. We will need this
* info anyway to build EquivalenceMember nodes, and by extracting it now
* we can use type comparisons to short-circuit some equal() tests.
*/
op_input_types(opno, &item1_type, &item2_type);
opfamilies = restrictinfo->mergeopfamilies;
/*
* Sweep through the existing EquivalenceClasses looking for matches to
* item1 and item2. These are the possible outcomes:
*
* 1. We find both in the same EC. The equivalence is already known, so
* there's nothing to do.
*
* 2. We find both in different ECs. Merge the two ECs together.
*
* 3. We find just one. Add the other to its EC.
*
* 4. We find neither. Make a new, two-entry EC.
*
* Note: since all ECs are built through this process or the similar
* search in get_eclass_for_sort_expr(), it's impossible that we'd match
* an item in more than one existing nonvolatile EC. So it's okay to stop
* at the first match.
*/
ec1 = ec2 = NULL;
em1 = em2 = NULL;
foreach(lc1, root->eq_classes)
{
EquivalenceClass *cur_ec = (EquivalenceClass *) lfirst(lc1);
ListCell *lc2;
/* Never match to a volatile EC */
if (cur_ec->ec_has_volatile)
continue;
/*
* The collation has to match; check this first since it's cheaper
* than the opfamily comparison.
*/
if (collation != cur_ec->ec_collation)
continue;
/*
* A "match" requires matching sets of btree opfamilies. Use of
* equal() for this test has implications discussed in the comments
* for get_mergejoin_opfamilies().
*/
if (!equal(opfamilies, cur_ec->ec_opfamilies))
continue;
foreach(lc2, cur_ec->ec_members)
{
EquivalenceMember *cur_em = (EquivalenceMember *) lfirst(lc2);
Assert(!cur_em->em_is_child); /* no children yet */
/*
* If below an outer join, don't match constants: they're not as
* constant as they look.
*/
if ((below_outer_join || cur_ec->ec_below_outer_join) &&
cur_em->em_is_const)
continue;
if (!ec1 &&
item1_type == cur_em->em_datatype &&
equal(item1, cur_em->em_expr))
{
ec1 = cur_ec;
em1 = cur_em;
if (ec2)
break;
}
if (!ec2 &&
item2_type == cur_em->em_datatype &&
equal(item2, cur_em->em_expr))
{
ec2 = cur_ec;
em2 = cur_em;
if (ec1)
break;
}
}
if (ec1 && ec2)
break;
}
/* Sweep finished, what did we find? */
if (ec1 && ec2)
{
/* If case 1, nothing to do, except add to sources */
if (ec1 == ec2)
{
ec1->ec_sources = lappend(ec1->ec_sources, restrictinfo);
ec1->ec_below_outer_join |= below_outer_join;
/* mark the RI as associated with this eclass */
restrictinfo->left_ec = ec1;
restrictinfo->right_ec = ec1;
/* mark the RI as usable with this pair of EMs */
restrictinfo->left_em = em1;
restrictinfo->right_em = em2;
return true;
}
/*
* Case 2: need to merge ec1 and ec2. This should never happen after
* we've built any canonical pathkeys; if it did, those pathkeys might
* be rendered non-canonical by the merge.
*/
if (root->canon_pathkeys != NIL)
elog(ERROR, "too late to merge equivalence classes");
/*
* We add ec2's items to ec1, then set ec2's ec_merged link to point
* to ec1 and remove ec2 from the eq_classes list. We cannot simply
* delete ec2 because that could leave dangling pointers in existing
* PathKeys. We leave it behind with a link so that the merged EC can
* be found.
*/
ec1->ec_members = list_concat(ec1->ec_members, ec2->ec_members);
ec1->ec_sources = list_concat(ec1->ec_sources, ec2->ec_sources);
ec1->ec_derives = list_concat(ec1->ec_derives, ec2->ec_derives);
ec1->ec_relids = bms_join(ec1->ec_relids, ec2->ec_relids);
ec1->ec_has_const |= ec2->ec_has_const;
/* can't need to set has_volatile */
ec1->ec_below_outer_join |= ec2->ec_below_outer_join;
ec2->ec_merged = ec1;
root->eq_classes = list_delete_ptr(root->eq_classes, ec2);
/* just to avoid debugging confusion w/ dangling pointers: */
ec2->ec_members = NIL;
ec2->ec_sources = NIL;
ec2->ec_derives = NIL;
ec2->ec_relids = NULL;
ec1->ec_sources = lappend(ec1->ec_sources, restrictinfo);
ec1->ec_below_outer_join |= below_outer_join;
/* mark the RI as associated with this eclass */
restrictinfo->left_ec = ec1;
restrictinfo->right_ec = ec1;
/* mark the RI as usable with this pair of EMs */
restrictinfo->left_em = em1;
restrictinfo->right_em = em2;
}
else if (ec1)
{
/* Case 3: add item2 to ec1 */
em2 = add_eq_member(ec1, item2, item2_relids, item2_nullable_relids,
false, item2_type);
ec1->ec_sources = lappend(ec1->ec_sources, restrictinfo);
ec1->ec_below_outer_join |= below_outer_join;
/* mark the RI as associated with this eclass */
restrictinfo->left_ec = ec1;
restrictinfo->right_ec = ec1;
/* mark the RI as usable with this pair of EMs */
restrictinfo->left_em = em1;
restrictinfo->right_em = em2;
}
else if (ec2)
{
/* Case 3: add item1 to ec2 */
em1 = add_eq_member(ec2, item1, item1_relids, item1_nullable_relids,
false, item1_type);
ec2->ec_sources = lappend(ec2->ec_sources, restrictinfo);
ec2->ec_below_outer_join |= below_outer_join;
/* mark the RI as associated with this eclass */
restrictinfo->left_ec = ec2;
restrictinfo->right_ec = ec2;
/* mark the RI as usable with this pair of EMs */
restrictinfo->left_em = em1;
restrictinfo->right_em = em2;
}
else
{
/* Case 4: make a new, two-entry EC */
EquivalenceClass *ec = makeNode(EquivalenceClass);
ec->ec_opfamilies = opfamilies;
ec->ec_collation = collation;
ec->ec_members = NIL;
ec->ec_sources = list_make1(restrictinfo);
ec->ec_derives = NIL;
ec->ec_relids = NULL;
ec->ec_has_const = false;
ec->ec_has_volatile = false;
ec->ec_below_outer_join = below_outer_join;
ec->ec_broken = false;
ec->ec_sortref = 0;
ec->ec_merged = NULL;
em1 = add_eq_member(ec, item1, item1_relids, item1_nullable_relids,
false, item1_type);
em2 = add_eq_member(ec, item2, item2_relids, item2_nullable_relids,
false, item2_type);
root->eq_classes = lappend(root->eq_classes, ec);
/* mark the RI as associated with this eclass */
restrictinfo->left_ec = ec;
restrictinfo->right_ec = ec;
/* mark the RI as usable with this pair of EMs */
restrictinfo->left_em = em1;
restrictinfo->right_em = em2;
}
return true;
}
| static bool reconsider_full_join_clause | ( | PlannerInfo * | root, | |
| RestrictInfo * | rinfo | |||
| ) | [static] |
Definition at line 1684 of file equivclass.c.
References CoalesceExpr::args, Assert, bms_copy(), bms_intersect(), build_implied_join_equality(), RestrictInfo::clause, EquivalenceClass::ec_collation, EquivalenceClass::ec_has_const, EquivalenceClass::ec_has_volatile, EquivalenceClass::ec_members, EquivalenceClass::ec_opfamilies, EquivalenceMember::em_datatype, EquivalenceMember::em_expr, EquivalenceMember::em_is_child, EquivalenceMember::em_is_const, PlannerInfo::eq_classes, equal(), get_leftop(), get_rightop(), is_opclause, IsA, RestrictInfo::left_relids, lfirst, linitial, list_delete_ptr(), list_length(), lsecond, RestrictInfo::mergeopfamilies, RestrictInfo::nullable_relids, OidIsValid, op_input_types(), RestrictInfo::outerjoin_delayed, process_equivalence(), RestrictInfo::right_relids, and select_equality_operator().
Referenced by reconsider_outer_join_clauses().
{
Expr *leftvar;
Expr *rightvar;
Oid opno,
collation,
left_type,
right_type;
Relids left_relids,
right_relids,
left_nullable_relids,
right_nullable_relids;
ListCell *lc1;
/* Can't use an outerjoin_delayed clause here */
if (rinfo->outerjoin_delayed)
return false;
/* Extract needed info from the clause */
Assert(is_opclause(rinfo->clause));
opno = ((OpExpr *) rinfo->clause)->opno;
collation = ((OpExpr *) rinfo->clause)->inputcollid;
op_input_types(opno, &left_type, &right_type);
leftvar = (Expr *) get_leftop(rinfo->clause);
rightvar = (Expr *) get_rightop(rinfo->clause);
left_relids = rinfo->left_relids;
right_relids = rinfo->right_relids;
left_nullable_relids = bms_intersect(left_relids,
rinfo->nullable_relids);
right_nullable_relids = bms_intersect(right_relids,
rinfo->nullable_relids);
foreach(lc1, root->eq_classes)
{
EquivalenceClass *cur_ec = (EquivalenceClass *) lfirst(lc1);
EquivalenceMember *coal_em = NULL;
bool match;
bool matchleft;
bool matchright;
ListCell *lc2;
/* Ignore EC unless it contains pseudoconstants */
if (!cur_ec->ec_has_const)
continue;
/* Never match to a volatile EC */
if (cur_ec->ec_has_volatile)
continue;
/* It has to match the outer-join clause as to semantics, too */
if (collation != cur_ec->ec_collation)
continue;
if (!equal(rinfo->mergeopfamilies, cur_ec->ec_opfamilies))
continue;
/*
* Does it contain a COALESCE(leftvar, rightvar) construct?
*
* We can assume the COALESCE() inputs are in the same order as the
* join clause, since both were automatically generated in the cases
* we care about.
*
* XXX currently this may fail to match in cross-type cases because
* the COALESCE will contain typecast operations while the join clause
* may not (if there is a cross-type mergejoin operator available for
* the two column types). Is it OK to strip implicit coercions from
* the COALESCE arguments?
*/
match = false;
foreach(lc2, cur_ec->ec_members)
{
coal_em = (EquivalenceMember *) lfirst(lc2);
Assert(!coal_em->em_is_child); /* no children yet */
if (IsA(coal_em->em_expr, CoalesceExpr))
{
CoalesceExpr *cexpr = (CoalesceExpr *) coal_em->em_expr;
Node *cfirst;
Node *csecond;
if (list_length(cexpr->args) != 2)
continue;
cfirst = (Node *) linitial(cexpr->args);
csecond = (Node *) lsecond(cexpr->args);
if (equal(leftvar, cfirst) && equal(rightvar, csecond))
{
match = true;
break;
}
}
}
if (!match)
continue; /* no match, so ignore this EC */
/*
* Yes it does! Try to generate clauses LEFTVAR = CONSTANT and
* RIGHTVAR = CONSTANT for each CONSTANT in the EC. Note that we must
* succeed with at least one constant for each var before we can
* decide to throw away the outer-join clause.
*/
matchleft = matchright = false;
foreach(lc2, cur_ec->ec_members)
{
EquivalenceMember *cur_em = (EquivalenceMember *) lfirst(lc2);
Oid eq_op;
RestrictInfo *newrinfo;
if (!cur_em->em_is_const)
continue; /* ignore non-const members */
eq_op = select_equality_operator(cur_ec,
left_type,
cur_em->em_datatype);
if (OidIsValid(eq_op))
{
newrinfo = build_implied_join_equality(eq_op,
cur_ec->ec_collation,
leftvar,
cur_em->em_expr,
bms_copy(left_relids),
bms_copy(left_nullable_relids));
if (process_equivalence(root, newrinfo, true))
matchleft = true;
}
eq_op = select_equality_operator(cur_ec,
right_type,
cur_em->em_datatype);
if (OidIsValid(eq_op))
{
newrinfo = build_implied_join_equality(eq_op,
cur_ec->ec_collation,
rightvar,
cur_em->em_expr,
bms_copy(right_relids),
bms_copy(right_nullable_relids));
if (process_equivalence(root, newrinfo, true))
matchright = true;
}
}
/*
* If we were able to equate both vars to constants, we're done, and
* we can throw away the full-join clause as redundant. Moreover, we
* can remove the COALESCE entry from the EC, since the added
* restrictions ensure it will always have the expected value. (We
* don't bother trying to update ec_relids or ec_sources.)
*/
if (matchleft && matchright)
{
cur_ec->ec_members = list_delete_ptr(cur_ec->ec_members, coal_em);
return true;
}
/*
* Otherwise, fall out of the search loop, since we know the COALESCE
* appears in at most one EC (XXX might stop being true if we allow
* stripping of coercions above?)
*/
break;
}
return false; /* failed to make any deduction */
}
| static bool reconsider_outer_join_clause | ( | PlannerInfo * | root, | |
| RestrictInfo * | rinfo, | |||
| bool | outer_on_left | |||
| ) | [static] |
Definition at line 1560 of file equivclass.c.
References Assert, bms_copy(), bms_intersect(), build_implied_join_equality(), RestrictInfo::clause, EquivalenceClass::ec_collation, EquivalenceClass::ec_has_const, EquivalenceClass::ec_has_volatile, EquivalenceClass::ec_members, EquivalenceClass::ec_opfamilies, EquivalenceMember::em_datatype, EquivalenceMember::em_expr, EquivalenceMember::em_is_child, EquivalenceMember::em_is_const, PlannerInfo::eq_classes, equal(), get_leftop(), get_rightop(), is_opclause, RestrictInfo::left_relids, lfirst, RestrictInfo::mergeopfamilies, RestrictInfo::nullable_relids, OidIsValid, op_input_types(), op_strict(), RestrictInfo::outerjoin_delayed, process_equivalence(), RestrictInfo::right_relids, and select_equality_operator().
Referenced by reconsider_outer_join_clauses().
{
Expr *outervar,
*innervar;
Oid opno,
collation,
left_type,
right_type,
inner_datatype;
Relids inner_relids,
inner_nullable_relids;
ListCell *lc1;
Assert(is_opclause(rinfo->clause));
opno = ((OpExpr *) rinfo->clause)->opno;
collation = ((OpExpr *) rinfo->clause)->inputcollid;
/* If clause is outerjoin_delayed, operator must be strict */
if (rinfo->outerjoin_delayed && !op_strict(opno))
return false;
/* Extract needed info from the clause */
op_input_types(opno, &left_type, &right_type);
if (outer_on_left)
{
outervar = (Expr *) get_leftop(rinfo->clause);
innervar = (Expr *) get_rightop(rinfo->clause);
inner_datatype = right_type;
inner_relids = rinfo->right_relids;
}
else
{
outervar = (Expr *) get_rightop(rinfo->clause);
innervar = (Expr *) get_leftop(rinfo->clause);
inner_datatype = left_type;
inner_relids = rinfo->left_relids;
}
inner_nullable_relids = bms_intersect(inner_relids,
rinfo->nullable_relids);
/* Scan EquivalenceClasses for a match to outervar */
foreach(lc1, root->eq_classes)
{
EquivalenceClass *cur_ec = (EquivalenceClass *) lfirst(lc1);
bool match;
ListCell *lc2;
/* Ignore EC unless it contains pseudoconstants */
if (!cur_ec->ec_has_const)
continue;
/* Never match to a volatile EC */
if (cur_ec->ec_has_volatile)
continue;
/* It has to match the outer-join clause as to semantics, too */
if (collation != cur_ec->ec_collation)
continue;
if (!equal(rinfo->mergeopfamilies, cur_ec->ec_opfamilies))
continue;
/* Does it contain a match to outervar? */
match = false;
foreach(lc2, cur_ec->ec_members)
{
EquivalenceMember *cur_em = (EquivalenceMember *) lfirst(lc2);
Assert(!cur_em->em_is_child); /* no children yet */
if (equal(outervar, cur_em->em_expr))
{
match = true;
break;
}
}
if (!match)
continue; /* no match, so ignore this EC */
/*
* Yes it does! Try to generate a clause INNERVAR = CONSTANT for each
* CONSTANT in the EC. Note that we must succeed with at least one
* constant before we can decide to throw away the outer-join clause.
*/
match = false;
foreach(lc2, cur_ec->ec_members)
{
EquivalenceMember *cur_em = (EquivalenceMember *) lfirst(lc2);
Oid eq_op;
RestrictInfo *newrinfo;
if (!cur_em->em_is_const)
continue; /* ignore non-const members */
eq_op = select_equality_operator(cur_ec,
inner_datatype,
cur_em->em_datatype);
if (!OidIsValid(eq_op))
continue; /* can't generate equality */
newrinfo = build_implied_join_equality(eq_op,
cur_ec->ec_collation,
innervar,
cur_em->em_expr,
bms_copy(inner_relids),
bms_copy(inner_nullable_relids));
if (process_equivalence(root, newrinfo, true))
match = true;
}
/*
* If we were able to equate INNERVAR to any constant, report success.
* Otherwise, fall out of the search loop, since we know the OUTERVAR
* appears in at most one EC.
*/
if (match)
return true;
else
break;
}
return false; /* failed to make any deduction */
}
| void reconsider_outer_join_clauses | ( | PlannerInfo * | root | ) |
Definition at line 1451 of file equivclass.c.
References distribute_restrictinfo_to_rels(), PlannerInfo::full_join_clauses, PlannerInfo::left_join_clauses, lfirst, list_delete_cell(), list_head(), lnext, RangeQueryClause::next, RestrictInfo::norm_selec, RestrictInfo::outer_selec, reconsider_full_join_clause(), reconsider_outer_join_clause(), and PlannerInfo::right_join_clauses.
Referenced by query_planner().
{
bool found;
ListCell *cell;
ListCell *prev;
ListCell *next;
/* Outer loop repeats until we find no more deductions */
do
{
found = false;
/* Process the LEFT JOIN clauses */
prev = NULL;
for (cell = list_head(root->left_join_clauses); cell; cell = next)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(cell);
next = lnext(cell);
if (reconsider_outer_join_clause(root, rinfo, true))
{
found = true;
/* remove it from the list */
root->left_join_clauses =
list_delete_cell(root->left_join_clauses, cell, prev);
/* we throw it back anyway (see notes above) */
/* but the thrown-back clause has no extra selectivity */
rinfo->norm_selec = 2.0;
rinfo->outer_selec = 1.0;
distribute_restrictinfo_to_rels(root, rinfo);
}
else
prev = cell;
}
/* Process the RIGHT JOIN clauses */
prev = NULL;
for (cell = list_head(root->right_join_clauses); cell; cell = next)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(cell);
next = lnext(cell);
if (reconsider_outer_join_clause(root, rinfo, false))
{
found = true;
/* remove it from the list */
root->right_join_clauses =
list_delete_cell(root->right_join_clauses, cell, prev);
/* we throw it back anyway (see notes above) */
/* but the thrown-back clause has no extra selectivity */
rinfo->norm_selec = 2.0;
rinfo->outer_selec = 1.0;
distribute_restrictinfo_to_rels(root, rinfo);
}
else
prev = cell;
}
/* Process the FULL JOIN clauses */
prev = NULL;
for (cell = list_head(root->full_join_clauses); cell; cell = next)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(cell);
next = lnext(cell);
if (reconsider_full_join_clause(root, rinfo))
{
found = true;
/* remove it from the list */
root->full_join_clauses =
list_delete_cell(root->full_join_clauses, cell, prev);
/* we throw it back anyway (see notes above) */
/* but the thrown-back clause has no extra selectivity */
rinfo->norm_selec = 2.0;
rinfo->outer_selec = 1.0;
distribute_restrictinfo_to_rels(root, rinfo);
}
else
prev = cell;
}
} while (found);
/* Now, any remaining clauses have to be thrown back */
foreach(cell, root->left_join_clauses)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(cell);
distribute_restrictinfo_to_rels(root, rinfo);
}
foreach(cell, root->right_join_clauses)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(cell);
distribute_restrictinfo_to_rels(root, rinfo);
}
foreach(cell, root->full_join_clauses)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(cell);
distribute_restrictinfo_to_rels(root, rinfo);
}
}
| static Oid select_equality_operator | ( | EquivalenceClass * | ec, | |
| Oid | lefttype, | |||
| Oid | righttype | |||
| ) | [static] |
Definition at line 1270 of file equivclass.c.
References BTEqualStrategyNumber, EquivalenceClass::ec_opfamilies, get_opfamily_member(), lfirst_oid, and OidIsValid.
Referenced by generate_base_implied_equalities_const(), generate_base_implied_equalities_no_const(), generate_implied_equalities_for_column(), generate_join_implied_equalities_normal(), reconsider_full_join_clause(), and reconsider_outer_join_clause().
{
ListCell *lc;
foreach(lc, ec->ec_opfamilies)
{
Oid opfamily = lfirst_oid(lc);
Oid opno;
opno = get_opfamily_member(opfamily, lefttype, righttype,
BTEqualStrategyNumber);
if (OidIsValid(opno))
return opno;
}
return InvalidOid;
}
1.7.1