#include "postgres.h"
#include "access/skey.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "nodes/plannodes.h"
#include "optimizer/clauses.h"
#include "optimizer/pathnode.h"
#include "optimizer/paths.h"
#include "optimizer/tlist.h"
#include "utils/lsyscache.h"
Go to the source code of this file.
List* build_index_pathkeys | ( | PlannerInfo * | root, | |
IndexOptInfo * | index, | |||
ScanDirection | scandir | |||
) |
Definition at line 430 of file pathkeys.c.
References TargetEntry::expr, i, IndexOptInfo::indexcollations, IndexOptInfo::indextlist, lappend(), lfirst, make_pathkey_from_sortinfo(), NULL, IndexOptInfo::nulls_first, IndexOptInfo::opcintype, pathkey_is_redundant(), IndexOptInfo::rel, RelOptInfo::relids, IndexOptInfo::reverse_sort, ScanDirectionIsBackward, and IndexOptInfo::sortopfamily.
Referenced by build_index_paths().
{ List *retval = NIL; ListCell *lc; int i; if (index->sortopfamily == NULL) return NIL; /* non-orderable index */ i = 0; foreach(lc, index->indextlist) { TargetEntry *indextle = (TargetEntry *) lfirst(lc); Expr *indexkey; bool reverse_sort; bool nulls_first; PathKey *cpathkey; /* We assume we don't need to make a copy of the tlist item */ indexkey = indextle->expr; if (ScanDirectionIsBackward(scandir)) { reverse_sort = !index->reverse_sort[i]; nulls_first = !index->nulls_first[i]; } else { reverse_sort = index->reverse_sort[i]; nulls_first = index->nulls_first[i]; } /* OK, try to make a canonical pathkey for this sort key */ cpathkey = make_pathkey_from_sortinfo(root, indexkey, index->sortopfamily[i], index->opcintype[i], index->indexcollations[i], reverse_sort, nulls_first, 0, index->rel->relids, false); /* * If the sort key isn't already present in any EquivalenceClass, then * it's not an interesting sort order for this query. So we can stop * now --- lower-order sort keys aren't useful either. */ if (!cpathkey) break; /* Add to list unless redundant */ if (!pathkey_is_redundant(cpathkey, retval)) retval = lappend(retval, cpathkey); i++; } return retval; }
List* build_join_pathkeys | ( | PlannerInfo * | root, | |
RelOptInfo * | joinrel, | |||
JoinType | jointype, | |||
List * | outer_pathkeys | |||
) |
Definition at line 719 of file pathkeys.c.
References JOIN_FULL, JOIN_RIGHT, and truncate_useless_pathkeys().
Referenced by match_unsorted_outer(), and sort_inner_and_outer().
{ if (jointype == JOIN_FULL || jointype == JOIN_RIGHT) return NIL; /* * This used to be quite a complex bit of code, but now that all pathkey * sublists start out life canonicalized, we don't have to do a darn thing * here! * * We do, however, need to truncate the pathkeys list, since it may * contain pathkeys that were useful for forming this joinrel but are * uninteresting to higher levels. */ return truncate_useless_pathkeys(root, joinrel, outer_pathkeys); }
PathKeysComparison compare_pathkeys | ( | List * | keys1, | |
List * | keys2 | |||
) |
Definition at line 275 of file pathkeys.c.
References forboth, lfirst, and NULL.
Referenced by add_path(), add_path_precheck(), pathkeys_contained_in(), set_append_rel_pathlist(), and set_cheapest().
{ ListCell *key1, *key2; /* * Fall out quickly if we are passed two identical lists. This mostly * catches the case where both are NIL, but that's common enough to * warrant the test. */ if (keys1 == keys2) return PATHKEYS_EQUAL; forboth(key1, keys1, key2, keys2) { PathKey *pathkey1 = (PathKey *) lfirst(key1); PathKey *pathkey2 = (PathKey *) lfirst(key2); if (pathkey1 != pathkey2) return PATHKEYS_DIFFERENT; /* no need to keep looking */ } /* * If we reached the end of only one list, the other is longer and * therefore not a subset. */ if (key1 != NULL) return PATHKEYS_BETTER1; /* key1 is longer */ if (key2 != NULL) return PATHKEYS_BETTER2; /* key2 is longer */ return PATHKEYS_EQUAL; }
List* convert_subquery_pathkeys | ( | PlannerInfo * | root, | |
RelOptInfo * | rel, | |||
List * | subquery_pathkeys | |||
) |
Definition at line 508 of file pathkeys.c.
References Assert, canonicalize_ec_expression(), EquivalenceClass::ec_collation, EquivalenceClass::ec_has_volatile, EquivalenceClass::ec_members, EquivalenceClass::ec_opfamilies, EquivalenceClass::ec_sortref, elog, EquivalenceMember::em_datatype, EquivalenceMember::em_expr, EquivalenceMember::em_is_child, equal(), ERROR, TargetEntry::expr, get_eclass_for_sort_expr(), get_sortgroupref_tle(), i, lappend(), lfirst, linitial, list_length(), list_nth(), make_canonical_pathkey(), makeVarFromTargetEntry(), pathkey_is_redundant(), PathKey::pk_eclass, PathKey::pk_nulls_first, PathKey::pk_opfamily, PathKey::pk_strategy, PlannerInfo::query_pathkeys, RelOptInfo::relid, RelOptInfo::relids, TargetEntry::resjunk, RelOptInfo::subplan, and Plan::targetlist.
Referenced by set_subquery_pathlist().
{ List *retval = NIL; int retvallen = 0; int outer_query_keys = list_length(root->query_pathkeys); List *sub_tlist = rel->subplan->targetlist; ListCell *i; foreach(i, subquery_pathkeys) { PathKey *sub_pathkey = (PathKey *) lfirst(i); EquivalenceClass *sub_eclass = sub_pathkey->pk_eclass; PathKey *best_pathkey = NULL; if (sub_eclass->ec_has_volatile) { /* * If the sub_pathkey's EquivalenceClass is volatile, then it must * have come from an ORDER BY clause, and we have to match it to * that same targetlist entry. */ TargetEntry *tle; if (sub_eclass->ec_sortref == 0) /* can't happen */ elog(ERROR, "volatile EquivalenceClass has no sortref"); tle = get_sortgroupref_tle(sub_eclass->ec_sortref, sub_tlist); Assert(tle); /* resjunk items aren't visible to outer query */ if (!tle->resjunk) { /* We can represent this sub_pathkey */ EquivalenceMember *sub_member; Expr *outer_expr; EquivalenceClass *outer_ec; Assert(list_length(sub_eclass->ec_members) == 1); sub_member = (EquivalenceMember *) linitial(sub_eclass->ec_members); outer_expr = (Expr *) makeVarFromTargetEntry(rel->relid, tle); /* * Note: it might look funny to be setting sortref = 0 for a * reference to a volatile sub_eclass. However, the * expression is *not* volatile in the outer query: it's just * a Var referencing whatever the subquery emitted. (IOW, the * outer query isn't going to re-execute the volatile * expression itself.) So this is okay. */ outer_ec = get_eclass_for_sort_expr(root, outer_expr, sub_eclass->ec_opfamilies, sub_member->em_datatype, sub_eclass->ec_collation, 0, rel->relids, false); /* * If we don't find a matching EC, sub-pathkey isn't * interesting to the outer query */ if (outer_ec) best_pathkey = make_canonical_pathkey(root, outer_ec, sub_pathkey->pk_opfamily, sub_pathkey->pk_strategy, sub_pathkey->pk_nulls_first); } } else { /* * Otherwise, the sub_pathkey's EquivalenceClass could contain * multiple elements (representing knowledge that multiple items * are effectively equal). Each element might match none, one, or * more of the output columns that are visible to the outer query. * This means we may have multiple possible representations of the * sub_pathkey in the context of the outer query. Ideally we * would generate them all and put them all into an EC of the * outer query, thereby propagating equality knowledge up to the * outer query. Right now we cannot do so, because the outer * query's EquivalenceClasses are already frozen when this is * called. Instead we prefer the one that has the highest "score" * (number of EC peers, plus one if it matches the outer * query_pathkeys). This is the most likely to be useful in the * outer query. */ int best_score = -1; ListCell *j; foreach(j, sub_eclass->ec_members) { EquivalenceMember *sub_member = (EquivalenceMember *) lfirst(j); Expr *sub_expr = sub_member->em_expr; Oid sub_expr_type = sub_member->em_datatype; Oid sub_expr_coll = sub_eclass->ec_collation; ListCell *k; if (sub_member->em_is_child) continue; /* ignore children here */ foreach(k, sub_tlist) { TargetEntry *tle = (TargetEntry *) lfirst(k); Expr *tle_expr; Expr *outer_expr; EquivalenceClass *outer_ec; PathKey *outer_pk; int score; /* resjunk items aren't visible to outer query */ if (tle->resjunk) continue; /* * The targetlist entry is considered to match if it * matches after sort-key canonicalization. That is * needed since the sub_expr has been through the same * process. */ tle_expr = canonicalize_ec_expression(tle->expr, sub_expr_type, sub_expr_coll); if (!equal(tle_expr, sub_expr)) continue; /* * Build a representation of this targetlist entry as an * outer Var. */ outer_expr = (Expr *) makeVarFromTargetEntry(rel->relid, tle); /* See if we have a matching EC for that */ outer_ec = get_eclass_for_sort_expr(root, outer_expr, sub_eclass->ec_opfamilies, sub_expr_type, sub_expr_coll, 0, rel->relids, false); /* * If we don't find a matching EC, this sub-pathkey isn't * interesting to the outer query */ if (!outer_ec) continue; outer_pk = make_canonical_pathkey(root, outer_ec, sub_pathkey->pk_opfamily, sub_pathkey->pk_strategy, sub_pathkey->pk_nulls_first); /* score = # of equivalence peers */ score = list_length(outer_ec->ec_members) - 1; /* +1 if it matches the proper query_pathkeys item */ if (retvallen < outer_query_keys && list_nth(root->query_pathkeys, retvallen) == outer_pk) score++; if (score > best_score) { best_pathkey = outer_pk; best_score = score; } } } } /* * If we couldn't find a representation of this sub_pathkey, we're * done (we can't use the ones to its right, either). */ if (!best_pathkey) break; /* * Eliminate redundant ordering info; could happen if outer query * equivalences subquery keys... */ if (!pathkey_is_redundant(best_pathkey, retval)) { retval = lappend(retval, best_pathkey); retvallen++; } } return retval; }
List* find_mergeclauses_for_pathkeys | ( | PlannerInfo * | root, | |
List * | pathkeys, | |||
bool | outer_keys, | |||
List * | restrictinfos | |||
) |
Definition at line 890 of file pathkeys.c.
References i, lappend(), RestrictInfo::left_ec, lfirst, list_concat(), NIL, RestrictInfo::outer_is_left, PathKey::pk_eclass, RestrictInfo::right_ec, and update_mergeclause_eclasses().
Referenced by match_unsorted_outer(), and sort_inner_and_outer().
{ List *mergeclauses = NIL; ListCell *i; /* make sure we have eclasses cached in the clauses */ foreach(i, restrictinfos) { RestrictInfo *rinfo = (RestrictInfo *) lfirst(i); update_mergeclause_eclasses(root, rinfo); } foreach(i, pathkeys) { PathKey *pathkey = (PathKey *) lfirst(i); EquivalenceClass *pathkey_ec = pathkey->pk_eclass; List *matched_restrictinfos = NIL; ListCell *j; /*---------- * A mergejoin clause matches a pathkey if it has the same EC. * If there are multiple matching clauses, take them all. In plain * inner-join scenarios we expect only one match, because * equivalence-class processing will have removed any redundant * mergeclauses. However, in outer-join scenarios there might be * multiple matches. An example is * * select * from a full join b * on a.v1 = b.v1 and a.v2 = b.v2 and a.v1 = b.v2; * * Given the pathkeys ({a.v1}, {a.v2}) it is okay to return all three * clauses (in the order a.v1=b.v1, a.v1=b.v2, a.v2=b.v2) and indeed * we *must* do so or we will be unable to form a valid plan. * * We expect that the given pathkeys list is canonical, which means * no two members have the same EC, so it's not possible for this * code to enter the same mergeclause into the result list twice. * * It's possible that multiple matching clauses might have different * ECs on the other side, in which case the order we put them into our * result makes a difference in the pathkeys required for the other * input path. However this routine hasn't got any info about which * order would be best, so we don't worry about that. * * It's also possible that the selected mergejoin clauses produce * a noncanonical ordering of pathkeys for the other side, ie, we * might select clauses that reference b.v1, b.v2, b.v1 in that * order. This is not harmful in itself, though it suggests that * the clauses are partially redundant. Since it happens only with * redundant query conditions, we don't bother to eliminate it. * make_inner_pathkeys_for_merge() has to delete duplicates when * it constructs the canonical pathkeys list, and we also have to * deal with the case in create_mergejoin_plan(). *---------- */ foreach(j, restrictinfos) { RestrictInfo *rinfo = (RestrictInfo *) lfirst(j); EquivalenceClass *clause_ec; if (outer_keys) clause_ec = rinfo->outer_is_left ? rinfo->left_ec : rinfo->right_ec; else clause_ec = rinfo->outer_is_left ? rinfo->right_ec : rinfo->left_ec; if (clause_ec == pathkey_ec) matched_restrictinfos = lappend(matched_restrictinfos, rinfo); } /* * If we didn't find a mergeclause, we're done --- any additional * sort-key positions in the pathkeys are useless. (But we can still * mergejoin if we found at least one mergeclause.) */ if (matched_restrictinfos == NIL) break; /* * If we did find usable mergeclause(s) for this sort-key position, * add them to result list. */ mergeclauses = list_concat(mergeclauses, matched_restrictinfos); } return mergeclauses; }
Path* get_cheapest_fractional_path_for_pathkeys | ( | List * | paths, | |
List * | pathkeys, | |||
Relids | required_outer, | |||
double | fraction | |||
) |
Definition at line 380 of file pathkeys.c.
References bms_is_subset(), compare_fractional_path_costs(), lfirst, NULL, PATH_REQ_OUTER, Path::pathkeys, and pathkeys_contained_in().
Referenced by query_planner().
{ Path *matched_path = NULL; ListCell *l; foreach(l, paths) { Path *path = (Path *) lfirst(l); /* * Since cost comparison is a lot cheaper than pathkey comparison, do * that first. (XXX is that still true?) */ if (matched_path != NULL && compare_fractional_path_costs(matched_path, path, fraction) <= 0) continue; if (pathkeys_contained_in(pathkeys, path->pathkeys) && bms_is_subset(PATH_REQ_OUTER(path), required_outer)) matched_path = path; } return matched_path; }
Path* get_cheapest_path_for_pathkeys | ( | List * | paths, | |
List * | pathkeys, | |||
Relids | required_outer, | |||
CostSelector | cost_criterion | |||
) |
Definition at line 339 of file pathkeys.c.
References bms_is_subset(), compare_path_costs(), lfirst, NULL, PATH_REQ_OUTER, Path::pathkeys, and pathkeys_contained_in().
Referenced by generate_mergeappend_paths(), match_unsorted_outer(), and set_append_rel_pathlist().
{ Path *matched_path = NULL; ListCell *l; foreach(l, paths) { Path *path = (Path *) lfirst(l); /* * Since cost comparison is a lot cheaper than pathkey comparison, do * that first. (XXX is that still true?) */ if (matched_path != NULL && compare_path_costs(matched_path, path, cost_criterion) <= 0) continue; if (pathkeys_contained_in(pathkeys, path->pathkeys) && bms_is_subset(PATH_REQ_OUTER(path), required_outer)) matched_path = path; } return matched_path; }
bool has_useful_pathkeys | ( | PlannerInfo * | root, | |
RelOptInfo * | rel | |||
) |
Definition at line 1445 of file pathkeys.c.
References RelOptInfo::has_eclass_joins, RelOptInfo::joininfo, NIL, and PlannerInfo::query_pathkeys.
Referenced by build_index_paths(), and set_append_rel_size().
{ if (rel->joininfo != NIL || rel->has_eclass_joins) return true; /* might be able to use pathkeys for merging */ if (root->query_pathkeys != NIL) return true; /* might be able to use them for ordering */ return false; /* definitely useless */ }
void initialize_mergeclause_eclasses | ( | PlannerInfo * | root, | |
RestrictInfo * | restrictinfo | |||
) |
Definition at line 808 of file pathkeys.c.
References Assert, RestrictInfo::clause, get_eclass_for_sort_expr(), get_leftop(), get_rightop(), RestrictInfo::left_ec, RestrictInfo::mergeopfamilies, NIL, NULL, op_input_types(), and RestrictInfo::right_ec.
Referenced by distribute_qual_to_rels().
{ Expr *clause = restrictinfo->clause; Oid lefttype, righttype; /* Should be a mergeclause ... */ Assert(restrictinfo->mergeopfamilies != NIL); /* ... with links not yet set */ Assert(restrictinfo->left_ec == NULL); Assert(restrictinfo->right_ec == NULL); /* Need the declared input types of the operator */ op_input_types(((OpExpr *) clause)->opno, &lefttype, &righttype); /* Find or create a matching EquivalenceClass for each side */ restrictinfo->left_ec = get_eclass_for_sort_expr(root, (Expr *) get_leftop(clause), restrictinfo->mergeopfamilies, lefttype, ((OpExpr *) clause)->inputcollid, 0, NULL, true); restrictinfo->right_ec = get_eclass_for_sort_expr(root, (Expr *) get_rightop(clause), restrictinfo->mergeopfamilies, righttype, ((OpExpr *) clause)->inputcollid, 0, NULL, true); }
static PathKey * make_canonical_pathkey | ( | PlannerInfo * | root, | |
EquivalenceClass * | eclass, | |||
Oid | opfamily, | |||
int | strategy, | |||
bool | nulls_first | |||
) | [static] |
Definition at line 54 of file pathkeys.c.
References PlannerInfo::canon_pathkeys, EquivalenceClass::ec_merged, lappend(), lfirst, makeNode, MemoryContextSwitchTo(), PathKey::pk_eclass, PathKey::pk_nulls_first, PathKey::pk_opfamily, PathKey::pk_strategy, and PlannerInfo::planner_cxt.
Referenced by convert_subquery_pathkeys(), make_inner_pathkeys_for_merge(), make_pathkey_from_sortinfo(), and select_outer_pathkeys_for_merge().
{ PathKey *pk; ListCell *lc; MemoryContext oldcontext; /* The passed eclass might be non-canonical, so chase up to the top */ while (eclass->ec_merged) eclass = eclass->ec_merged; foreach(lc, root->canon_pathkeys) { pk = (PathKey *) lfirst(lc); if (eclass == pk->pk_eclass && opfamily == pk->pk_opfamily && strategy == pk->pk_strategy && nulls_first == pk->pk_nulls_first) return pk; } /* * Be sure canonical pathkeys are allocated in the main planning context. * Not an issue in normal planning, but it is for GEQO. */ oldcontext = MemoryContextSwitchTo(root->planner_cxt); pk = makeNode(PathKey); pk->pk_eclass = eclass; pk->pk_opfamily = opfamily; pk->pk_strategy = strategy; pk->pk_nulls_first = nulls_first; root->canon_pathkeys = lappend(root->canon_pathkeys, pk); MemoryContextSwitchTo(oldcontext); return pk; }
List* make_inner_pathkeys_for_merge | ( | PlannerInfo * | root, | |
List * | mergeclauses, | |||
List * | outer_pathkeys | |||
) |
Definition at line 1179 of file pathkeys.c.
References elog, ERROR, lappend(), RestrictInfo::left_ec, lfirst, list_head(), lnext, make_canonical_pathkey(), RestrictInfo::outer_is_left, pathkey_is_redundant(), PathKey::pk_eclass, PathKey::pk_nulls_first, PathKey::pk_opfamily, PathKey::pk_strategy, RestrictInfo::right_ec, and update_mergeclause_eclasses().
Referenced by match_unsorted_outer(), and sort_inner_and_outer().
{ List *pathkeys = NIL; EquivalenceClass *lastoeclass; PathKey *opathkey; ListCell *lc; ListCell *lop; lastoeclass = NULL; opathkey = NULL; lop = list_head(outer_pathkeys); foreach(lc, mergeclauses) { RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc); EquivalenceClass *oeclass; EquivalenceClass *ieclass; PathKey *pathkey; update_mergeclause_eclasses(root, rinfo); if (rinfo->outer_is_left) { oeclass = rinfo->left_ec; ieclass = rinfo->right_ec; } else { oeclass = rinfo->right_ec; ieclass = rinfo->left_ec; } /* outer eclass should match current or next pathkeys */ /* we check this carefully for debugging reasons */ if (oeclass != lastoeclass) { if (!lop) elog(ERROR, "too few pathkeys for mergeclauses"); opathkey = (PathKey *) lfirst(lop); lop = lnext(lop); lastoeclass = opathkey->pk_eclass; if (oeclass != lastoeclass) elog(ERROR, "outer pathkeys do not match mergeclause"); } /* * Often, we'll have same EC on both sides, in which case the outer * pathkey is also canonical for the inner side, and we can skip a * useless search. */ if (ieclass == oeclass) pathkey = opathkey; else pathkey = make_canonical_pathkey(root, ieclass, opathkey->pk_opfamily, opathkey->pk_strategy, opathkey->pk_nulls_first); /* * Don't generate redundant pathkeys (can happen if multiple * mergeclauses refer to same EC). */ if (!pathkey_is_redundant(pathkey, pathkeys)) pathkeys = lappend(pathkeys, pathkey); } return pathkeys; }
static PathKey* make_pathkey_from_sortinfo | ( | PlannerInfo * | root, | |
Expr * | expr, | |||
Oid | opfamily, | |||
Oid | opcintype, | |||
Oid | collation, | |||
bool | reverse_sort, | |||
bool | nulls_first, | |||
Index | sortref, | |||
Relids | rel, | |||
bool | create_it | |||
) | [static] |
Definition at line 170 of file pathkeys.c.
References BTEqualStrategyNumber, BTGreaterStrategyNumber, elog, ERROR, get_eclass_for_sort_expr(), get_mergejoin_opfamilies(), get_opfamily_member(), make_canonical_pathkey(), and OidIsValid.
Referenced by build_index_pathkeys(), and make_pathkey_from_sortop().
{ int16 strategy; Oid equality_op; List *opfamilies; EquivalenceClass *eclass; strategy = reverse_sort ? BTGreaterStrategyNumber : BTLessStrategyNumber; /* * EquivalenceClasses need to contain opfamily lists based on the family * membership of mergejoinable equality operators, which could belong to * more than one opfamily. So we have to look up the opfamily's equality * operator and get its membership. */ equality_op = get_opfamily_member(opfamily, opcintype, opcintype, BTEqualStrategyNumber); if (!OidIsValid(equality_op)) /* shouldn't happen */ elog(ERROR, "could not find equality operator for opfamily %u", opfamily); opfamilies = get_mergejoin_opfamilies(equality_op); if (!opfamilies) /* certainly should find some */ elog(ERROR, "could not find opfamilies for equality operator %u", equality_op); /* Now find or (optionally) create a matching EquivalenceClass */ eclass = get_eclass_for_sort_expr(root, expr, opfamilies, opcintype, collation, sortref, rel, create_it); /* Fail if no EC and !create_it */ if (!eclass) return NULL; /* And finally we can find or create a PathKey node */ return make_canonical_pathkey(root, eclass, opfamily, strategy, nulls_first); }
static PathKey* make_pathkey_from_sortop | ( | PlannerInfo * | root, | |
Expr * | expr, | |||
Oid | ordering_op, | |||
bool | nulls_first, | |||
Index | sortref, | |||
bool | create_it | |||
) | [static] |
Definition at line 228 of file pathkeys.c.
References BTGreaterStrategyNumber, elog, ERROR, exprCollation(), get_ordering_op_properties(), make_pathkey_from_sortinfo(), and NULL.
Referenced by make_pathkeys_for_sortclauses().
{ Oid opfamily, opcintype, collation; int16 strategy; /* Find the operator in pg_amop --- failure shouldn't happen */ if (!get_ordering_op_properties(ordering_op, &opfamily, &opcintype, &strategy)) elog(ERROR, "operator %u is not a valid ordering operator", ordering_op); /* Because SortGroupClause doesn't carry collation, consult the expr */ collation = exprCollation((Node *) expr); return make_pathkey_from_sortinfo(root, expr, opfamily, opcintype, collation, (strategy == BTGreaterStrategyNumber), nulls_first, sortref, NULL, create_it); }
List* make_pathkeys_for_sortclauses | ( | PlannerInfo * | root, | |
List * | sortclauses, | |||
List * | tlist | |||
) |
Definition at line 755 of file pathkeys.c.
References Assert, get_sortgroupclause_expr(), lappend(), lfirst, make_pathkey_from_sortop(), SortGroupClause::nulls_first, OidIsValid, pathkey_is_redundant(), SortGroupClause::sortop, and SortGroupClause::tleSortGroupRef.
Referenced by get_column_info_for_window(), grouping_planner(), make_pathkeys_for_window(), minmax_qp_callback(), and standard_qp_callback().
{ List *pathkeys = NIL; ListCell *l; foreach(l, sortclauses) { SortGroupClause *sortcl = (SortGroupClause *) lfirst(l); Expr *sortkey; PathKey *pathkey; sortkey = (Expr *) get_sortgroupclause_expr(sortcl, tlist); Assert(OidIsValid(sortcl->sortop)); pathkey = make_pathkey_from_sortop(root, sortkey, sortcl->sortop, sortcl->nulls_first, sortcl->tleSortGroupRef, true); /* Canonical form eliminates redundant ordering keys */ if (!pathkey_is_redundant(pathkey, pathkeys)) pathkeys = lappend(pathkeys, pathkey); } return pathkeys; }
Definition at line 131 of file pathkeys.c.
References EC_MUST_BE_REDUNDANT, lfirst, and PathKey::pk_eclass.
Referenced by build_index_pathkeys(), convert_subquery_pathkeys(), make_inner_pathkeys_for_merge(), make_pathkeys_for_sortclauses(), and select_outer_pathkeys_for_merge().
{ EquivalenceClass *new_ec = new_pathkey->pk_eclass; ListCell *lc; /* Check for EC containing a constant --- unconditionally redundant */ if (EC_MUST_BE_REDUNDANT(new_ec)) return true; /* If same EC already used in list, then redundant */ foreach(lc, pathkeys) { PathKey *old_pathkey = (PathKey *) lfirst(lc); if (new_ec == old_pathkey->pk_eclass) return true; } return false; }
Definition at line 314 of file pathkeys.c.
References compare_pathkeys(), PATHKEYS_BETTER2, and PATHKEYS_EQUAL.
Referenced by build_minmax_path(), choose_hashed_distinct(), choose_hashed_grouping(), create_merge_append_path(), create_merge_append_plan(), get_cheapest_fractional_path_for_pathkeys(), get_cheapest_path_for_pathkeys(), grouping_planner(), match_unsorted_outer(), pathkeys_useful_for_ordering(), query_planner(), and try_mergejoin_path().
{ switch (compare_pathkeys(keys1, keys2)) { case PATHKEYS_EQUAL: case PATHKEYS_BETTER2: return true; default: break; } return false; }
static int pathkeys_useful_for_merging | ( | PlannerInfo * | root, | |
RelOptInfo * | rel, | |||
List * | pathkeys | |||
) | [static] |
Definition at line 1280 of file pathkeys.c.
References eclass_useful_for_merging(), RelOptInfo::has_eclass_joins, i, RelOptInfo::joininfo, RestrictInfo::left_ec, lfirst, RestrictInfo::mergeopfamilies, NIL, PathKey::pk_eclass, RestrictInfo::right_ec, right_merge_direction(), and update_mergeclause_eclasses().
Referenced by truncate_useless_pathkeys().
{ int useful = 0; ListCell *i; foreach(i, pathkeys) { PathKey *pathkey = (PathKey *) lfirst(i); bool matched = false; ListCell *j; /* If "wrong" direction, not useful for merging */ if (!right_merge_direction(root, pathkey)) break; /* * First look into the EquivalenceClass of the pathkey, to see if * there are any members not yet joined to the rel. If so, it's * surely possible to generate a mergejoin clause using them. */ if (rel->has_eclass_joins && eclass_useful_for_merging(pathkey->pk_eclass, rel)) matched = true; else { /* * Otherwise search the rel's joininfo list, which contains * non-EquivalenceClass-derivable join clauses that might * nonetheless be mergejoinable. */ foreach(j, rel->joininfo) { RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(j); if (restrictinfo->mergeopfamilies == NIL) continue; update_mergeclause_eclasses(root, restrictinfo); if (pathkey->pk_eclass == restrictinfo->left_ec || pathkey->pk_eclass == restrictinfo->right_ec) { matched = true; break; } } } /* * If we didn't find a mergeclause, we're done --- any additional * sort-key positions in the pathkeys are useless. (But we can still * mergejoin if we found at least one mergeclause.) */ if (matched) useful++; else break; } return useful; }
static int pathkeys_useful_for_ordering | ( | PlannerInfo * | root, | |
List * | pathkeys | |||
) | [static] |
Definition at line 1383 of file pathkeys.c.
References list_length(), NIL, pathkeys_contained_in(), and PlannerInfo::query_pathkeys.
Referenced by truncate_useless_pathkeys().
{ if (root->query_pathkeys == NIL) return 0; /* no special ordering requested */ if (pathkeys == NIL) return 0; /* unordered path */ if (pathkeys_contained_in(root->query_pathkeys, pathkeys)) { /* It's useful ... or at least the first N keys are */ return list_length(root->query_pathkeys); } return 0; /* path ordering not useful */ }
static bool right_merge_direction | ( | PlannerInfo * | root, | |
PathKey * | pathkey | |||
) | [static] |
Definition at line 1347 of file pathkeys.c.
References BTLessStrategyNumber, lfirst, PathKey::pk_eclass, PathKey::pk_opfamily, PathKey::pk_strategy, and PlannerInfo::query_pathkeys.
Referenced by pathkeys_useful_for_merging().
{ ListCell *l; foreach(l, root->query_pathkeys) { PathKey *query_pathkey = (PathKey *) lfirst(l); if (pathkey->pk_eclass == query_pathkey->pk_eclass && pathkey->pk_opfamily == query_pathkey->pk_opfamily) { /* * Found a matching query sort column. Prefer this pathkey's * direction iff it matches. Note that we ignore pk_nulls_first, * which means that a sort might be needed anyway ... but we still * want to prefer only one of the two possible directions, and we * might as well use this one. */ return (pathkey->pk_strategy == query_pathkey->pk_strategy); } } /* If no matching ORDER BY request, prefer the ASC direction */ return (pathkey->pk_strategy == BTLessStrategyNumber); }
List* select_outer_pathkeys_for_merge | ( | PlannerInfo * | root, | |
List * | mergeclauses, | |||
RelOptInfo * | joinrel | |||
) |
Definition at line 1007 of file pathkeys.c.
References Assert, bms_overlap(), BTLessStrategyNumber, EquivalenceClass::ec_members, EquivalenceClass::ec_opfamilies, EquivalenceMember::em_is_child, EquivalenceMember::em_is_const, EquivalenceMember::em_relids, lappend(), RestrictInfo::left_ec, lfirst, linitial_oid, list_copy(), list_length(), make_canonical_pathkey(), NULL, RestrictInfo::outer_is_left, palloc(), pathkey_is_redundant(), pfree(), PathKey::pk_eclass, PlannerInfo::query_pathkeys, RelOptInfo::relids, RestrictInfo::right_ec, and update_mergeclause_eclasses().
Referenced by sort_inner_and_outer().
{ List *pathkeys = NIL; int nClauses = list_length(mergeclauses); EquivalenceClass **ecs; int *scores; int necs; ListCell *lc; int j; /* Might have no mergeclauses */ if (nClauses == 0) return NIL; /* * Make arrays of the ECs used by the mergeclauses (dropping any * duplicates) and their "popularity" scores. */ ecs = (EquivalenceClass **) palloc(nClauses * sizeof(EquivalenceClass *)); scores = (int *) palloc(nClauses * sizeof(int)); necs = 0; foreach(lc, mergeclauses) { RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc); EquivalenceClass *oeclass; int score; ListCell *lc2; /* get the outer eclass */ update_mergeclause_eclasses(root, rinfo); if (rinfo->outer_is_left) oeclass = rinfo->left_ec; else oeclass = rinfo->right_ec; /* reject duplicates */ for (j = 0; j < necs; j++) { if (ecs[j] == oeclass) break; } if (j < necs) continue; /* compute score */ score = 0; foreach(lc2, oeclass->ec_members) { EquivalenceMember *em = (EquivalenceMember *) lfirst(lc2); /* Potential future join partner? */ if (!em->em_is_const && !em->em_is_child && !bms_overlap(em->em_relids, joinrel->relids)) score++; } ecs[necs] = oeclass; scores[necs] = score; necs++; } /* * Find out if we have all the ECs mentioned in query_pathkeys; if so we * can generate a sort order that's also useful for final output. There is * no percentage in a partial match, though, so we have to have 'em all. */ if (root->query_pathkeys) { foreach(lc, root->query_pathkeys) { PathKey *query_pathkey = (PathKey *) lfirst(lc); EquivalenceClass *query_ec = query_pathkey->pk_eclass; for (j = 0; j < necs; j++) { if (ecs[j] == query_ec) break; /* found match */ } if (j >= necs) break; /* didn't find match */ } /* if we got to the end of the list, we have them all */ if (lc == NULL) { /* copy query_pathkeys as starting point for our output */ pathkeys = list_copy(root->query_pathkeys); /* mark their ECs as already-emitted */ foreach(lc, root->query_pathkeys) { PathKey *query_pathkey = (PathKey *) lfirst(lc); EquivalenceClass *query_ec = query_pathkey->pk_eclass; for (j = 0; j < necs; j++) { if (ecs[j] == query_ec) { scores[j] = -1; break; } } } } } /* * Add remaining ECs to the list in popularity order, using a default sort * ordering. (We could use qsort() here, but the list length is usually * so small it's not worth it.) */ for (;;) { int best_j; int best_score; EquivalenceClass *ec; PathKey *pathkey; best_j = 0; best_score = scores[0]; for (j = 1; j < necs; j++) { if (scores[j] > best_score) { best_j = j; best_score = scores[j]; } } if (best_score < 0) break; /* all done */ ec = ecs[best_j]; scores[best_j] = -1; pathkey = make_canonical_pathkey(root, ec, linitial_oid(ec->ec_opfamilies), BTLessStrategyNumber, false); /* can't be redundant because no duplicate ECs */ Assert(!pathkey_is_redundant(pathkey, pathkeys)); pathkeys = lappend(pathkeys, pathkey); } pfree(ecs); pfree(scores); return pathkeys; }
List* truncate_useless_pathkeys | ( | PlannerInfo * | root, | |
RelOptInfo * | rel, | |||
List * | pathkeys | |||
) |
Definition at line 1405 of file pathkeys.c.
References list_copy(), list_length(), list_truncate(), pathkeys_useful_for_merging(), and pathkeys_useful_for_ordering().
Referenced by build_index_paths(), and build_join_pathkeys().
{ int nuseful; int nuseful2; nuseful = pathkeys_useful_for_merging(root, rel, pathkeys); nuseful2 = pathkeys_useful_for_ordering(root, pathkeys); if (nuseful2 > nuseful) nuseful = nuseful2; /* * Note: not safe to modify input list destructively, but we can avoid * copying the list if we're not actually going to change it */ if (nuseful == 0) return NIL; else if (nuseful == list_length(pathkeys)) return pathkeys; else return list_truncate(list_copy(pathkeys), nuseful); }
void update_mergeclause_eclasses | ( | PlannerInfo * | root, | |
RestrictInfo * | restrictinfo | |||
) |
Definition at line 855 of file pathkeys.c.
References Assert, EquivalenceClass::ec_merged, RestrictInfo::left_ec, RestrictInfo::mergeopfamilies, NIL, NULL, and RestrictInfo::right_ec.
Referenced by find_mergeclauses_for_pathkeys(), make_inner_pathkeys_for_merge(), pathkeys_useful_for_merging(), select_mergejoin_clauses(), and select_outer_pathkeys_for_merge().
{ /* Should be a merge clause ... */ Assert(restrictinfo->mergeopfamilies != NIL); /* ... with pointers already set */ Assert(restrictinfo->left_ec != NULL); Assert(restrictinfo->right_ec != NULL); /* Chase up to the top as needed */ while (restrictinfo->left_ec->ec_merged) restrictinfo->left_ec = restrictinfo->left_ec->ec_merged; while (restrictinfo->right_ec->ec_merged) restrictinfo->right_ec = restrictinfo->right_ec->ec_merged; }