Eigen  3.2.7
 All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator Friends Groups Pages
MatrixBaseEigenvalues.h
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <[email protected]>
5 // Copyright (C) 2010 Jitse Niesen <[email protected]>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_MATRIXBASEEIGENVALUES_H
12 #define EIGEN_MATRIXBASEEIGENVALUES_H
13 
14 namespace Eigen {
15 
16 namespace internal {
17 
18 template<typename Derived, bool IsComplex>
19 struct eigenvalues_selector
20 {
21  // this is the implementation for the case IsComplex = true
22  static inline typename MatrixBase<Derived>::EigenvaluesReturnType const
23  run(const MatrixBase<Derived>& m)
24  {
25  typedef typename Derived::PlainObject PlainObject;
26  PlainObject m_eval(m);
27  return ComplexEigenSolver<PlainObject>(m_eval, false).eigenvalues();
28  }
29 };
30 
31 template<typename Derived>
32 struct eigenvalues_selector<Derived, false>
33 {
34  static inline typename MatrixBase<Derived>::EigenvaluesReturnType const
35  run(const MatrixBase<Derived>& m)
36  {
37  typedef typename Derived::PlainObject PlainObject;
38  PlainObject m_eval(m);
39  return EigenSolver<PlainObject>(m_eval, false).eigenvalues();
40  }
41 };
42 
43 } // end namespace internal
44 
65 template<typename Derived>
66 inline typename MatrixBase<Derived>::EigenvaluesReturnType
68 {
69  typedef typename internal::traits<Derived>::Scalar Scalar;
70  return internal::eigenvalues_selector<Derived, NumTraits<Scalar>::IsComplex>::run(derived());
71 }
72 
87 template<typename MatrixType, unsigned int UpLo>
90 {
91  typedef typename SelfAdjointView<MatrixType, UpLo>::PlainObject PlainObject;
92  PlainObject thisAsMatrix(*this);
93  return SelfAdjointEigenSolver<PlainObject>(thisAsMatrix, false).eigenvalues();
94 }
95 
96 
97 
120 template<typename Derived>
121 inline typename MatrixBase<Derived>::RealScalar
123 {
124  using std::sqrt;
125  typename Derived::PlainObject m_eval(derived());
126  // FIXME if it is really guaranteed that the eigenvalues are already sorted,
127  // then we don't need to compute a maxCoeff() here, comparing the 1st and last ones is enough.
128  return sqrt((m_eval*m_eval.adjoint())
129  .eval()
130  .template selfadjointView<Lower>()
131  .eigenvalues()
132  .maxCoeff()
133  );
134 }
135 
151 template<typename MatrixType, unsigned int UpLo>
154 {
155  return eigenvalues().cwiseAbs().maxCoeff();
156 }
157 
158 } // end namespace Eigen
159 
160 #endif
RealScalar operatorNorm() const
Computes the L2 operator norm.
Definition: MatrixBaseEigenvalues.h:122
Computes eigenvalues and eigenvectors of selfadjoint matrices.
Definition: SelfAdjointEigenSolver.h:68
EigenvaluesReturnType eigenvalues() const
Computes the eigenvalues of a matrix.
Definition: MatrixBaseEigenvalues.h:67
NumTraits< Scalar >::Real RealScalar
Definition: SelfAdjointView.h:158
EigenvaluesReturnType eigenvalues() const
Computes the eigenvalues of a matrix.
Definition: MatrixBaseEigenvalues.h:89
RealScalar operatorNorm() const
Computes the L2 operator norm.
Definition: MatrixBaseEigenvalues.h:153
The matrix class, also used for vectors and row-vectors.
Definition: Matrix.h:127