Eigen  3.2.7
 All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator Friends Groups Pages
SelfAdjointEigenSolver.h
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2010 Gael Guennebaud <[email protected]>
5 // Copyright (C) 2010 Jitse Niesen <[email protected]>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_SELFADJOINTEIGENSOLVER_H
12 #define EIGEN_SELFADJOINTEIGENSOLVER_H
13 
14 #include "./Tridiagonalization.h"
15 
16 namespace Eigen {
17 
18 template<typename _MatrixType>
19 class GeneralizedSelfAdjointEigenSolver;
20 
21 namespace internal {
22 template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues;
23 }
24 
68 template<typename _MatrixType> class SelfAdjointEigenSolver
69 {
70  public:
71 
72  typedef _MatrixType MatrixType;
73  enum {
74  Size = MatrixType::RowsAtCompileTime,
75  ColsAtCompileTime = MatrixType::ColsAtCompileTime,
76  Options = MatrixType::Options,
77  MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
78  };
79 
81  typedef typename MatrixType::Scalar Scalar;
82  typedef typename MatrixType::Index Index;
83 
85 
93 
94  friend struct internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>;
95 
101  typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVectorType;
102  typedef Tridiagonalization<MatrixType> TridiagonalizationType;
103 
115  : m_eivec(),
116  m_eivalues(),
117  m_subdiag(),
118  m_isInitialized(false)
119  { }
120 
134  : m_eivec(size, size),
135  m_eivalues(size),
136  m_subdiag(size > 1 ? size - 1 : 1),
137  m_isInitialized(false)
138  {}
139 
155  SelfAdjointEigenSolver(const MatrixType& matrix, int options = ComputeEigenvectors)
156  : m_eivec(matrix.rows(), matrix.cols()),
157  m_eivalues(matrix.cols()),
158  m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1),
159  m_isInitialized(false)
160  {
161  compute(matrix, options);
162  }
163 
194  SelfAdjointEigenSolver& compute(const MatrixType& matrix, int options = ComputeEigenvectors);
195 
210  SelfAdjointEigenSolver& computeDirect(const MatrixType& matrix, int options = ComputeEigenvectors);
211 
231  {
232  eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
233  eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
234  return m_eivec;
235  }
236 
253  {
254  eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
255  return m_eivalues;
256  }
257 
276  MatrixType operatorSqrt() const
277  {
278  eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
279  eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
280  return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint();
281  }
282 
301  MatrixType operatorInverseSqrt() const
302  {
303  eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
304  eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
305  return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint();
306  }
307 
313  {
314  eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
315  return m_info;
316  }
317 
323  static const int m_maxIterations = 30;
324 
325  #ifdef EIGEN2_SUPPORT
326  SelfAdjointEigenSolver(const MatrixType& matrix, bool computeEigenvectors)
327  : m_eivec(matrix.rows(), matrix.cols()),
328  m_eivalues(matrix.cols()),
329  m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1),
330  m_isInitialized(false)
331  {
332  compute(matrix, computeEigenvectors);
333  }
334 
335  SelfAdjointEigenSolver(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors = true)
336  : m_eivec(matA.cols(), matA.cols()),
337  m_eivalues(matA.cols()),
338  m_subdiag(matA.cols() > 1 ? matA.cols() - 1 : 1),
339  m_isInitialized(false)
340  {
341  static_cast<GeneralizedSelfAdjointEigenSolver<MatrixType>*>(this)->compute(matA, matB, computeEigenvectors ? ComputeEigenvectors : EigenvaluesOnly);
342  }
343 
344  void compute(const MatrixType& matrix, bool computeEigenvectors)
345  {
346  compute(matrix, computeEigenvectors ? ComputeEigenvectors : EigenvaluesOnly);
347  }
348 
349  void compute(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors = true)
350  {
351  compute(matA, matB, computeEigenvectors ? ComputeEigenvectors : EigenvaluesOnly);
352  }
353  #endif // EIGEN2_SUPPORT
354 
355  protected:
356  static void check_template_parameters()
357  {
358  EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
359  }
360 
361  EigenvectorsType m_eivec;
362  RealVectorType m_eivalues;
363  typename TridiagonalizationType::SubDiagonalType m_subdiag;
364  ComputationInfo m_info;
365  bool m_isInitialized;
366  bool m_eigenvectorsOk;
367 };
368 
385 namespace internal {
386 template<typename RealScalar, typename Scalar, typename Index>
387 static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n);
388 }
389 
390 template<typename MatrixType>
391 SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
392 ::compute(const MatrixType& matrix, int options)
393 {
394  check_template_parameters();
395 
396  using std::abs;
397  eigen_assert(matrix.cols() == matrix.rows());
398  eigen_assert((options&~(EigVecMask|GenEigMask))==0
399  && (options&EigVecMask)!=EigVecMask
400  && "invalid option parameter");
401  bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
402  Index n = matrix.cols();
403  m_eivalues.resize(n,1);
404 
405  if(n==1)
406  {
407  m_eivalues.coeffRef(0,0) = numext::real(matrix.coeff(0,0));
408  if(computeEigenvectors)
409  m_eivec.setOnes(n,n);
410  m_info = Success;
411  m_isInitialized = true;
412  m_eigenvectorsOk = computeEigenvectors;
413  return *this;
414  }
415 
416  // declare some aliases
417  RealVectorType& diag = m_eivalues;
418  EigenvectorsType& mat = m_eivec;
419 
420  // map the matrix coefficients to [-1:1] to avoid over- and underflow.
421  mat = matrix.template triangularView<Lower>();
422  RealScalar scale = mat.cwiseAbs().maxCoeff();
423  if(scale==RealScalar(0)) scale = RealScalar(1);
424  mat.template triangularView<Lower>() /= scale;
425  m_subdiag.resize(n-1);
426  internal::tridiagonalization_inplace(mat, diag, m_subdiag, computeEigenvectors);
427 
428  Index end = n-1;
429  Index start = 0;
430  Index iter = 0; // total number of iterations
431 
432  while (end>0)
433  {
434  for (Index i = start; i<end; ++i)
435  if (internal::isMuchSmallerThan(abs(m_subdiag[i]),(abs(diag[i])+abs(diag[i+1]))))
436  m_subdiag[i] = 0;
437 
438  // find the largest unreduced block
439  while (end>0 && m_subdiag[end-1]==0)
440  {
441  end--;
442  }
443  if (end<=0)
444  break;
445 
446  // if we spent too many iterations, we give up
447  iter++;
448  if(iter > m_maxIterations * n) break;
449 
450  start = end - 1;
451  while (start>0 && m_subdiag[start-1]!=0)
452  start--;
453 
454  internal::tridiagonal_qr_step(diag.data(), m_subdiag.data(), start, end, computeEigenvectors ? m_eivec.data() : (Scalar*)0, n);
455  }
456 
457  if (iter <= m_maxIterations * n)
458  m_info = Success;
459  else
460  m_info = NoConvergence;
461 
462  // Sort eigenvalues and corresponding vectors.
463  // TODO make the sort optional ?
464  // TODO use a better sort algorithm !!
465  if (m_info == Success)
466  {
467  for (Index i = 0; i < n-1; ++i)
468  {
469  Index k;
470  m_eivalues.segment(i,n-i).minCoeff(&k);
471  if (k > 0)
472  {
473  std::swap(m_eivalues[i], m_eivalues[k+i]);
474  if(computeEigenvectors)
475  m_eivec.col(i).swap(m_eivec.col(k+i));
476  }
477  }
478  }
479 
480  // scale back the eigen values
481  m_eivalues *= scale;
482 
483  m_isInitialized = true;
484  m_eigenvectorsOk = computeEigenvectors;
485  return *this;
486 }
487 
488 
489 namespace internal {
490 
491 template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues
492 {
493  static inline void run(SolverType& eig, const typename SolverType::MatrixType& A, int options)
494  { eig.compute(A,options); }
495 };
496 
497 template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3,false>
498 {
499  typedef typename SolverType::MatrixType MatrixType;
500  typedef typename SolverType::RealVectorType VectorType;
501  typedef typename SolverType::Scalar Scalar;
502  typedef typename MatrixType::Index Index;
503  typedef typename SolverType::EigenvectorsType EigenvectorsType;
504 
509  static inline void computeRoots(const MatrixType& m, VectorType& roots)
510  {
511  using std::sqrt;
512  using std::atan2;
513  using std::cos;
514  using std::sin;
515  const Scalar s_inv3 = Scalar(1.0)/Scalar(3.0);
516  const Scalar s_sqrt3 = sqrt(Scalar(3.0));
517 
518  // The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0. The
519  // eigenvalues are the roots to this equation, all guaranteed to be
520  // real-valued, because the matrix is symmetric.
521  Scalar c0 = m(0,0)*m(1,1)*m(2,2) + Scalar(2)*m(1,0)*m(2,0)*m(2,1) - m(0,0)*m(2,1)*m(2,1) - m(1,1)*m(2,0)*m(2,0) - m(2,2)*m(1,0)*m(1,0);
522  Scalar c1 = m(0,0)*m(1,1) - m(1,0)*m(1,0) + m(0,0)*m(2,2) - m(2,0)*m(2,0) + m(1,1)*m(2,2) - m(2,1)*m(2,1);
523  Scalar c2 = m(0,0) + m(1,1) + m(2,2);
524 
525  // Construct the parameters used in classifying the roots of the equation
526  // and in solving the equation for the roots in closed form.
527  Scalar c2_over_3 = c2*s_inv3;
528  Scalar a_over_3 = (c2*c2_over_3 - c1)*s_inv3;
529  if(a_over_3<Scalar(0))
530  a_over_3 = Scalar(0);
531 
532  Scalar half_b = Scalar(0.5)*(c0 + c2_over_3*(Scalar(2)*c2_over_3*c2_over_3 - c1));
533 
534  Scalar q = a_over_3*a_over_3*a_over_3 - half_b*half_b;
535  if(q<Scalar(0))
536  q = Scalar(0);
537 
538  // Compute the eigenvalues by solving for the roots of the polynomial.
539  Scalar rho = sqrt(a_over_3);
540  Scalar theta = atan2(sqrt(q),half_b)*s_inv3; // since sqrt(q) > 0, atan2 is in [0, pi] and theta is in [0, pi/3]
541  Scalar cos_theta = cos(theta);
542  Scalar sin_theta = sin(theta);
543  // roots are already sorted, since cos is monotonically decreasing on [0, pi]
544  roots(0) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta); // == 2*rho*cos(theta+2pi/3)
545  roots(1) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta); // == 2*rho*cos(theta+ pi/3)
546  roots(2) = c2_over_3 + Scalar(2)*rho*cos_theta;
547  }
548 
549  static inline bool extract_kernel(MatrixType& mat, Ref<VectorType> res, Ref<VectorType> representative)
550  {
551  using std::abs;
552  Index i0;
553  // Find non-zero column i0 (by construction, there must exist a non zero coefficient on the diagonal):
554  mat.diagonal().cwiseAbs().maxCoeff(&i0);
555  // mat.col(i0) is a good candidate for an orthogonal vector to the current eigenvector,
556  // so let's save it:
557  representative = mat.col(i0);
558  Scalar n0, n1;
559  VectorType c0, c1;
560  n0 = (c0 = representative.cross(mat.col((i0+1)%3))).squaredNorm();
561  n1 = (c1 = representative.cross(mat.col((i0+2)%3))).squaredNorm();
562  if(n0>n1) res = c0/std::sqrt(n0);
563  else res = c1/std::sqrt(n1);
564 
565  return true;
566  }
567 
568  static inline void run(SolverType& solver, const MatrixType& mat, int options)
569  {
570  eigen_assert(mat.cols() == 3 && mat.cols() == mat.rows());
571  eigen_assert((options&~(EigVecMask|GenEigMask))==0
572  && (options&EigVecMask)!=EigVecMask
573  && "invalid option parameter");
574  bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
575 
576  EigenvectorsType& eivecs = solver.m_eivec;
577  VectorType& eivals = solver.m_eivalues;
578 
579  // Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow.
580  Scalar shift = mat.trace() / Scalar(3);
581  // TODO Avoid this copy. Currently it is necessary to suppress bogus values when determining maxCoeff and for computing the eigenvectors later
582  MatrixType scaledMat = mat.template selfadjointView<Lower>();
583  scaledMat.diagonal().array() -= shift;
584  Scalar scale = scaledMat.cwiseAbs().maxCoeff();
585  if(scale > 0) scaledMat /= scale; // TODO for scale==0 we could save the remaining operations
586 
587  // compute the eigenvalues
588  computeRoots(scaledMat,eivals);
589 
590  // compute the eigenvectors
591  if(computeEigenvectors)
592  {
593  if((eivals(2)-eivals(0))<=Eigen::NumTraits<Scalar>::epsilon())
594  {
595  // All three eigenvalues are numerically the same
596  eivecs.setIdentity();
597  }
598  else
599  {
600  MatrixType tmp;
601  tmp = scaledMat;
602 
603  // Compute the eigenvector of the most distinct eigenvalue
604  Scalar d0 = eivals(2) - eivals(1);
605  Scalar d1 = eivals(1) - eivals(0);
606  Index k(0), l(2);
607  if(d0 > d1)
608  {
609  std::swap(k,l);
610  d0 = d1;
611  }
612 
613  // Compute the eigenvector of index k
614  {
615  tmp.diagonal().array () -= eivals(k);
616  // By construction, 'tmp' is of rank 2, and its kernel corresponds to the respective eigenvector.
617  extract_kernel(tmp, eivecs.col(k), eivecs.col(l));
618  }
619 
620  // Compute eigenvector of index l
621  if(d0<=2*Eigen::NumTraits<Scalar>::epsilon()*d1)
622  {
623  // If d0 is too small, then the two other eigenvalues are numerically the same,
624  // and thus we only have to ortho-normalize the near orthogonal vector we saved above.
625  eivecs.col(l) -= eivecs.col(k).dot(eivecs.col(l))*eivecs.col(l);
626  eivecs.col(l).normalize();
627  }
628  else
629  {
630  tmp = scaledMat;
631  tmp.diagonal().array () -= eivals(l);
632 
633  VectorType dummy;
634  extract_kernel(tmp, eivecs.col(l), dummy);
635  }
636 
637  // Compute last eigenvector from the other two
638  eivecs.col(1) = eivecs.col(2).cross(eivecs.col(0)).normalized();
639  }
640  }
641 
642  // Rescale back to the original size.
643  eivals *= scale;
644  eivals.array() += shift;
645 
646  solver.m_info = Success;
647  solver.m_isInitialized = true;
648  solver.m_eigenvectorsOk = computeEigenvectors;
649  }
650 };
651 
652 // 2x2 direct eigenvalues decomposition, code from Hauke Heibel
653 template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,2,false>
654 {
655  typedef typename SolverType::MatrixType MatrixType;
656  typedef typename SolverType::RealVectorType VectorType;
657  typedef typename SolverType::Scalar Scalar;
658  typedef typename SolverType::EigenvectorsType EigenvectorsType;
659 
660  static inline void computeRoots(const MatrixType& m, VectorType& roots)
661  {
662  using std::sqrt;
663  const Scalar t0 = Scalar(0.5) * sqrt( numext::abs2(m(0,0)-m(1,1)) + Scalar(4)*numext::abs2(m(1,0)));
664  const Scalar t1 = Scalar(0.5) * (m(0,0) + m(1,1));
665  roots(0) = t1 - t0;
666  roots(1) = t1 + t0;
667  }
668 
669  static inline void run(SolverType& solver, const MatrixType& mat, int options)
670  {
671  using std::sqrt;
672  using std::abs;
673 
674  eigen_assert(mat.cols() == 2 && mat.cols() == mat.rows());
675  eigen_assert((options&~(EigVecMask|GenEigMask))==0
676  && (options&EigVecMask)!=EigVecMask
677  && "invalid option parameter");
678  bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
679 
680  EigenvectorsType& eivecs = solver.m_eivec;
681  VectorType& eivals = solver.m_eivalues;
682 
683  // map the matrix coefficients to [-1:1] to avoid over- and underflow.
684  Scalar scale = mat.cwiseAbs().maxCoeff();
685  scale = (std::max)(scale,Scalar(1));
686  MatrixType scaledMat = mat / scale;
687 
688  // Compute the eigenvalues
689  computeRoots(scaledMat,eivals);
690 
691  // compute the eigen vectors
692  if(computeEigenvectors)
693  {
694  if((eivals(1)-eivals(0))<=abs(eivals(1))*Eigen::NumTraits<Scalar>::epsilon())
695  {
696  eivecs.setIdentity();
697  }
698  else
699  {
700  scaledMat.diagonal().array () -= eivals(1);
701  Scalar a2 = numext::abs2(scaledMat(0,0));
702  Scalar c2 = numext::abs2(scaledMat(1,1));
703  Scalar b2 = numext::abs2(scaledMat(1,0));
704  if(a2>c2)
705  {
706  eivecs.col(1) << -scaledMat(1,0), scaledMat(0,0);
707  eivecs.col(1) /= sqrt(a2+b2);
708  }
709  else
710  {
711  eivecs.col(1) << -scaledMat(1,1), scaledMat(1,0);
712  eivecs.col(1) /= sqrt(c2+b2);
713  }
714 
715  eivecs.col(0) << eivecs.col(1).unitOrthogonal();
716  }
717  }
718 
719  // Rescale back to the original size.
720  eivals *= scale;
721 
722  solver.m_info = Success;
723  solver.m_isInitialized = true;
724  solver.m_eigenvectorsOk = computeEigenvectors;
725  }
726 };
727 
728 }
729 
730 template<typename MatrixType>
731 SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
732 ::computeDirect(const MatrixType& matrix, int options)
733 {
734  internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>::run(*this,matrix,options);
735  return *this;
736 }
737 
738 namespace internal {
739 template<typename RealScalar, typename Scalar, typename Index>
740 static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n)
741 {
742  using std::abs;
743  RealScalar td = (diag[end-1] - diag[end])*RealScalar(0.5);
744  RealScalar e = subdiag[end-1];
745  // Note that thanks to scaling, e^2 or td^2 cannot overflow, however they can still
746  // underflow thus leading to inf/NaN values when using the following commented code:
747 // RealScalar e2 = numext::abs2(subdiag[end-1]);
748 // RealScalar mu = diag[end] - e2 / (td + (td>0 ? 1 : -1) * sqrt(td*td + e2));
749  // This explain the following, somewhat more complicated, version:
750  RealScalar mu = diag[end];
751  if(td==0)
752  mu -= abs(e);
753  else
754  {
755  RealScalar e2 = numext::abs2(subdiag[end-1]);
756  RealScalar h = numext::hypot(td,e);
757  if(e2==0) mu -= (e / (td + (td>0 ? 1 : -1))) * (e / h);
758  else mu -= e2 / (td + (td>0 ? h : -h));
759  }
760 
761  RealScalar x = diag[start] - mu;
762  RealScalar z = subdiag[start];
763  for (Index k = start; k < end; ++k)
764  {
765  JacobiRotation<RealScalar> rot;
766  rot.makeGivens(x, z);
767 
768  // do T = G' T G
769  RealScalar sdk = rot.s() * diag[k] + rot.c() * subdiag[k];
770  RealScalar dkp1 = rot.s() * subdiag[k] + rot.c() * diag[k+1];
771 
772  diag[k] = rot.c() * (rot.c() * diag[k] - rot.s() * subdiag[k]) - rot.s() * (rot.c() * subdiag[k] - rot.s() * diag[k+1]);
773  diag[k+1] = rot.s() * sdk + rot.c() * dkp1;
774  subdiag[k] = rot.c() * sdk - rot.s() * dkp1;
775 
776 
777  if (k > start)
778  subdiag[k - 1] = rot.c() * subdiag[k-1] - rot.s() * z;
779 
780  x = subdiag[k];
781 
782  if (k < end - 1)
783  {
784  z = -rot.s() * subdiag[k+1];
785  subdiag[k + 1] = rot.c() * subdiag[k+1];
786  }
787 
788  // apply the givens rotation to the unit matrix Q = Q * G
789  if (matrixQ)
790  {
791  Map<Matrix<Scalar,Dynamic,Dynamic,ColMajor> > q(matrixQ,n,n);
792  q.applyOnTheRight(k,k+1,rot);
793  }
794  }
795 }
796 
797 } // end namespace internal
798 
799 } // end namespace Eigen
800 
801 #endif // EIGEN_SELFADJOINTEIGENSOLVER_H
ComputationInfo info() const
Reports whether previous computation was successful.
Definition: SelfAdjointEigenSolver.h:312
MatrixType::Scalar Scalar
Scalar type for matrices of type _MatrixType.
Definition: SelfAdjointEigenSolver.h:81
MatrixType operatorInverseSqrt() const
Computes the inverse square root of the matrix.
Definition: SelfAdjointEigenSolver.h:301
Definition: Constants.h:339
const RealVectorType & eigenvalues() const
Returns the eigenvalues of given matrix.
Definition: SelfAdjointEigenSolver.h:252
SelfAdjointEigenSolver(const MatrixType &matrix, int options=ComputeEigenvectors)
Constructor; computes eigendecomposition of given matrix.
Definition: SelfAdjointEigenSolver.h:155
SelfAdjointEigenSolver(Index size)
Constructor, pre-allocates memory for dynamic-size matrices.
Definition: SelfAdjointEigenSolver.h:133
Computes eigenvalues and eigenvectors of selfadjoint matrices.
Definition: SelfAdjointEigenSolver.h:68
Holds information about the various numeric (i.e. scalar) types allowed by Eigen. ...
Definition: NumTraits.h:88
Tridiagonal decomposition of a selfadjoint matrix.
Definition: Tridiagonalization.h:61
SelfAdjointEigenSolver & computeDirect(const MatrixType &matrix, int options=ComputeEigenvectors)
Computes eigendecomposition of given matrix using a direct algorithm.
Definition: SelfAdjointEigenSolver.h:732
Computes eigenvalues and eigenvectors of the generalized selfadjoint eigen problem.
Definition: GeneralizedSelfAdjointEigenSolver.h:48
static const int m_maxIterations
Maximum number of iterations.
Definition: SelfAdjointEigenSolver.h:323
MatrixType operatorSqrt() const
Computes the positive-definite square root of the matrix.
Definition: SelfAdjointEigenSolver.h:276
NumTraits< Scalar >::Real RealScalar
Real scalar type for _MatrixType.
Definition: SelfAdjointEigenSolver.h:92
internal::plain_col_type< MatrixType, RealScalar >::type RealVectorType
Type for vector of eigenvalues as returned by eigenvalues().
Definition: SelfAdjointEigenSolver.h:101
const EigenvectorsType & eigenvectors() const
Returns the eigenvectors of given matrix.
Definition: SelfAdjointEigenSolver.h:230
Definition: Constants.h:380
Definition: Constants.h:376
void resize(Index nbRows, Index nbCols)
Definition: PlainObjectBase.h:235
SelfAdjointEigenSolver & compute(const MatrixType &matrix, int options=ComputeEigenvectors)
Computes eigendecomposition of given matrix.
Definition: SelfAdjointEigenSolver.h:392
ComputationInfo
Definition: Constants.h:374
SelfAdjointEigenSolver()
Default constructor for fixed-size matrices.
Definition: SelfAdjointEigenSolver.h:114
Definition: Constants.h:336